Skip to main content
Essay

Music Making and the Aging Brain

Published Online:https://doi.org/10.1024/1016-264X/a000095

The chapter reviews the evidence in support of the idea that cognitive functions can benefit from listening to music or making music and how this evidence might be used to stabilize cognitive aging and prevent or diminish cognitive decline. The beneficial effects are more or less direct (e. g., for auditory perception) or indirect (e. g., for arousal and motivation). The core functions engaged during music listening or music making are executive functions that include attention, working memory, planning, and motor control. These functions are mainly controlled by neural networks located in the frontal cortex, the brain area that undergoes strongest decline in volume with increasing age. In this paper it is argued that this shrinkage of the frontal cortex or the natural course of the decline in frontal brain volume can be counteracted by engaging frontal executive functions through music listening and making. However, current experimental data supporting beneficial effects of music listening and music making is scarce. Therefore, well controlled randomized control group experiments are urgently needed.


Musizieren und das alternde Gehirn

In diesem Essay wird die Ansicht vertreten, dass Musizieren oder Musikhören günstige Effekte auf das kognitive Funktionen haben kann und dass diese günstigen Effekte genutzt werden können, um kognitive Leistungen im Alter zu stabilisieren und den kognitiven Abbau zu verhindern oder zu verringern. Je nach kognitiver Domäne sind die günstigen Effekte von Musik direkt (zum Beispiel für die auditorischen Funktionen) oder indirekt (zum Beispiel für die Aufmerksamkeit und die Motivation). Die Kernfunktionen, die beim Musikhören und Musikmachen genutzt werden, sind die exekutiven Funktionen, die Aufmerksamkeit, Arbeitsgedächtnis, kognitives Planen und die motorische Kontrolle. Viele dieser Funktionen werden durch neuronale Netzwerke kontrolliert, die im Frontalkortex lokalisiert sind, einem Hirngebiet, das im Alter auch einem erheblichen Abbau ausgesetzt ist. In diesem Essay wird argumentiert, dass insbesondere diesem Abbau durch Musizieren und Musikhören entgegengewirkt werden kann. Trotz erster Befunde, welche diese These stützen, sind die experimentellen Ergebnisse diesbezüglich bislang noch recht spärlich. Deshalb sind kontrollierte randomisierte Gruppenexperimente zwingend notwendig, um die Wirksamkeit von Musizieren und Musikhören auf das kognitive Altern näher zu untersuchen.

References

  • Anvari, S. H. , Trainor, L. J. , Woodside, J. & Levy, B. A. (2002). Relations among musical skills, phonological processing, and early reading ability in preschool children. Journal of experimental child psychology, 83, 111 – 130. First citation in articleCrossrefGoogle Scholar

  • Apostolova, L. G. & Thompson, P. M. (2008). Mapping progressive brain structural changes in early Alzheimer’s disease and mild cognitive impairment. Neuropsychologia, 46, 1597 – 1612. First citation in articleCrossrefGoogle Scholar

  • Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12, 193 – 200. First citation in articleCrossrefGoogle Scholar

  • Bangert, M. & Altenmuller, E. O. (2003). Mapping perception to action in piano practice: a longitudinal DC-EEG study. BMC Neuroscience, 4, 26. First citation in articleCrossrefGoogle Scholar

  • Bangert, M. , Jurgens, U. , Hausler, U. & Altenmuller, E. (2006). Classical conditioned responses to absent tones. BMC Neuroscience, 7, 60. First citation in articleCrossrefGoogle Scholar

  • Bangert, M. , Peschel, T. , Schlaug, G. , Rotte, M. , Drescher, D. , Hinrichs, H. et al. (2006). Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage, 30, 917 – 926. First citation in articleCrossrefGoogle Scholar

  • Baumann, S. , Koeneke, S. , Schmidt, C. F. , Meyer, M. , Lutz, K. & Jancke, L. (2007). A network for audio-motor coordination in skilled pianists and non-musicians. Brain Research, 1161, 65 – 78. First citation in articleCrossrefGoogle Scholar

  • Baumann, S. , Meyer, M. & Jancke, L. (2008). Enhancement of auditory-evoked potentials in musicians reflects an influence of expertise but not selective attention. Journal of Cognitive Neuroscience, 20, 2238 – 2249. First citation in articleCrossrefGoogle Scholar

  • Baumgartner, T. , Esslen, M. & Jancke, L. (2006). From emotion perception to emotion experience: emotions evoked by pictures and classical music. International journal of psychophysiology: official journal of the International Organization of Psychophysiology, 60, 34 – 43. First citation in articleCrossrefGoogle Scholar

  • Baumgartner, T. , Lutz, K. , Schmidt, C. F. & Jancke, L. (2006). The emotional power of music: how music enhances the feeling of affective pictures. Brain research, 1075, 151 – 164. First citation in articleCrossrefGoogle Scholar

  • Bermudez, P. , Lerch, J. P. , Evans, A. C. & Zatorre, R. J. (2009). Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cerebral Cortex, 19, 1583 – 1596. First citation in articleCrossrefGoogle Scholar

  • Besson, M. , Schön, D. , Moreno, S. , Santos, A. & Magne, C. (2007). Influence of musical expertise and musical training on pitch processing in music and language. Restorative Neurology and Neuroscience, 25, 399 – 410. First citation in articleGoogle Scholar

  • Bialystok, E. & Depape, A. M. (2009). Musical expertise, bilingualism, and executive functioning. Journal of experimental psychology Human perception and performance, 35, 565 – 574. First citation in articleCrossrefGoogle Scholar

  • Buchanan, T. W. (2007). Retrieval of emotional memories. Psychological bulletin, 133, 761 – 779. First citation in articleCrossrefGoogle Scholar

  • Bugos, J. A. , Perlstein, W. M. , McCrae, C. S. , Brophy, T. S. & Bedenbaugh, P. H. (2007). Individualized piano instruction enhances executive functioning and working memory in older adults. Aging & mental health, 11, 464 – 471. First citation in articleCrossrefGoogle Scholar

  • Burgess, P. W. , Alderman, N. , Volle, E. , Benoit, R. G. & Gilbert, S. J. (2009). Mesulam’s frontal lobe mystery re-examined. Restorative Neurology and Neuroscience, 27, 493 – 506. First citation in articleGoogle Scholar

  • Cacciafesta, M. , Ettorre, E. , Amici, A. , Cicconetti, P. , Martinelli, V. , Linguanti, A. et al. (2010). New frontiers of cognitive rehabilitation in geriatric age: the Mozart Effect (ME). Archives of gerontology and geriatrics, 51, 79 – 82. First citation in articleCrossrefGoogle Scholar

  • Chan, A. S. , Ho, Y.-C. & Cheung, M. C. (1998). Music training improves verbal memory. Nature, 396, 128. First citation in articleCrossrefGoogle Scholar

  • Coley, N. , Andrieu, S. , Gardette, V. , Gillette-Guyonnet, S. , Sanz, C. , Vellas, B. et al. (2008). Dementia prevention: methodological explanations for inconsistent results. Epidemiologic Reviews, 30, 35 – 66. First citation in articleCrossrefGoogle Scholar

  • Conard, N. J. , Malina, M. M. , Münzel, S. C. & Seeberger, F. (2004). Eine Mammutelfenbeinflöte aus dem Aurignacien des Geissenklösterle. Archäologisches Korrespondenzblatt, 34, 447 – 452. First citation in articleGoogle Scholar

  • Conard, N. J. , Malina, M. & Münzel, S. C. (2009). New flutes document the earliest musical tradition in southwestern Germany. Nature, 460, 737 – 740. First citation in articleCrossrefGoogle Scholar

  • Eschrich, S. , Münte, T. F. & Altenmüller, E. (2008). Unforgettable film music: the role of emotion in episodic long-term memory for music. BMC Neuroscience, 9, 48. First citation in articleCrossrefGoogle Scholar

  • Forgeard, M. , Winner, E. , Norton, A. & Schlaug, G. (2008). Practicing a musical instrument in childhood is associated with enhanced verbal ability and nonverbal reasoning. PLoS ONE, 3, e3566. First citation in articleCrossrefGoogle Scholar

  • Gaab, N. , Gaser, C. & Schlaug, G. (2006). Improvement-related functional plasticity following pitch memory training. Neuroimage, 31, 255 – 263. First citation in articleCrossrefGoogle Scholar

  • Gaser, C. & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23, 9240 – 9245. First citation in articleCrossrefGoogle Scholar

  • Hall, C. B. , Lipton, R. B. , Sliwinski, M. , Katz, M. J. , Derby, C. A. , Verghese, J. (2009). Cognitive activities delay onset of memory decline in persons who develop dementia. Neurology, 73, 356 – 361. First citation in articleCrossrefGoogle Scholar

  • Hanna-Pladdy, B. & MacKay, A. (2011). The relation between instrumental musical activity and cognitive aging. Neuropsychology, 25, 378 – 386. First citation in articleCrossrefGoogle Scholar

  • Ho, Y.-C. , Cheung, M.-C. & Chan, A. S. (2003). Music training improves verbal but not visual memory: cross-sectional and longitudinal explorations in children. Neuropsychology, 17, 439 – 450. First citation in articleCrossrefGoogle Scholar

  • Hyde, K. L. , Lerch, J. , Norton, A. , Forgeard, M. , Winner, E. , Evans, A. C. et al. (2009). Musical training shapes structural brain development. Journal of Neuroscience, 29, 3019 – 3025. First citation in articleCrossrefGoogle Scholar

  • Jäncke, L. , Buchanan, T. W. , Lutz, K. & Shah, N. J. (2001). Focused and nonfocused attention in verbal and emotional dichotic listening: an FMRI study. Brain and Language, 78, 349 – 363. First citation in articleCrossrefGoogle Scholar

  • Jäncke, L. , Gaab, N. , Wustenberg, T. , Scheich, H. & Heinze, H. J. (2001). Short-term functional plasticity in the human auditory cortex: an fMRI study. Brain Research. Cognitive Brain Research, 12, 479 – 485. First citation in articleCrossrefGoogle Scholar

  • Jäncke, L. & Shah, N. J. (2002). Does dichotic listening probe temporal lobe functions? Neurology, 58, 736 – 743. First citation in articleCrossrefGoogle Scholar

  • Jäncke, L. (2004). Neuropsychologie des Alterns. In: Enzyklopädie der Gerontologie (pp. 207 – 223). Bern: Huber-Verlag. First citation in articleGoogle Scholar

  • Jäncke, L. (2009a). The plastic human brain. Restorative Neurology and Neuroscience, 27, 521 – 538. First citation in articleCrossrefGoogle Scholar

  • Jäncke, L. (2009b). Music drives brain plasticity. F1000 Biology Reports, 1(78), 1 – 6. First citation in articleGoogle Scholar

  • Jäncke, L. (2012). The dynamic audio-motorsystem in pianists. Annals of the New York Academy of Sciences, 1252, 246 – 252. First citation in articleCrossrefGoogle Scholar

  • Kattenstroth, J. C. , Kolankowska, I. , Kalisch, T. & Dinse, H. R. (2010). Superior sensory, motor, and cognitive performance in elderly individuals with multi-year dancing activities. Frontiers in Aging Neuroscience, 2(31), 1 – 9. First citation in articleGoogle Scholar

  • Kattenstroth, J. C. , Kalisch, T. , Holt, S. , Tegenthoff, M. & Dinse, H. R. (2013). Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions. Frontiers in Aging Neuroscience, 5, 5. First citation in articleCrossrefGoogle Scholar

  • Knight, R. T. , Grabowecky, M. F. & Scabini, D. (1995). Role of human prefrontal cortex in attention control. Advances in Neurology, 66, 21 – 34. First citation in articleGoogle Scholar

  • Lahav, A. , Saltzman, E. & Schlaug, G. (2007). Action representation of sound: audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience, 27, 308 – 314. First citation in articleCrossrefGoogle Scholar

  • Mammarella, N. , Fairfield, B. & Cornoldi, C. (2007). Does music enhance cognitive performance in healthy older adults? The Vivaldi effect. Aging clinical and experimental research, 19, 394 – 399. First citation in articleCrossrefGoogle Scholar

  • Menning, H. , Roberts, L. E. & Pantev, C. (2000). Plastic changes in the auditory cortex induced by intensive frequency discrimination training. Neuroreport, 11, 817 – 822. First citation in articleCrossrefGoogle Scholar

  • Moreno, S. & Besson, M. (2005). Influence of musical training on pitch processing: event-related brain potential studies of adults and children. Annals of the New York Academy of Sciences, 1060, 93 – 97. First citation in articleCrossrefGoogle Scholar

  • Moreno, S. & Besson, M. (2006). Musical training and language-related brain electrical activity in children. Psychophysiology, 43, 287 – 291. First citation in articleCrossrefGoogle Scholar

  • Moreno, S. , Marques, C. , Santos, A. , Santos, M. , Castro, S. L. & Besson, M. (2009). Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity. Cerebral Cortex, 19, 712 – 723. First citation in articleCrossrefGoogle Scholar

  • Optale, G. , Urgesi, C. , Busato, V. , Marin, S. , Piron, L. , Priftis, K. et al. (2009). Controlling Memory Impairment in Elderly Adults Using Virtual Reality Memory Training: A Randomized Controlled Pilot Study. Neurorehabilitation and Neural Repair, 24, 348 – 357. First citation in articleCrossrefGoogle Scholar

  • Peynircioğlu, Z. F. , Tekcan, A. I. , Wagner, J. L. , Baxter, T. L. & Shaffer, S. D. (1998). Name or hum that tune: feeling of knowing for music. Memory & cognition, 26, 1131 – 1137. First citation in articleCrossrefGoogle Scholar

  • Rauscher, F. H. , Shaw, G. L. & Ky, K. N. (1993). Music and spatial task performance. Nature, 365, 611. First citation in articleCrossrefGoogle Scholar

  • Rauscher, F. H. , Shaw, G. L. & Ky, K. N. (1995). Listening to Mozart enhances spatial-temporal reasoning: towards a neurophysiological basis. Neuroscience Letters, 185, 44 – 47. First citation in articleCrossrefGoogle Scholar

  • Rundek, T. & Bennett, D. A. (2006). Cognitive leisure activities, but not watching TV, for future brain benefits. Neurology, 66, 794 – 795. First citation in articleCrossrefGoogle Scholar

  • Särkämö, T. , Tervaniemi, M. , Laitinen, S. , Forsblom, A. , Soinila, S. , Mikkonen, M. et al. (2008). Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain : a journal of neurology, 131, 866 – 876. First citation in articleCrossrefGoogle Scholar

  • Schaie, K. W. (1989). The hazards of cognitive aging. Gerontologist, 29, 484 – 493. First citation in articleCrossrefGoogle Scholar

  • Schendel, Z. A. & Palmer, C. (2007). Suppression effects on musical and verbal memory. Memory & cognition, 35, 640 – 650. First citation in articleCrossrefGoogle Scholar

  • Schon, D. , Anton, J. L. , Roth, M. & Besson, M. (2002). An fMRI study of music sight-reading. Neuroreport, 13, 2285 – 2289. First citation in articleCrossrefGoogle Scholar

  • Schulze, K. , Gaab, N. & Schlaug, G. (2009). Perceiving pitch absolutely: comparing absolute and relative pitch possessors in a pitch memory task. BMC Neuroscience, 10, 106. First citation in articleCrossrefGoogle Scholar

  • Sergent, J. , Zuck, E. , Terriah, S. & MacDonald, B. (1992). Distributed neural network underlying musical sight-reading and keyboard performance. Science, 257, 106 – 109. First citation in articleCrossrefGoogle Scholar

  • Sluming, V. , Barrick, T. , Howard, M. , Cezayirli, E. , Mayes, A. , Roberts, N. (2002). Voxel-based morphometry reveals increased gray matter density in Broca’s area in male symphony orchestra musicians. Neuroimage, 17, 1613 – 1622. First citation in articleCrossrefGoogle Scholar

  • Sluming, V. , Brooks, J. , Howard, M. , Downes, J. J. & Roberts, N. (2007). Broca’s area supports enhanced visuospatial cognition in orchestral musicians. The Journal of neuroscience : the official journal of the Society for Neuroscience, 27, 3799 – 3806. First citation in articleCrossrefGoogle Scholar

  • Soto, D. , Hodsoll, J. , Rotshtein, P. & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences, 12, 342 – 348. First citation in articleCrossrefGoogle Scholar

  • Sowell, E. R. , Thompson, P. M. & Toga, A. W. (2004). Mapping changes in the human cortex throughout the span of life. Neuroscientist, 10, 372 – 392. First citation in articleCrossrefGoogle Scholar

  • Suda, M. , Morimoto, K. , Obata, A. , Koizumi, H. & Maki, A. (2008). Emotional responses to music: towards scientific perspectives on music therapy. Neuroreport, 19, 75 – 78. First citation in articleCrossrefGoogle Scholar

  • Tallal, P. & Gaab, N. (2006). Dynamic auditory processing, musical experience and language development. Trends in Neurology, 29, 382 – 390. First citation in articleCrossrefGoogle Scholar

  • Takahashi, T. & Matsushita, H. (2007). Long-term effects of music therapy on elderly with moderate/severe dementia. Journal of Music Therapy, 43, 317 – 333. First citation in articleCrossrefGoogle Scholar

  • Thompson, W. F. , Schellenberg, E. G. & Husain, G. (2001). Arousal, mood, and the Mozart effect. Psychological Science, 12, 248 – 251. First citation in articleCrossrefGoogle Scholar

  • Thompson, R. G. , Moulin, C. J. , Hayre, S. & Jones, R. W. (2005). Music enhances category fluency in healthy older adults and Alzheimer’s disease patients. Experimental Aging Research, 31, 91 – 99. First citation in articleCrossrefGoogle Scholar

  • van Zuijen, T. L. , Sussman, E. , Winkler, I. , Näätänen, R. & Tervaniemi, M. (2004). Grouping of sequential sounds–an event-related potential study comparing musicians and nonmusicians. Journal of cognitive neuroscience, 16, 331 – 338. First citation in articleCrossrefGoogle Scholar

  • Verghese, J. , Lipton, R. B. , Katz, M. J. , Hall, C. B. , Derby, C. A. , Kuslansky, G. et al. (2003). Leisure activities and the risk of dementia in the elderly. New England Journal of Medicine, 348, 2508 – 2516. First citation in articleCrossrefGoogle Scholar

  • Willis, S. L. & Schaie, K. W. (2009). Cognitive training and plasticity: theoretical perspective and methodological consequences. Restorative Neurology and Neuroscience, 27, 375 – 389. First citation in articleGoogle Scholar

  • Wilson, R. S. , Scherr, P. A. , Schneider, J. A. , Tang, Y. & Bennett, D. A. (2007). Relation of cognitive activity to risk of developing Alzheimer disease. Neurology, 69, 1911 – 1920. First citation in articleCrossrefGoogle Scholar