Skip to main content

Brain-Computer Interface: A Communication Aid?

  • Chapter
  • First Online:
Coma and Disorders of Consciousness

Abstract

A brain-computer interface (BCI) is a system allowing for communication between the brain and the external environment. It is independent from any peripheral neural or muscular activity and it directly converts brain activity into a computerized command. In this chapter, we present the recent progress in the development of BCIs. Moreover, we discuss clinical applications in LIS patients and studies performed in patients recovering from coma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolpaw JR, Birbaumer N, McFarland DJ, et al. Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002;113(6):767–91.

    Article  PubMed  Google Scholar 

  2. Sorger B, Dahmen B, Reithler J, et al. Another kind of ‘BOLD Response’: answering multiple-choice questions via online decoded single-trial brain signals. Prog Brain Res. 2009;177:275–92.

    Article  PubMed  Google Scholar 

  3. Sellers EW, Donchin E. A P300-based brain-computer interface: initial tests by ALS patients. Clin Neurophysiol. 2006;117(3):538–48.

    Article  PubMed  Google Scholar 

  4. Sellers EW, Kubler A, Donchin E. Brain-computer interface research at the University of South Florida Cognitive Psychophysiology Laboratory: the P300 speller. IEEE Trans Neural Syst Rehabil Eng. 2006;14(2):221–4.

    Article  PubMed  Google Scholar 

  5. Kübler A. Brain-computer interfaces for communication in paralysed patients and implications for disorders of consciousness. In: Laureys S, Tononi G, editors. The neurology of consciousness. London/Burlington/San Diego: Academic Press/Elsevier; 2008. p. 217–34.

    Google Scholar 

  6. Citi L, Poli R, Cinel C, Sepulveda F. P300-based BCI mouse with genetically-optimized analogue control. IEEE Trans Neural Syst Rehabil Eng. 2008;16(1):51–61.

    Article  PubMed  Google Scholar 

  7. Yoo SS, Fairneny T, Chen NK, et al. Brain-computer interface using fMRI: spatial navigation by thoughts. Neuroreport. 2004;15(10):1591–5.

    Article  PubMed  Google Scholar 

  8. Mugler EM, Ruf CA, Halder S, et al. Design and implementation of a P300-based brain-computer interface for controlling an internet browser. IEEE Trans Neural Syst Rehabil Eng. 2010;18:599–609.

    Article  PubMed  Google Scholar 

  9. Sellers EW, Vaughan TM, Wolpaw JR. A brain-computer interface for long-term independent home use. Amyotroph Lateral Scler. 2010;11:449–55.

    Article  PubMed  Google Scholar 

  10. Lee JH, Ryu J, Jolesz FA, et al. Brain-machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm. Neurosci Lett. 2009;450(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  11. Schnakers C, Majerus S, Goldman S, et al. Cognitive function in the locked-in syndrome. J Neurol. 2008;255(3):323–30.

    Article  PubMed  Google Scholar 

  12. Bruno MA, Schnakers C, Damas F, et al. Locked-in syndrome in children: report of five cases and review of the literature. Pediatr Neurol. 2009;41(4):237–46.

    Article  PubMed  Google Scholar 

  13. Kubler A, Neumann N. Brain-computer interfaces–the key for the conscious brain locked into a paralyzed body. Prog Brain Res. 2005;150:513–25.

    Article  PubMed  Google Scholar 

  14. Owen AM, Coleman MR, Boly M, et al. Detecting awareness in the vegetative state. Science. 2006;313(5792):1402.

    Article  PubMed  CAS  Google Scholar 

  15. Donchin E, Spencer KM, Wijesinghe R. The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Trans Rehabil Eng. 2000;8(2):174–9.

    Article  PubMed  CAS  Google Scholar 

  16. Furdea A, Halder S, Krusienski DJ, et al. An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology. 2009;46(3):617–25.

    Article  PubMed  CAS  Google Scholar 

  17. Kubler A, Furdea A, Halder S, et al. A brain-computer interface controlled auditory event-related potential (p300) spelling system for locked-in patients. Ann N Y Acad Sci. 2009;1157:90–100.

    Article  PubMed  Google Scholar 

  18. Schreuder M, Blankertz B, Tangermann M. A new auditory multi-class brain-computer interface paradigm: spatial hearing as an informative cue. PLoS One. 2010;5(4):e9813.

    Article  PubMed  Google Scholar 

  19. Halder S, Rea M, Andreoni R, et al. An auditory oddball brain-computer interface for binary choices. Clin Neurophysiol. 2010;121(4):516–23.

    Article  PubMed  CAS  Google Scholar 

  20. Regan D. Some characteristics of average steady-state and transient responses evoked by ­modulated light. Electroencephalogr Clin Neurophysiol. 1966;20(3):238–48.

    Article  PubMed  CAS  Google Scholar 

  21. Vialatte FB, Maurice M, Dauwels J, Cichocki A. Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol. 2010;90(4):418–38.

    Article  PubMed  Google Scholar 

  22. Cecotti H. A self-paced and calibration-less SSVEP-based brain-computer interface speller. IEEE Trans Neural Syst Rehabil Eng. 2010;18(2):127–33.

    Article  PubMed  Google Scholar 

  23. Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842–57.

    Article  PubMed  CAS  Google Scholar 

  24. Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M. EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol. 1997;103(6):642–51.

    Article  PubMed  CAS  Google Scholar 

  25. Scherer R, Muller GR, Neuper C, et al. An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate. IEEE Trans Biomed Eng. 2004;51(6):979–84.

    Article  PubMed  Google Scholar 

  26. Nijboer F, Furdea A, Gunst I, et al. An auditory brain-computer interface (BCI). J Neurosci Methods. 2008;167(1):43–50.

    Article  PubMed  Google Scholar 

  27. Birbaumer N. Slow cortical potentials: their origin, meaning, and clinical use. In: van Boxtel GJM, Bocker KBE, editors. Brain and behavior past, present, and future. Tilburg: Tilburg University Press; 1997. p. 25–39.

    Google Scholar 

  28. Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N. Biofeedback of slow cortical potentials. I. Electroencephalogr Clin Neurophysiol. 1980;48(3):293–301.

    Article  PubMed  CAS  Google Scholar 

  29. Vidal JJ. Toward direct brain-computer communication. Annu Rev Biophys Bioeng. 1973;2:157–80.

    Article  PubMed  CAS  Google Scholar 

  30. Thut G, Nietzel A, Brandt SA, Pascual-Leone A. Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci. 2006;26(37):9494–502.

    Article  PubMed  CAS  Google Scholar 

  31. Kelly SP, Lalor EC, Reilly RB, Foxe JJ. Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. J Neurophysiol. 2006;95(6):3844–51.

    Article  PubMed  Google Scholar 

  32. van Gerven M, Jensen O. Attention modulations of posterior alpha as a control signal for two-dimensional brain-computer interfaces. J Neurosci Methods. 2009;179(1):78–84.

    Article  PubMed  Google Scholar 

  33. Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA. 1992;89(12):5675–9.

    Article  PubMed  CAS  Google Scholar 

  34. Boly M, Coleman MR, Davis MH, et al. When thoughts become action: an fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. Neuroimage. 2007;36(3):979–92.

    Article  PubMed  CAS  Google Scholar 

  35. Monti M, Colemand MR, Owen AM. “Brain-reading” with real-time fMRI: communication via detection of brain states in the absence of motor response. In: 14th annual meeting of the organization for the human brain mapping. Melbourne: Elsevier; 2008. p. 133.

    Google Scholar 

  36. Irani F, Platek SM, Bunce S, et al. Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders. Clin Neuropsychol. 2007;21(1):9–37.

    Article  PubMed  Google Scholar 

  37. Coyle SM, Ward TE, Markham CM. Brain-computer interface using a simplified functional near-infrared spectroscopy system. J Neural Eng. 2007;4(3):219–26.

    Article  PubMed  Google Scholar 

  38. Luu S, Chau T. Decoding subjective preference from single-trial near-infrared spectroscopy signals. J Neural Eng. 2009;6(1):016003.

    Article  PubMed  Google Scholar 

  39. Sitaram R, Zhang H, Guan C, et al. Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface. Neuroimage. 2007;34(4):1416–27.

    Article  PubMed  Google Scholar 

  40. Nijboer F, Sellers EW, Mellinger J, et al. A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol. 2008;119(8):1909–16.

    Article  PubMed  CAS  Google Scholar 

  41. Lulé D, Noirhomme Q, Kleih S, et al. Probing command following in patients with disorders of consciousness using a brain-computer interface. Clin Neurophysiol (Accepted).

    Google Scholar 

  42. Kubler A, Kotchoubey B, Hinterberger T, et al. The thought translation device: a neurophysiological approach to communication in total motor paralysis. Exp Brain Res. 1999;124(2):223–32.

    Article  PubMed  CAS  Google Scholar 

  43. Neuper C, Muller GR, Kubler A, et al. Clinical application of an EEG-based brain-computer interface: a case study in a patient with severe motor impairment. Clin Neurophysiol. 2003;114(3):399–409.

    Article  PubMed  CAS  Google Scholar 

  44. Perelmouter J, Kotchoubey B, Kübler A, et al. Language support program for thought translation devices. Automedica. 1999;18:67–84.

    Google Scholar 

  45. Pfurtscheller G, Muller-Putz GR, Schlogl A, et al. 15 years of BCI research at Graz University of Technology: current projects. IEEE Trans Neural Syst Rehabil Eng. 2006;14(2):205–10.

    Article  PubMed  CAS  Google Scholar 

  46. Cruse D, Bekinschtein TA, Monti M, Owen AM. Detecting awareness in the vegetative state with EEG. In: 16th annual meeting of the organization for human brain mapping. Barcelona: Elsevier; 2010.

    Google Scholar 

  47. Birbaumer N, Ghanayim N, Hinterberger T, et al. A spelling device for the paralysed. Nature. 1999;398(6725):297–8.

    Article  PubMed  CAS  Google Scholar 

  48. Birbaumer N, Kubler A, Ghanayim N, et al. The thought translation device (TTD) for completely paralyzed patients. IEEE Trans Rehabil Eng. 2000;8(2):190–3.

    Article  PubMed  CAS  Google Scholar 

  49. Monti MM, Vanhaudenhuyse A, Coleman MR, et al. Willful modulation of brain activity in disorders of consciousness. N Engl J Med. 2010;362:579–89.

    Article  PubMed  CAS  Google Scholar 

  50. Naito M, Michioka Y, Ozawa K, et al. A communication means for totally locked-in ALS patients based on changes in cerebral blood volume measured with near-infrared light. IEICE Trans Inf Syst. 2007;E90-D(7):1028–37.

    Article  Google Scholar 

  51. Kennedy PR, Bakay RA. Restoration of neural output from a paralyzed patient by a direct brain connection. Neuroreport. 1998;9(8):1707–11.

    Article  PubMed  CAS  Google Scholar 

  52. Kennedy PR, Bakay RA, Moore MM, et al. Direct control of a computer from the human central nervous system. IEEE Trans Rehabil Eng. 2000;8(2):198–202.

    Article  PubMed  CAS  Google Scholar 

  53. Brumberg JS, Nieto-Castanon A, Kennedy PR, Guenther FH. Brain-computer interfaces for speech communication. Speech Commun. 2010;52(4):367–79.

    Article  PubMed  Google Scholar 

  54. Hinterberger T, Widman G, Lal TN, et al. Voluntary brain regulation and communication with electrocorticogram signals. Epilepsy Behav. 2008;13(2):300–6.

    Article  PubMed  Google Scholar 

  55. Leuthardt EC, Schalk G, Wolpaw JR, et al. A brain-computer interface using electrocorticographic signals in humans. J Neural Eng. 2004;1(2):63–71.

    Article  PubMed  Google Scholar 

  56. Hill NJ, Lal TN, Schroder M, et al. Classifying EEG and ECoG signals without subject ­training for fast BCI implementation: comparison of nonparalyzed and completely paralyzed subjects. IEEE Trans Neural Syst Rehabil Eng. 2006;14(2):183–6.

    Article  PubMed  Google Scholar 

  57. Blankertz B, Sannelli C, Halder S, et al. Neurophysiological predictor of SMR-based BCI performance. Neuroimage. 2010;51(4):1303–9.

    Article  PubMed  Google Scholar 

  58. Giacino J, Ashwal S, Childs N, et al. The minimally conscious state: definition and diagnostic criteria. Neurology. 2002;58(3):349–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Chatelle M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Chatelle, C., Lugo, Z., Noirhomme, Q., Sorger, B., Lulé, D. (2012). Brain-Computer Interface: A Communication Aid?. In: Schnakers, C., Laureys, S. (eds) Coma and Disorders of Consciousness. Springer, London. https://doi.org/10.1007/978-1-4471-2440-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2440-5_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2439-9

  • Online ISBN: 978-1-4471-2440-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics