Skip to main content

Cardiac Actions of Taurine as a Modulator of the Ion Channels

  • Chapter
Taurine 3

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 442))

Abstract

During ischemia, hypoxia and cardiac failure, the heart undergoes several adverse changes, including a reduction in taurine (2-aminoethanesulfonic acid)9,10. Oral administration of taurine under these disease conditions would be expected to act like a mild cardiac glycoside. Taurine would exert improvement in the accumulation of [Na]i and the loss of α-amino acids. Nonetheless, when intracellular taurine content is raised, there would be the benefit of increased Ca2+ release from the sarcoplasmic reticulum and increased Ca2+ sensitivity of the contractile proteins, as well as possible changes in the action potential associated with the actions of taurine on ion channels. In fact, intracellular application of taurine produces the opposite actions to extracellularly administration of the ammo acid.

From our previous experiments, the electrophysiological actions of taurine on cardiac muscle cells include the following3,28: (a) Prolongation of action potential duration (APD) at high [Ca]i and shortening of APD at low [Ca]i. In multicellular preparations, however, taurine did not always prevent [Ca]o-induced effects. (b) Stimulation of spontaneous activity at low intracellular and extracellular Ca2+ concentrations ([Ca]i and [Ca]o), and vice versa. (c) Inhibition of the L-type Ca2+ current (ICa(L)) at high [Ca]i, and vice versa. (d) Enhancement of the T-type Ca2+ current (ICa(T)). (e) Inhibition of fast Na+ current (INa). (f) Enhancement of TTX-insensitive slow Na+ current. (g) Inhibition of delayed rectifier K+ current (IKrec) at high [Ca]i, and vice versa. (h) Enhancement of the transient outward current (Ito). (i) Inhibition of the ATP-sensitive K+ current (IK(ATP)).

Since taurine acts on so many ion channels and transporters, it is clearly non-specific. Although it is very difficult to understand the diversity of taurine’s actions, it is possible that taurine can exert its potent cardioprotective actions under the conditions of low [Ca]i, as well as Ca2+ overload. Thus, although taurine-induced modulation of ion channels located on the cardiac cell membrane is complex, the multiple effects may combine to yield useful therapeutic results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, C.M. and Matteson, D.R., 1985, Two distinct populations of calcium channels in a clonal line of pituitary cells, Science, 227:65–67.

    Article  PubMed  CAS  Google Scholar 

  2. Bkaily, Gg., Chahine, M., Sperelakis, N., and Yamamoto, T., 1988, Taurine increases one type of slow Na+ and Ca2+ currents in embryonic heart, J. Physiol. (Lond.), 406:91.

    Google Scholar 

  3. Chapman, R.A., Suleiman, M.S., and Earm, Y.E., 1993, Taurine and the heart, Cardiovasc. Res., 27:358–363.

    Article  PubMed  CAS  Google Scholar 

  4. Christensen, H.N. and Kilberg, M.S., 1987, Amino acid transport across the plasma membrane: role of regulation in interorgan flows, in “Amino Acid Transport in Animal Cells”, Yudilevich, D.L. and Boyd, C.A.R., eds., Manchester Univ Press, Manchester, pp. 10–45.

    Google Scholar 

  5. Earm, Y.E., Ho, W.K., So, I., Leem, C.H., and Han, J., 1993, Effect of taurine on the activitity of background current in cardiac myocytes of the rabbit, in “Ionic Channels and Effect of Taurine on the Heart”, Noble, E. and Earm, Y.E., eds., Kluwer Academic Publishers, Boston, pp. 119–138.

    Chapter  Google Scholar 

  6. Fujii, S., Ayer, R.K., DeHaan, R.L., 1988, Development of the fast sodium current in early embryonic chick heart cells, J. Membr. Biol., 101:209–223.

    Article  PubMed  CAS  Google Scholar 

  7. Huxtable, R.J. and Sebring, L.A., 1983, Cardiovascular actions of taurine, in “Sulfur Amino Acids: Biochemical and Clinical Aspects”, Kuriyama, K., Huxtable, R.J., Iwata, H., and Liss, A.R., eds., Biochem Clin Aspec, New York, pp. 5–37.

    Google Scholar 

  8. Khatter, J.C., Soni, P.L., Hoeschen, R.J., Alto, L.E., and Dhalla, N.S., 1981, Subcellular effects of taurine on guinea pig heart, in “The Effect of Taurine on Excitable Tissues”, Schaffer, S.W., Baskin, S.I., and Kocsis, J.J., eds., Spectrum Publications, New York, pp. 281–294.

    Chapter  Google Scholar 

  9. Kramer, J.H., Chovan, J.P., and Schaffer, S.W., 1981, Effect of taurine on calcium paradox and ischémic heart failure, Am. J. Physiol., 240:H238–H246.

    PubMed  CAS  Google Scholar 

  10. Lombardini, J.B., 1980, Effect of ischemia on taurine levels, in “Natural Sulfur compounds”, Cavallini, D., Gaull, G.E., and Zappia, V., eds., Plenum Press, New York, pp. 255–261.

    Google Scholar 

  11. Lombardini, J.B., 1992, Effects of taurine on protein phosphorylation in mammalian tissues, in Adv. Exp. Med. Biol. “Taurine: Nutritional Value and Mechanism of Actions”, Lombardini, B., Schaffer, S. and Azuma, J., eds., Plenum Press, New York, Vol. 315, pp. 309–318.

    Google Scholar 

  12. Meldrum, M.J., Tu, R., Patterson, T., Dawson, R., and Petty, T., 1994, The effect of taurine on blood pressure, and uninary sodium, potassium and calcium excretion, in Adv. Exp. Med. Biol. “Taurine in Health and Disease”, Huxtable, R.J. and Michalk, D., eds., Plenum Press, New York, Plenum Press, New York, Vol. 359, pp. 207–215.

    Google Scholar 

  13. Noma, A., 1983, ATP-regulated K+ channels in cardiac muscle, Nature, 305:147–148.

    Article  PubMed  CAS  Google Scholar 

  14. Satoh, H., 1993, Effects of ATP-sensitive K+ channel openers on the pacemaker activity in isolated rabbit single sino-atrial node cells, J. Cardiovasc. Pharmacol., 22:863–868.

    Article  PubMed  CAS  Google Scholar 

  15. Satoh, H., 1994, Cardioprotective actions of taurine against intracellular and extra-cellular calcium-induced effects, in Adv. Exp. Med. Biol. “Taurine in Health and Disease”, Huxtable, R.J. and Michalk, D., eds., Plenum Press, New York, Vol. 359, pp. 181–196.

    Google Scholar 

  16. Satoh, H., 1995, Electrophysiological actions of taurine on spontaneously beating rabbit sino-atrial nodal cells, Jpn. J. Pharmacol., 67:29–34.

    Article  PubMed  CAS  Google Scholar 

  17. Satoh, H., 1995, Regulation by taurine of the spontaneous activity in young embryonic chick cardiomyocytes, J. Cardiovasc. Pharmacol., 25:3–8.

    Article  PubMed  CAS  Google Scholar 

  18. Satoh, H., 1995, Tauime-induced hyperpolarization shift of the reversal potential of the fast Na+ current in embryonic chick cardiomyocytes, Gen. Pharmacol., 26:517–521.

    Article  PubMed  CAS  Google Scholar 

  19. Satoh, H., 1995, A dual action of taurine on the delayed rectifier K+ current in embryonic chick cardiomyocytes, Amino Acids, 9:235–246.

    Article  CAS  Google Scholar 

  20. Satoh, H., 1995, Role of T-type Ca2+ channel inhibitors in the pacemaker depolarization in rabbit sinoatrial nodal cells, Gen. Pharmacol., 26:581–587.

    Article  PubMed  CAS  Google Scholar 

  21. Satoh, H., 1995, Identification of and developmental changes in transient outward current in embryonic chick cardiomyocytes, Reprod. Fertil. Dev., 7:1369–1374.

    Article  PubMed  CAS  Google Scholar 

  22. Satoh, H., 1996, Direct inhibition by taurine of the ATP-sensitive K+ channel in guinea pig ventricular cardiomyocytes, Gen. Pharmacol., 27:625–627.

    Article  PubMed  CAS  Google Scholar 

  23. Satoh, H., 1996, Electrophysiological and electropharmacological actions of taurine on cardiac cells, in Adv. Exp. Med. Biol. “Taurine 2; Basic and Clinical Aspects”. Huxtable, R.J., Azuma J., Kuriyama, K. et al. eds., Plenum Press, New York, Plenum Press, New York, Vol. 403, pp. 285–296.

    Google Scholar 

  24. Satoh, H., 1997, Inhibition of the fast Na+ current by taurine in guinea pig ventricular myocytes, Gen. Pharmacol., (in press).

    Google Scholar 

  25. Satoh, H. and Horie, M., 1997, Actions of taurine on the L-type Ca2+ channel current in guinea pig ventricular cardiomyocytes, J. Cariovasc. Pharmacol., 31.(in press).

    Google Scholar 

  26. Satoh, H. and Sperelakis, N., 1992, Taurine inhibition of Na+ current in embryonic chick ventricular myocytes, Eur. J. Pharmacol, 218:83–89.

    Article  PubMed  CAS  Google Scholar 

  27. Satoh, H. and Sperelakis, N., 1993, Effects of taurine on Ca2+ currents in young embryonic chick cardiomyocytes, Eur. J. Pharmacol, 231:443–449.

    Article  PubMed  CAS  Google Scholar 

  28. Satoh, H. and Sperelakis, N., 1997, Review of some actions of taurine on ion channels of cardiac muscle cells and others, Gen. Pharmacol, 30:(in press).

    Google Scholar 

  29. Satoh, H., Tsuchida, K., and Hashimoto, K., 1989, Electrophysiological actions of A23187 and X-537A in spontaneously beating and in voltage-clamped rabbit sino-atrial node preparations, Naunyn-Schmiedeberg’s Arch. Pharmacol., 339:320–326.

    Article  CAS  Google Scholar 

  30. Schaffer, S.W., Kramer, J., and Chovan, J.P., 1980, Regulation of calcium homeostasis in the heart by taurine, Fed. Proc., 39:2691–2694.

    PubMed  CAS  Google Scholar 

  31. Segawa, T., Nomura, Y., and Shimazaki, I., 1985, Possible involvement of calmoduline in modulatory role of taurine in rat cerebral (β-adrenergic neurones, in “Taurine: Biological Actions and Clinical Perspectives”, Oja, S.S., Athee, L., Kontro, P., and Paasonen, M.K., eds., Alan R. Liss, New York, pp. 321–330.

    Google Scholar 

  32. Sperelakis, N. and Satoh, H., 1993, Taurine effects on ion channels of cardiac muscle, in “Ionic Channels and Effect of Taurine on the Heart”, Noble, D. and Earm, Y.E., eds., Kluwer Academic Publishers, Boston, pp. 93–118.

    Chapter  Google Scholar 

  33. Sperelakis, N., Satoh, H., and Bkaily, G., 1992, Taurine’s effects on ionic currents in myocardial cells, in Adv. Exp. Med. Biol. “Taurine: Nutritional Value and Mechanical of Actions”, Lombardini, B., Schaffer, S., and Azuma, J., eds., Plenum Press, New York, Vol. 315, pp. 129–143.

    Google Scholar 

  34. Suleiman, M.S., Rodrigo, G.C., and Chapman, R.A., 1992, Interdependence of intracellular taurine and sodium in guinea pig heart, Cardiovasc. Res., 26:897–907.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Satoh, H. (1998). Cardiac Actions of Taurine as a Modulator of the Ion Channels. In: Schaffer, S., Lombardini, J.B., Huxtable, R.J. (eds) Taurine 3. Advances in Experimental Medicine and Biology, vol 442. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0117-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0117-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0119-4

  • Online ISBN: 978-1-4899-0117-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics