Skip to main content
Published Online:https://doi.org/10.1024/1016-264X/a000096

Autosomal-dominante Ataxien sind eine heterogene Gruppe von Erkrankungen, denen ein zerebelläres Syndrom gemeinsam ist. Neben motorischen Einschränkungen zeigen sich auch häufig kognitive Beeinträchtigungen und affektive Störungen. Exekutive Dysfunktion und Gedächtnisdefizite stehen dabei im Vordergrund. In dieser Arbeit wird ein Überblick über die bisher veröffentlichten Befunde zur Neuropsychologie bei verschiedenen spinozerebellären Ataxien und weiteren seltenen hereditären Ataxien gegeben. Die Notwendigkeit von neuropsychologischen Untersuchungen bei diesen Patientengruppen wird deutlich. Weitere Forschungen über den Verlauf der kognitiven Entwicklung und über den Zusammenhang mit klinischen Parametern (u. a. Krankheitsbeginn, Repeatlänge, Schweregrad der Erkrankung) sind notwendig, um in Zukunft Patienten entsprechend beraten zu können. Eine Empfehlung für neuropsychologische Tests zur Diagnostik wird genannt.


Cognition and Psychopathology in Autosomal Dominantly Inherited Ataxias

Autosomal-dominant ataxias comprise a heterogeneous group of diseases which are characterized by a cerebellar syndrom. The present review summarizes neuropsychological findings in spinocerebellar ataxias and other rare hereditary ataxias. Besides motor difficulties, affective disorders and cognitive deficits have been described, often concerning executive functions and memory. Since neuropsychological deficits are frequent, cognitive assessment seems essential in these patient groups. Further research assessing larger patient groups with standardized test batteries is needed. In particular, follow-up studies could shed light on the cognitive development and/or cognitive deterioration in the different types of ataxia. Better knowledge about possible cognitive alterations and their relation with disease variables is essential for patients’ counseling. Finally we give a recommendation for a clinical neuropsychological test battery.

Literatur

  • Abe, K. , Ikeda, Y. , Kurata, T. , Ohta, Y. , Manabe, Y. , Okamoto, M. et al. (2012). Cognitive and affective impairments of a novel SCA/MND crossroad mutation Asidan. European Journal of Neurology, 19, 1070 – 1078. First citation in articleCrossrefGoogle Scholar

  • Aschenbrenner, S. , Tucha, O. & Lange, K. W. (2001). Regensburger Wortflüssigkeits-Test. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Boesch, S. M. , Donnemiller, E. , Müller, J. , Seppi, K. , Weirich-Schwaiger, H. , Poewe, W. et al. (2004). Abnormalities of dopaminergic neurotransmission in SCA2: a combined 123I-betaCIT and 123I-IBZM SPECT study. Movement Disorders, 19, 1320 – 1325. First citation in articleCrossrefGoogle Scholar

  • Boesch, S. M. , Müller, J. , Wenning, G. K. & Poewe, W. (2007). Cervical dystonia in spinocerebellar ataxia type 2: clinical and polymyographic findings. Journal of Neurology, Neurosurgery & Psychiatry, 78, 520 – 522. First citation in articleCrossrefGoogle Scholar

  • Braga-Neto, P. , Dutra, L. A. , Pedroso, J. L. , Felicio, A. C. , Alessi, H. , Santos-Galduroz, R. F. et al. (2012). Cognitive deficits in Machado-Joseph disease correlate with hypoperfusion of visual system areas. Cerebellum, 11, 1037 – 1044. First citation in articleCrossrefGoogle Scholar

  • Braga-Neto, P. , Pedroso, J. L. , Alessi, H. , Dutra, L. A. , Felicio, A. C. , Minett, T. et al. (2012). Cerebellar cognitive affective syndrome in Machado Joseph disease: Core clinical features. Cerebellum, 11, 549 – 556. First citation in articleCrossrefGoogle Scholar

  • Brusco, A. , Cagnoli, C. , Franco, A. , Dragone, E. , Nardacchione, A. , Grosso, E. et al. (2002). Analysis of SCA8 and SCA12 loci in 134 Italian ataxic patients negative for SCA1 – 3, 6 and 7 CAG expansions 6. Journal of Neurology, 249, 923 – 929. First citation in articleCrossrefGoogle Scholar

  • Bürk, K. (2007). Cognition in hereditary ataxia. Cerebellum, 6, 280 – 286. First citation in articleCrossrefGoogle Scholar

  • Bürk, K. , Globas, C. , Bösch, S. , Klockgether, T. , Zühlke, C. , Daum, I. et al. (2003). Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. Journal of Neurology, 250, 207 – 211. First citation in articleCrossrefGoogle Scholar

  • Bürk, K. , Klockgether, T. & Dichgans, J. (1999). Neue Erkenntnisse zur Molekulargenetik und Pathophysiologie der hereditären Ataxien. Nervenarzt, 70, 491 – 495. First citation in articleCrossrefGoogle Scholar

