Skip to main content

Part of the book series: Current Histopathology ((CUHI,volume 21))

  • 154 Accesses

Abstract

Bone, as other connective tissues, consists of cells, fibres and ground substance. But unlike the others, the major part of its extracellular compartment is calcified thus converting it into an extremely hard, rigid structure, ideally suited for its supportive, locomotive and protective functions. The skeleton maintains the shape of the body while protecting soft vital organs in the cranial and thoracic cavities. The skeleton also protects and constitutes the framework and part of the microenvironment for the haematopoietic tissue – the blood-forming elements of the bone marrow. It provides facilities for the attachment of the tendons and muscles required for locomotion. In addition to these mechanical functions, the skeleton is the body’s major depot for minerals and the regulator of their homeostasis: over 99% of the total body calcium is stored in the skeleton 1.4.12,17,54,134.137,150.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler C.-P. (1983). Knochenkrankheiten. Stuttgart: Thieme

    Google Scholar 

  2. Anderson H. C. (1989). Biology of disease: mechanism of mineral formation. Lab. Invest., 60, 320

    PubMed  CAS  Google Scholar 

  3. Arey L. B. (1965). Developmental Anatomy: A Textbook and Laboratory Manual of Embryology. Philadelphia: Saunders

    Google Scholar 

  4. Arnaud C. D. (1988). Mineral and bone homeostasis. Wyngaarden J. B. and Smith L. H., Cecil Textbook of Medicine (p. 1469). Philadelphia: Saunders

    Google Scholar 

  5. Arnett T. R. and Dempster T. W. (1990). Protons and osteoclasts. J. Bone Miner. Res., 5, 1099

    Article  PubMed  CAS  Google Scholar 

  6. Athanasou N. A., Hall D. A., d’Ardenn A. J., Quinn J. and McGee J. 0. (1988). A monoclonal antibody (anti-L-35) which reacts with human osteoclasts and cells of the mononuclear phagocyte system. Brit. J. Exp. Pathol., 69(2), 309

    CAS  Google Scholar 

  7. Athanasou N. A., Heryet A., Quinn J., Gatter K. C., Mason D. Y. and McGee J. 0. (1986). Osteoclasts contain macrophage and megakaryocyte antigens. J. Pathol., 150, 239

    Article  PubMed  CAS  Google Scholar 

  8. Athanasou N. A., Quinn, J. and McGee J. 0. (1988). Immunocytochemical analysis of the human osteoclast: phenotypic relationship to other marrow-derived cells. Bone Miner., 3(4), 317

    PubMed  CAS  Google Scholar 

  9. Athanasou N. A., Quinn J. and McGee J. 0. (1987). Leucocyte common antigen is present on osteoclast. J. Pathol., 153, 121

    Article  PubMed  CAS  Google Scholar 

  10. Athanasou N. A., Quinn J., Horton M. A. and McGee I. D. (1990). New sites of cellular vitronectin receptor immunoreactivity detected with osteoclast reacting monoclonal antibodies 13C2 and 23C6. Bone Miner., 8(1), 7

    Article  PubMed  CAS  Google Scholar 

  11. Avioli L. V., Hruska K. and Civitelli R. (1990). Activation of the (Ca 2 +)i message system by parathyroid-hormone-related protein in osteoblastic cells. Adv. Second Mess.-Phosphoprotein Res., 24, 529

    CAS  Google Scholar 

  12. Avioli L. V. and Krane S. M. (1990). Metabolic Bone Disease. Philadelphia: Saunders

    Google Scholar 

  13. Baron R. (1989). Molecular mechanisms of bone resorption by the osteoc last. Anat Rec., 224, 317

    Article  PubMed  CAS  Google Scholar 

  14. Baron R., Neft L., Roy C., Boivert A. and Caplan M. (1986). Evidence of a high and specific concentration of (Na +K+)ATPase in the plasma membrane of the osteoclast. Cell, 46, 311

    Article  PubMed  CAS  Google Scholar 

  15. Batson O. V. (1940). The function of the vertebral veins and their role in spread of metastases. Ann. Surg., 112, 138

    Article  PubMed  CAS  Google Scholar 

  16. Blair H. C., Kahn A. J. and Crouch E. C. (1986). Isolated osteoclasts resorb the organic and inorganic components of bone. J. Cell Biol., 102, 1164

    Article  PubMed  CAS  Google Scholar 

  17. Bouvier M. (1989). The biology and composition of bone. Cowin St. C., Bone Mechanics (p. 1). Boca Raton: CRC Press

    Google Scholar 

  18. Brighton C. T. and McCluskey W. P. (1986). Cellular response and mechanisms of action of electrically induced osteogenesis. Peck W. A., Bone and Mineral Research/4 (p. 213). Amsterdam: Elsevier

    Google Scholar 

  19. Burger E. H., VanDerMeer J. W. N. and Nijweide P. J. (1984). Osteoclast formation from mononuclear phagocytes: role of bone-forming cells. J. Cell Biol., 99, 1901

    Article  PubMed  CAS  Google Scholar 

  20. Burger E. H. and VanDerMeer J. W. M. (1984). Precursor cell proliferation during osteoclast formation from bone marrow phagocytes. Calcif. Tissue Int., 36, 454

    Google Scholar 

  21. Burgio G. R., Arico M., Caselli D., Beluffi G. and Calligaro A. (1987). Bone and bone marrow syndromes: a causal, not only casual connection? Haematologia, 72, 363

    CAS  Google Scholar 

  22. Burkhardt R. (1971). Bone Marrow and Bone Tissue. Berlin: Springer

    Book  Google Scholar 

  23. Burkhardt R., Bartl R., Frisch B., Jager K., Mahl G., Hill W. and Kettner G. (1984). The structural relationship of bone forming and endothelial cells of the bone marrow. Arlet J., Ficat R. P. and Hungerford D. S., Bone Circulation (p. 2). Baltimore: Williams & Wilkins

    Google Scholar 

  24. Burr D. B. and Martin R. B. (1989). Errors in bone remodelling: toward a unified theory of metabolic bone disease. Amer. J. Anat, 186, 186

    Article  PubMed  CAS  Google Scholar 

  25. Canalis E. (1988). Bone-related growth factors. Triangle, 27(1/2), 11

    Google Scholar 

  26. Canalis E., McCarthy T. and Centrella M. (1988). Growth factors and the regulation of bone formation. Endocrine Rev., 83,60

    Google Scholar 

  27. Canalis E., McCarthy T. L. and Centrella M. (1991). Growth factors and cytokines in bone cell metabolism. Ann. Rev. Med., 42, 17

    Article  PubMed  CAS  Google Scholar 

  28. Carmel R., Lau K.-H. W., Baylink D. J., Saxena S. and Singer F. R. (1988). Cobalamin and osteoblast-specific proteins. N. Engl. J. Med., 319, 70

    Article  PubMed  CAS  Google Scholar 

  29. Centrella M., McCarthy T. and Canalis E. (1991). Current concepts review: transforming growth factor-beta and remodeling of bone. J. Bone Jt Surg., 73A, 1418

    Google Scholar 

  30. Chambers T. J. (1982). Osteoblasts release osteoclasts from calcitonin-induced quiescence. J. Cell Sci., 57, 247

    PubMed  CAS  Google Scholar 

  31. Chambers T. J. (1985). The pathobiology of the osteoclast. J. Clin. Pathol., 38, 241

    Article  PubMed  CAS  Google Scholar 

  32. Chambers T. J. and Hall T. J. (1991). Cellular and molecular mechanisms in the regulation and function of osteoclasts. Vitam.- Norm., 46, 41

    CAS  Google Scholar 

  33. Chilosi M., Gilioli E., Lestani M., Menestrina F. and Fiore-Donati L. (1988). Immunohistochemical characterization of osteoclasts and osteoclast-like cells with monoclonal antibody MBI on paraffin-embedded tissues. J. Pathol., 156, 251

    Article  PubMed  CAS  Google Scholar 

  34. Chow J., Tobias J. H.. Colston K. W. and Chambers T. J. (1992). Estrogen maintains trabecular bone volume in rats not only by suppression of bone resorption but also by stimulation of bone formation. J. Clin. Invest., 89, 74

    Article  PubMed  CAS  Google Scholar 

  35. Colvard D. S., Eriksen E. F., Keeting P. E., Wilson E. M., Lubahn D. B., French F. S., Riggs B. L. and Spelsberg T. C. (1989). Identification of androgen receptors in normal human osteoblast-like cells. Proc. Natl Acad. Sci., 86, 854

    Article  PubMed  CAS  Google Scholar 

  36. Colvard D., Spelsberg T., Eriksen E., Keeting P. and Riggs B. L. (1989). Evidence of steroid receptors on human osteoblast-like cells. Connect. Tissue Res., 20, 33

    Article  PubMed  CAS  Google Scholar 

  37. Davidovitch Z., Hicolay O. F., Hgan P. W. and Shanfield J. L. (1988). Neurotransmitters, cytokines. and the control of alveolar bone remodeling in orthodontics. Dent. Clin. North Amer., 32(3), 411

    CAS  Google Scholar 

  38. Davies J., Warwick J., Totty N., Philp R., Helfrich M. and Horton M. (1989). The osteoclast functional antigen, implicated in the regulation of bone resorption, is biochemically related to the vitronectin receptor. J. Cell Biol., 109, 1817