  • Bürk, K. , Bösch, S. , Globas, C. , Zühlke, C. , Daum, I. , Klockgether, T. et al. (2001). Executive dysfunction in spinocerebellar ataxia type 125. European Neurology, 46, 43 – 48. First citation in articleCrossrefGoogle Scholar

  • Bürk, K. , Stevanin, G. , Didierjean, O. , Cancel, G. , Trottier, Y. , Skalej, M. et al. (1997). Clinical and genetic analysis of three German kindreds with autosomal dominant cerebellar ataxia type I linked to the SCA2 locus40. Journal of Neurology, 244, 256 – 261. First citation in articleCrossrefGoogle Scholar

  • Cancel, G. , Durr, A. , Didierjean, O. , Imbert, G. , Bürk, K. , Lezin, A. et al. (1997). Molecular and clinical correlations in spinocerebellar ataxia 2: A study of 32 families. Human Molecular Genetics, 6, 709 – 715. First citation in articleCrossrefGoogle Scholar

  • Castrioto, A. , Prontera, P. , Di, G. E. , Rossi, V. , Parnetti, L. , Rossi, A. et al. (2011). A novel spinocerebellar ataxia type 15 family with involuntary movements and cognitive decline. European Journal of Neurology, 18, 1263 – 1265. First citation in articleCrossrefGoogle Scholar

  • Chung, M. Y. , Lu, Y. C. , Cheng, N. C. & Soong, B. W. (2003). A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain, 126, 1293 – 1299. First citation in articleCrossrefGoogle Scholar

  • Cooper, F. E. , Grube, M. , Elsegood, K. J. , Welch, J. L. , Kelly, T. P. , Chinnery, P. F. et al. (2010). The contribution of the cerebellum to cognition in Spinocerebellar Ataxia Type 6. Behavioural Neurology, 23, 3 – 15. First citation in articleCrossrefGoogle Scholar

  • D’Agata, F. , Caroppo, P. , Boghi, A. , Coriasco, M. , Caglio, M. , Baudino, B. et al. (2011). Linking coordinative and executive dysfunctions to atrophy in spinocerebellar ataxia 2 patients 30. Brain Structure and Function, 216, 275 – 288. First citation in articleCrossrefGoogle Scholar

  • Day, J. W. , Schut, L. J. , Moseley, M. L. , Durand, A. C. & Ranum, L. P. (2000). Spinocerebellar ataxia type 8: clinical features in a large family 1. Neurology, 55, 649 – 657. First citation in articleCrossrefGoogle Scholar

  • Devos, D. , Schraen-Maschke, S. , Vuillaume, I. , Dujardin, K. , Naze, P. , Willoteaux, C. et al. (2001). Clinical features and genetic analysis of a new form of spinocerebellar ataxia. Neurology, 56, 234 – 238. First citation in articleCrossrefGoogle Scholar

  • Di Gregorio E., Orsi , L., Godani , M., Vaula , G., Jensen , S., Salmon , E. et al. (2010). Two Italian families with ITPR1 gene deletion presenting a broader phenotype of SCA15. Cerebellum, 9, 115 – 123. First citation in articleCrossrefGoogle Scholar

  • Durr, A. (2010). Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurology, 9, 885 – 894. First citation in articleCrossrefGoogle Scholar

  • Durr, A. , Smadja, D. , Cancel, G. , Lezin, A. , Stevanin, G. , Mikol, J. et al. (1995). Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families. Brain, 118, 1573 – 1581. First citation in articleCrossrefGoogle Scholar

  • Folstein, M. F. , Folstein, S. E. & McHugh, P. R. (1975). „Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189 – 198. First citation in articleCrossrefGoogle Scholar

  • Gambardella, A. , Annesi, G. , Bono, F. , Spadafora, P. , Valentino, P. , Pasqua, A. A. et al. (1998). CAG repeat length and clinical features in three Italian families with spinocerebellar ataxia type 2 (SCA2): early impairment of Wisconsin Card Sorting Test and saccade velocity 7. Journal of Neurology, 245, 647 – 652. First citation in articleCrossrefGoogle Scholar

  • Garrard, P. , Martin, N. H. , Giunti, P. & Cipolotti, L. (2008). Cognitive and social cognitive functioning in spinocerebellar ataxia : a preliminary characterization. Journal of Neurology, 255, 398 – 405. First citation in articleCrossrefGoogle Scholar

  • Genis, D. , Matilla, T. , Volpini, V. , Rosell, J. , Davalos, A. , Ferrer, I. et al. (1995). Clinical, neuropathologic, and genetic studies of a large spinocerebellar ataxia type 1 (SCA1) kindred: (CAG)n expansion and early premonitory signs and symptoms. Neurology, 45, 24 – 30. First citation in articleCrossrefGoogle Scholar

  • Globas, C. , Bösch, S. , Zühlke, C. , Daum, I. , Dichgans, J. & Bürk, K. (2003). The cerebellum and cognition. Intellectual function in spinocerebellar ataxia type 6 (SCA6). Journal of Neurology, 250, 1482 – 1487. First citation in articleCrossrefGoogle Scholar

  • Grewal, R. P. , Tayag, E. , Figueroa, K. P. , Zu, L. , Durazo, A. , Nunez, C. et al. (1998). Clinical and genetic analysis of a distinct autosomal dominant spinocerebellar ataxia 10. Neurology, 51, 1423 – 1426. First citation in articleCrossrefGoogle Scholar

  • Haarmeier, T. & Thier, P. (2007). The attentive cerebellum – myth or reality? Cerebellum, 6, 177 – 183. First citation in articleGoogle Scholar

  • Härting, C. , Markowitsch, H. J. , Neufeld, H. , Calabrese, P. , Deisinger, K. & Kessler, J. (2000). WMS-R Wechsler Gedächtnis-Test – Revidierte Fassung. Bern: Huber. First citation in articleGoogle Scholar

  • Heaton R.K. & PAR Staff (2005). WCST-64: CV2 Wisconsin Card Sorting Test. Florida: Psychological Assessment Resources (PAR). First citation in articleGoogle Scholar

  • Hedera, P. , Rainier, S. , Zhao, X. P. , Schalling, M. , Lindblad, K. , Yuan, Q. P. et al. (2002). Spastic paraplegia, ataxia, mental retardation (SPAR): a novel genetic disorder. Neurology, 58, 411 – 416. First citation in articleCrossrefGoogle Scholar

  • Helmstaedter, C. & Durwen, H. F. (1990). Verbaler Lern- und Merkfähigkeitstest. Ein praktikables und differenziertes Instrumentarium zur Prüfung der verbalen Gedächtnisleistungen. Schweizer Archiv für Neurologie und Psychiatrie, 141, 21 – 30. First citation in articleGoogle Scholar

  • Herman-Bert, A. , Stevanin, G. , Netter, J. C. , Rascol, O. , Brassat, D. , Calvas, P. et al. (2000). Mapping of spinocerebellar ataxia 13 to chromosome 19q13.3-q13.4 in a family with autosomal dominant cerebellar ataxia and mental retardation. American Journal of Human Genetics, 67, 229 – 235. First citation in articleCrossrefGoogle Scholar

  • Herrmann, Ch. , Buss U. & Snaith R.P. (1995). HADS-D Hospital Anxiety and Depression Scale (dt. Version). Bern: Hans Huber. First citation in articleGoogle Scholar

  • Hersheson, J. , Haworth, A. & Houlden, H. (2012). The inherited ataxias: Genetic heterogeneity, mutation databases, and future directions in research and clinical diagnostics. Human Mutation, 33, 1324 – 1332. First citation in articleCrossrefGoogle Scholar

  • Ikeda, Y. , Shizuka, M. , Watanabe, M. , Okamoto, K. & Shoji, M. (2000). Molecular and clinical analyses of spinocerebellar ataxia type 8 in Japan 2. Neurology, 54, 950 – 955. First citation in articleCrossrefGoogle Scholar

  • Izumi, Y. , Maruyama, H. , Oda, M. , Morino, H. , Okada, T. , Ito, H. et al. (2003). SCA8 repeat expansion: large CTA/CTG repeat alleles are more common in ataxic patients, including those with SCA6. American Journal of Human Genetics, 72, 704 – 709. First citation in articleCrossrefGoogle Scholar

  • Jen, J. , Kim, G. W. & Baloh, R. W. (2004). Clinical spectrum of episodic ataxia type 2. Neurology, 62, 17 – 22. First citation in articleCrossrefGoogle Scholar

  • Juvonen, V. , Hietala, M. , Paivarinta, M. , Rantamaki, M. , Hakamies, L. , Kaakkola, S. et al. (2000). Clinical and genetic findings in Finnish ataxia patients with the spinocerebellar ataxia 8 repeat expansion 1. Annals of Neurology, 48, 354 – 361. First citation in articleCrossrefGoogle Scholar

  • Kasahata, N. & Iwasaki, Y. (2010). Dentatorubropallidoluysian atrophy without involuntary movement or dementia–a case report. Clinical Neurology and Neurosurgery, 112, 722 – 725. First citation in articleCrossrefGoogle Scholar

  • Kawai, Y. , Suenaga, M. , Watanabe, H. , Ito, M. , Kato, K. , Kato, T. et al. (2008). Prefrontal hypoperfusion and cognitive dysfunction correlates in spinocerebellar ataxia type 6. Journal of the Neurological Sciences, 271, 68 – 74. First citation in articleCrossrefGoogle Scholar

  • Kawai, Y. , Takeda, A. , Abe, Y. , Washimi, Y. , Tanaka, F. , Sobue, G. (2004). Cognitive impairments in Machado-Joseph disease 13. Archives of Neurology, 61, 1757 – 1760. First citation in articleCrossrefGoogle Scholar

  • Kim, S. G. , Ugurbil, K. & Strick, P. L. (1994). Activation of a cerebellar output nucleus during cognitive processing. Science, 265, 949 – 951. First citation in articleCrossrefGoogle Scholar

  • Kish, S. J. , el-Awar, M. , Schut, L. , Leach, L. , Oscar-Berman, M. & Freedman, M. (1988). Cognitive deficits in olivopontocerebellar atrophy: implications for the cholinergic hypothesis of Alzheimer’s dementia. Annals of Neurology, 24, 200 – 206. First citation in articleCrossrefGoogle Scholar

  • Klebe, S. , Durr, A. , Rentschler, A. , Hahn-Barma, V. , Abele, M. , Bouslam, N. et al. (2005). New mutations in protein kinase Cgamma associated with spinocerebellar ataxia type 14. Annals of Neurology, 58, 720 – 729. First citation in articleCrossrefGoogle Scholar

  • Klinke, I. , Minnerop, M. , Schmitz-Hübsch, T. , Hendriks, M. , Klockgether, T. , Wüllner, U. et al. (2010). Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum, 9, 433 – 442. First citation in articleCrossrefGoogle Scholar

  • Klockgether, T. (2005). Ataxiekrankheiten. Diagnostisches Vorgehen und Therapie. Nervenarzt, 76, 1275 – 1283. First citation in articleCrossrefGoogle Scholar

  • La Spada, A. R. (1997). Trinucleotide repeat instability: genetic features and molecular mechanisms. Brain Pathology, 7, 943 – 963. First citation in articleCrossrefGoogle Scholar

  • Lasek, K. , Lencer, R. , Gaser, C. , Hagenah, J. , Walter, U. , Wolters, A. et al. (2006). Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain, 129, 2341 – 2352. First citation in articleCrossrefGoogle Scholar

  • Le Pira, F. , Zappala, G. , Saponara, R. , Domina, E. , Restivo, D. , Reggio, E. et al. (2002). Cognitive findings in spinocerebellar ataxia type 2: Relationship to genetic and clinical variables. Journal of Neurological Sciences, 201, 53 – 57. First citation in articleCrossrefGoogle Scholar

  • Leiner, H. C. , Leiner, A. L. & Dow, R. S. (1986). Does the cerebellum contribute to mental skills? Behavioral Neuroscience, 100, 443 – 454. First citation in articleCrossrefGoogle Scholar

  • Lilja, A. , Hamalainen, P. , Kaitaranta, E. & Rinne, R. (2005). Cognitive impairment in spinocerebellar ataxia type 8. Journal of Neurological Sciences, 237, 31 – 38. First citation in articleCrossrefGoogle Scholar

  • Lin, I. S. , Wu, R. M. , Lee-Chen, G. J. , Shan, D. E. & Gwinn-Hardy, K. (2007). The SCA17 phenotype can include features of MSA-C, PSP and cognitive impairment. Parkinsonism & Related Disorders, 13, 246 – 249. First citation in articleCrossrefGoogle Scholar

  • Londe P. (1895). Maladies familiales du systeme nerveux. De l’heredo-ataxie cerebelleuse. These. Paris: Battaille et Cie. First citation in articleGoogle Scholar

  • Lorenzo, D. N. , Forrest, S. M. , Ikeda, Y. , Dick, K. A. , Ranum, L. P. & Knight, M. A. (2006). Spinocerebellar ataxia type 20 is genetically distinct from spinocerebellar ataxia type 5. Neurology, 67, 2084 – 2085. First citation in articleCrossrefGoogle Scholar

  • Manto, M. & Lorivel, T. (2011). Cognitive repercussions of hereditary cerebellar disorders. Cortex, 47, 81 – 100. First citation in articleCrossrefGoogle Scholar

  • Marelli, C. , van de Leemput, J. , Johnson, J. O. , Tison, F. , Thauvin-Robinet, C. , Picard, F. et al. (2011). SCA15 due to large ITPR1 deletions in a cohort of 333 white families with dominant ataxia. Archives of Neurology, 68, 637 – 643. First citation in articleCrossrefGoogle Scholar

  • Marien, P. , Engelborghs, S. , Fabbro, F. & De Deyn, P. P. (2001). The lateralized linguistic cerebellum: a review and a new hypothesis. Brain and Language 79, 580 – 600. First citation in articleCrossrefGoogle Scholar

  • Mariotti, C. , Brusco, A. , Di, B. D. , Cagnoli, C. , Seri, M. , Gellera, C. et al. (2008). Spinocerebellar ataxia type 28: a novel autosomal dominant cerebellar ataxia characterized by slow progression and ophthalmoparesis. Cerebellum, 7, 184 – 188. First citation in articleCrossrefGoogle Scholar

  • Martin, J. J. (2012). Spinocerebellar ataxia type 7. Handbook of Clinical Neurology, 103, 475 – 491. First citation in articleCrossrefGoogle Scholar

  • Maruff, P. , Tyler, P. , Burt, T. , Currie, B. , Burns, C. & Currie, J. (1996). Cognitive deficits in Machado-Joseph disease. Annals of Neurology, 40, 421 – 427. First citation in articleCrossrefGoogle Scholar

  • Melberg, A. , Hetta, J. , Dahl, N. , Nennesmo, I. , Bengtsson, M. , Wibom, R. et al. (1995). Autosomal dominant cerebellar ataxia deafness and narcolepsy. Journal of Neurological Sciences, 134, 119 – 129. First citation in articleCrossrefGoogle Scholar

  • Meyers, J. E. & Meyers, K. R. (1995). Rey Complex Figure Test and Recognition Trial. Odessa: PAR. First citation in articleGoogle Scholar

  • Moretti, P. , Blazo, M. , Garcia, L. , Armstrong, D. , Lewis, R. A. , Roa, B. et al. (2004). Spinocerebellar ataxia type 2 (SCA2) presenting with ophthalmoplegia and developmental delay in infancy. American Journal of Medical Genetics, 124 A, 392 – 396. First citation in articleGoogle Scholar

  • Morris, J. C. , Mohs, R. C. , Rogers, H. , Fillenbaum, G. & Heyman, A. (1988). Consortium to establish a registry for Alzheimer’s disease (CERAD) clinical and neuropsychological assessment of Alzheimer’s disease. Psychopharmacology Bulletin, 24, 641 – 652. First citation in articleGoogle Scholar

  • Munoz, E. , Mila, M. , Sanchez, A. , Latorre, P. , Ariza, A. , Codina, M. et al. (1999). Dentatorubropallidoluysian atrophy in a spanish family: a clinical, radiological, pathological, and genetic study. Journal of Neurology, Neurosurgery & Psychiatry, 67, 811 – 814. First citation in articleCrossrefGoogle Scholar

  • Nachbauer, W. & Boesch, S. (2009). Hereditäre degenerative Kleinhirnerkrankungen Neues zu Diagnostik und Therapie. P-aktuel, 4, 1 – 9. First citation in articleGoogle Scholar

  • Nakamura, K. , Jeong, S. Y. , Uchihara, T. , Anno, M. , Nagashima, K. , Nagashima, T. et al. (2001). SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Human Molecular Genetics, 10, 1441 – 1448. First citation in articleCrossrefGoogle Scholar

  • Nance, M. A. (1997). Clinical aspects of CAG repeat diseases. Brain Pathology, 7, 881 – 900. First citation in articleCrossrefGoogle Scholar

  • Nielsen, T. T. , Mardosiene, S. , Lokkegaard, A. , Stokholm, J. , Ehrenfels, S. , Bech, S. et al. (2012). Severe and rapidly progressing cognitive phenotype in a SCA17-family with only marginally expanded CAG/CAA repeats in the TATA-box binding protein gene: a case report. BMC Neurology, 12, 73. First citation in articleCrossrefGoogle Scholar

  • Orsi, L. , D’Agata, F. , Caroppo, P. , Franco, A. , Caglio, M. M. , Avidano, F. et al. (2011). Neuropsychological picture of 33 spinocerebellar ataxia cases. Journal of Clinical and Experimental Neuropsychology, 33, 315 – 325. First citation in articleCrossrefGoogle Scholar

  • Potter, N. T. , Meyer, M. A. , Zimmerman, A. W. , Eisenstadt, M. L. & Anderson, I. J. (1995). Molecular and clinical findings in a family with dentatorubral-pallidoluysian atrophy. Annals of Neurology, 37, 273 – 277. First citation in articleCrossrefGoogle Scholar

  • Pulst, S. M. & Otis, T. S. (2012). Repolarization matters: mutations in the Kv4.3 potassium channel cause SCA19/22. Annals of Neurology., 72, 829 – 831. First citation in articleCrossrefGoogle Scholar

  • Radvany, J. , Camargo, C. H. , Costa, Z. M. , Fonseca, N. C. & Nascimento, E. D. (1993). Machado-Joseph disease of Azorean ancestry in Brazil: the Catarina kindred. Neurological, neuroimaging, psychiatric and neuropsychological findings in the largest known family, the „Catarina” kindred. Arq Neuropsiquiatr, 51, 21 – 30. First citation in articleCrossrefGoogle Scholar

  • Rasmussen, A. , Matsuura, T. , Ruano, L. , Yescas, P. , Ochoa, A. , Ashizawa, T. et al. (2001). Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Annals of Neurology, 50, 234 – 239. First citation in articleCrossrefGoogle Scholar

  • Raven, J. C. , Court, J. H. & Horn, R. (2009). SPM Raven′s Progressive Matrices und Vocabulary Scales: Standard Progressive Matrices. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Riess, O. , Laccone, F. A. , Gispert, S. , Schöls, L. , Zühlke, C. , Vieira-Saecker, A. M. et al. (1997). SCA2 trinucleotide expansion in German SCA patients. Neurogenetic., 1, 59 – 64. First citation in articleCrossrefGoogle Scholar

  • Robertson, I. H. , Ward, T. , Ridgeway, V. & Nimmo-Smith, I. (1996). The structure of normal human attention: The Test of Everyday Attention. Journal of the International Neuropsychological Society, 2, 525 – 534. First citation in articleCrossrefGoogle Scholar

  • Rodriguez-Labrada, R. , Velazquez-Perez, L. , Seigfried, C. , Canales-Ochoa, N. , Auburger, G. , Medrano-Montero, J. et al. (2011). Saccadic latency is prolonged in Spinocerebellar Ataxia type 2 and correlates with the frontal-executive dysfunctions. Journal of Neurological Sciences, 306, 103 – 107. First citation in articleCrossrefGoogle Scholar

  • Rolfs, A. , Koeppen, A. H. , Bauer, I. , Bauer, P. , Buhlmann, S. , Topka, H. et al. (2003). Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Annals of Neurology, 54, 367 – 375. First citation in articleCrossrefGoogle Scholar

  • Rottnek, M. , Riggio, S. , Byne, W. , Sano, M. , Margolis, R. L. & Walker, R. H. (2008). Schizophrenia in a patient with spinocerebellar ataxia 2: Coincidence of two disorders or a neurodegenerative disease presenting with psychosis? The American Journal of Psychiatry, 165, 964 – 967. First citation in articleCrossrefGoogle Scholar

  • Rub, U. , Bürk, K. , Timmann, D. , den Dunnen, W. , Seidel, K. , Farrag, K. et al. (2012). Spinocerebellar ataxia type 1 (SCA1): new pathoanatomical and clinico-pathological insights. Neuropathology and Applied Neurobiology, 38, 665 – 680. First citation in articleCrossrefGoogle Scholar

  • Rub, U. , Del Turco, D. , Bürk, K. , Diaz, G. O. , Auburger, G. , Mittelbronn, M. et al. (2005). Extended pathoanatomical studies point to a consistent affection of the thalamus in spinocerebellar ataxia type 2. Neuropathology and Applied Neurobiology, 31, 127 – 140. First citation in articleCrossrefGoogle Scholar

  • Schelhaas, H. J. , Ippel, P. F. , Hageman, G. , Sinke, R. J. , van der Laan, E. N. & Beemer, F. A. (2001). Clinical and genetic analysis of a four-generation family with a distinct autosomal dominant cerebellar ataxia. Journal of Neurology, 248, 113 – 120. First citation in articleCrossrefGoogle Scholar

  • Schmahmann, J. D. & Sherman, J. C. (1997). Cerebellar cognitive affective syndrome. International Review of Neurobiology, 41, 433 – 440. First citation in articleCrossrefGoogle Scholar

  • Schmahmann, J. D. & Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain, 121, 561 – 579. First citation in articleCrossrefGoogle Scholar

  • Schmitz-Hübsch, T. , Coudert, M. , Tezenas du, M. S. , Giunti, P. , Labrum, R. , Durr, A. et al. (2011). Depression comorbidity in spinocerebellar ataxia. Movement Disorders, 26, 870 – 876. First citation in articleCrossrefGoogle Scholar

  • Schmitz-Hübsch, T. , du Montcel, S. T. , Baliko, L. , Berciano, J. , Boesch, S. , Depondt, C. et al. (2006). Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology, 66, 1717 – 1720. First citation in articleCrossrefGoogle Scholar

  • Schöls, L. , Bauer, P. , Schmidt, T. , Schulte, T. & Riess, O. (2004). Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurology, 3, 291 – 304. First citation in articleCrossrefGoogle Scholar

  • Schöls, L. , Gispert, S. , Vorgerd, M. , Menezes Vieira-Saecker, A. M. , Blanke, P. , Auburger, G. et al. (1997). Spinocerebellar ataxia type 2. Genotype and phenotype in German kindreds. Archives of Neurology, 54, 1073 – 1080. First citation in articleCrossrefGoogle Scholar

  • Schöls, L. , Krüger, R. , Amoiridis, G. , Przuntek, H. , Epplen, J. T. & Riess, O. (1998). Spinocerebellar ataxia type 6: genotype and phenotype in German kindreds. Journal of Neurology, Neurosurgery & Psychiatry, 64, 67 – 73. First citation in articleCrossrefGoogle Scholar

  • Shatunov, A. , Fridman, E. A. , Pagan, F. I. , Leib, J. , Singleton, A. , Hallett, M. et al. (2004). Small de novo duplication in the repeat region of the TATA-box-binding protein gene manifest with a phenotype similar to variant Creutzfeldt-Jakob disease. Clinical Genetics, 66, 496 – 501. First citation in articleCrossrefGoogle Scholar

  • Sidtis, J. J. , Ahn, J. S. , Gomez, C. & Sidtis, D. (2011). Speech characteristics associated with three genotypes of ataxia. Journal of Communication Disorders, 44, 478 – 492. First citation in articleCrossrefGoogle Scholar

  • Silveira, I. , Alonso, I. , Guimaraes, L. , Mendonca, P. , Santos, C. , Maciel, P. et al. (2000). High germinal instability of the (CTG)n at the SCA8 locus of both expanded and normal alleles. American Journal of Human Genetics, 66, 830 – 840. First citation in articleCrossrefGoogle Scholar

  • Sokolovsky, N. , Cook, A. , Hunt, H. , Giunti, P. & Cipolotti, L. (2010). A preliminary characterisation of cognition and social cognition in spinocerebellar ataxia types 2, 1, and 7. Behavioral Neurology, 23, 17 – 29. First citation in articleCrossrefGoogle Scholar

  • Spinella, G. M. & Sheridan, P. H. (1992). Research initiatives on Machado-Joseph disease: National Institute of Neurological Disorders and Stroke Workshop summary. Neurology, 42, 2048 – 2051. First citation in articleCrossrefGoogle Scholar

  • Stevanin, G. , Hahn, V. , Lohmann, E. , Bouslam, N. , Gouttard, M. , Soumphonphakdy, C. et al. (2004). Mutation in the catalytic domain of protein kinase C gamma and extension of the phenotype associated with spinocerebellar ataxia type 14. Archives of Neurology, 61, 1242 – 1248. First citation in articleCrossrefGoogle Scholar

  • Stone, J. , Smith, L. , Watt, K. , Barron, L. & Zeman, A. (2001). Incoordinated thought and emotion in spinocerebellar ataxia type 8. Journal of Neurology, 248, 229 – 232. First citation in articleCrossrefGoogle Scholar

  • Storey, E. , Bahlo, M. , Fahey, M. , Sisson, O. , Lueck, C. J. & Gardner, R. J. (2009). A new dominantly inherited pure cerebellar ataxia, SCA 30. Journal of Neurology, Neurosurgery & Psychiatry, 80, 408 – 411. First citation in articleCrossrefGoogle Scholar

  • Storey, E. , Forrest, S. M. , Shaw, J. H. , Mitchell, P. & Gardner, R. J. (1999). Spinocerebellar ataxia type 2: clinical features of a pedigree displaying prominent frontal-executive dysfunction. Archives of Neurology, 56, 43 – 50. First citation in articleCrossrefGoogle Scholar

  • Storey, E. & Gardner, R. J. (2012). Spinocerebellar ataxia type 20. Handbook of Clinical Neurology, 103, 567 – 573. First citation in articleCrossrefGoogle Scholar

  • Suenaga, M. , Kawai, Y. , Watanabe, H. , Atsuta, N. , Ito, M. , Tanaka, F. et al. (2008). Cognitive impairment in spinocerebellar ataxia type 6. Journal of Neurology, Neurosurgery & Psychiatry, 79, 496 – 499. First citation in articleCrossrefGoogle Scholar

  • Tedesco, A. M. , Chiricozzi, F. R. , Clausi, S. , Lupo, M. , Molinari, M. & Leggio, M. G. (2011). The cerebellar cognitive profile. Brain, 134, 3672 – 3686. First citation in articleCrossrefGoogle Scholar

  • Teive, H. A. , Roa, B. B. , Raskin, S. , Fang, P. , Arruda, W. O. , Neto, Y. C. et al. (2004). Clinical phenotype of Brazilian families with spinocerebellar ataxia 10. Neurology, 63, 1509 – 1512. First citation in articleCrossrefGoogle Scholar

  • Timmann, D. (2012). Kognitive Funktionen des Kleinhirns. Fortschritte der Neurologie – Psychiatrie, 80, 44 – 52. First citation in articleCrossrefGoogle Scholar

  • Torrens, L. , Burns, E. , Stone, J. , Graham, C. , Wright, H. , Summers, D. et al. (2008). Spinocerebellar ataxia type 8 in Scotland: frequency, neurological, neuropsychological and neuropsychiatric findings. Acta Neurologica Scandinavica, 117, 41 – 48. First citation in articleCrossrefGoogle Scholar

  • Trites, R. L. (1989). Lafayette Grooved Pegboard Task. Instruction/Owner’s Manual. Lafayette, IN: Lafayette Instrument Company. First citation in articleGoogle Scholar

  • Trojano, L. , Chiacchio, L. , Grossi, D. , Pisacreta, A. I. , Calabrese, O. , Castaldo, I. et al. (1998). Determinants of cognitive disorders in Autosomal Dominant Cerebellar Ataxia type 1. Journal of the Neurological Sciences, 157, 162 – 167. First citation in articleCrossrefGoogle Scholar

  • Valis, M. , Masopust, J. , Bazant, J. , Rihova, Z. , Kalnicka, D. , Urban, A. et al. (2011). Cognitive changes in spinocerebellar ataxia type 2. Neuroendocrinology Letters, 32, 354 – 359. First citation in articleGoogle Scholar

  • van Gaalen J., Giunti , P. & van de Warrenburg, B. P. (2011). Movement disorders in spinocerebellar ataxias. Movement Disorders, 26, 792 – 800. First citation in articleCrossrefGoogle Scholar

  • Verbeek, D. S. & van de Warrenburg, B. P. (2011). Genetics of the dominant ataxias. Seminars in Neurology, 31, 461 – 469. First citation in articleCrossrefGoogle Scholar

  • Vincent, J. B. , Yuan, Q. P. , Schalling, M. , Adolfsson, R. , Azevedo, M. H. , Macedo, A. et al. (2000). Long repeat tracts at SCA8 in major psychosis. American Journal of Medical Genetics, 96, 873 – 876. First citation in articleCrossrefGoogle Scholar

  • Warner, T. T. , Lennox, G. G. , Janota, I. & Harding, A. E. (1994). Autosomal-dominant dentatorubropallidoluysian atrophy in the United Kingdom. Movement Disorders, 9, 289 – 296. First citation in articleCrossrefGoogle Scholar

  • Waters, M. F. , Fee, D. , Figueroa, K. P. , Nolte, D. , Müller, U. , Advincula, J. et al. (2005). An autosomal dominant ataxia maps to 19q13: Allelic heterogeneity of SCA13 or novel locus? Neurology, 65, 1111 – 1113. First citation in articleCrossrefGoogle Scholar

  • Wexler, E. & Fogel, B. L. (2011). New-onset psychosis in a patient with spinocerebellar ataxia type 10. American Journal of Psychiatry, 168, 1339 – 1340. First citation in articleCrossrefGoogle Scholar

  • Winkelmann, J. , Lin, L. , Schormair, B. , Kornum, B. R. , Faraco, J. , Plazzi, G. et al. (2012). Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Human Molecular Genetics, 21, 2205 – 2210. First citation in articleCrossrefGoogle Scholar

  • Yu, G. Y. , Howell, M. J. , Roller, M. J. , Xie, T. D. & Gomez, C. M. (2005). Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Annals of Neurology, 57, 349 – 354. First citation in articleCrossrefGoogle Scholar

  • Zawacki, T. M. , Grace, J. , Friedman, J. H. & Sudarsky, L. (2002). Executive and emotional dysfunction in Machado-Joseph disease. Movement Disorders, 17, 1004 – 1010. First citation in articleCrossrefGoogle Scholar

  • Zeman, A. , Stone, J. , Porteous, M. , Burns, E. , Barron, L. & Warner, J. (2004). Spinocerebellar ataxia type 8 in Scotland: genetic and clinical features in seven unrelated cases and a review of published reports. Journal of Neurology, Neurosurgery & Psychiatry, 75, 459 – 465. First citation in articleCrossrefGoogle Scholar

  • Zimmermann, P. & Fimm, B. (2007). Testbatterie zur Aufmerksamkeitsprüfung. Version 2.1. Herzogenath: Psytest. First citation in articleGoogle Scholar

  • Zühlke, C. , Bernard, V. , Dalski, A. , Lorenz, P. , Mitulla, B. , Gillessen-Kaesbach, G. et al. (2007). Screening of the SPTBN2 (SCA5) gene in German SCA patients. Journal of Neurology, 254, 1649 – 1652. First citation in articleCrossrefGoogle Scholar

  • Zühlke, C. , Gehlken, U. , Hellenbroich, Y. , Schwinger, E. & Bürk, K. (2003). Phenotypical variability of expanded alleles in the TATA-binding protein gene. Reduced penetrance in SCA17? Journal of Neurology, 250, 161 – 163. First citation in articleCrossrefGoogle Scholar

  • Zühlke, C. H. , Spranger, M. , Spranger, S. , Voigt, R. , Lanz, M. , Gehlken, U. et al. (2003). SCA17 caused by homozygous repeat expansion in TBP due to partial isodisomy 6. European Journal of Human Genetics, 11, 629 – 632. First citation in articleCrossrefGoogle Scholar