    Article  PubMed  CAS  Google Scholar 

  39. deBruyn P. P. H., Breen P. C. and Thomas T. B. (1970). The microcirculation of the bone marrow. Anat Rec., 168, 55

    Article  CAS  Google Scholar 

  40. Delaisse J. M., Boyde A. and McConnachie E. (1987). The effects of inhibitors of cysteine-proteinases and collagenase on the resorptive activity of isolated osteoclasts. Bone, 8, 305

    Article  PubMed  CAS  Google Scholar 

  41. Deldar A., Lewis H. and Weiss L. (1985). Bone lining. cells and hematopoiesis: an electron microscopic study of canine bone marrow. Anat. Rec., 213, 187

    Article  PubMed  CAS  Google Scholar 

  42. Demmler K. (1976). Das GefaBsystem des Knochenmarks. Stuttgart: Ferdinand Enke

    Google Scholar 

  43. Dodds R. A., Emery R. J., Klenerman L., Chayen J. and Bitensky L. (1989). Comparative metabolic enzymatic activity in trabecular as against cortical osteoblasts. Bone, 10, 251

    Article  PubMed  CAS  Google Scholar 

  44. Doty S. B. (1981). Morphological evidence of gap junctions between bone cells. Calcif. Tissue Int., 33, 509

    Article  PubMed  CAS  Google Scholar 

  45. Editorial. (1990). Fibroblast growth factors: time to take note. Lancet, 336, 777

    Article  Google Scholar 

  46. Editorial. (1992). New bone? Lancet, 339, 463

    Article  Google Scholar 

  47. Eekhout Y. and Delaisse J. M. (1988). The role of collagenase in bone resorption. An overview. Pathol. Biol., 36, 1139

    Google Scholar 

  48. Einhorn T. A. (1988). Biomechanical properties of bone. Triangle, 27(1/2), 27

    Google Scholar 

  49. Epstein S. (1988). Serum and urinary markers of bone remodeling: assessment of bone turnover. Endocrine Rev., 9(4), 437

    Article  CAS  Google Scholar 

  50. Eriksen E. F. (1986). Normal and pathological remodeling of human trabecular bone: three dimensional reconstruction of the remodeling sequence in normals and in metabolic bone disease. Endocrine Rev., 7, 379

    Article  CAS  Google Scholar 

  51. Evans D. B., Bunning R. A. and Kanis R. G. (1990). The effects of recombinant human interleukin 1 beta on cellular proliferation and the production of prostaglandin E2, plasminogen activator, osteocalcin and alkaline phosphatase by osteoblast-like cells derived from human bone. Biochem. Biophys. Res. Commun., 166. 208

    Article  PubMed  CAS  Google Scholar 

  52. Evans D. B., Russell R. G., Brown B. L. and Dobson P. R. (1989). Agents affecting adenylate cyclase activity modulate the stimulatory action of 1,25-dihydroxy vitamin D3 on the production of osteocalcin by human bone cells. Biochem. Biophys. Res. Commun., 164, 1076

    Article  PubMed  CAS  Google Scholar 

  53. Evans D. B., Thavarajah M. and Kanis S. A. (1990). Involvement of prostaglandin E2 in the inhibition of osteocalcin synthesis by human osteoblast-like cells in response to cytokines and systemic hormones. Biochem. Biophys. Res. Commun., 167, 194

    Article  PubMed  CAS  Google Scholar 

  54. Fawcett D. W. (1986). Bloom and Fawcett - a Textbook of Histology. Philadelphia: Saunders

    Google Scholar 

  55. Frisch B. and Bartl R. (1990). Atlas of Bone Marrow Pathology. Dordrecht: Kluwer

    Book  Google Scholar 

  56. Frisch B., Lewis S. M., Burkhardt R. and Bartl R. (1985). Biopsy Pathology of Bone and Bone Marrow. London: Chapman & Hall

    Google Scholar 

  57. Frost H. M. (1963). Bone Remodeling Dynamics. Springfield: Thomas

    Google Scholar 

  58. Frost H. M. (1973). Bone Remodelling and its Relationship to Metabolic Bone Diseases. Springfield: Thomas

    Google Scholar 

  59. Frost H. M. (1964). Dynamics of bone remodelling. Frost H. M., Bone Biodynamics (p. 315). Boston: Little, Brown

    Google Scholar 

  60. Frost H. M. (1990). Skeletal structural adaptations to mechanical usage (SATM U): 2. Redefining Wolff’s law: the remodeling problem. Anat. Rec., 226(4), 414

    Article  PubMed  CAS  Google Scholar 

  61. Garrett R. I., Durie B. G. M. and Nedwin G. E. (1987). Production of lymphotoxin, a bone-resorbing cytokine, by cultured human myeloma cells. N. Engl. J. Med., 317. 526

    Article  PubMed  CAS  Google Scholar 

  62. Gay C. V., Ito M. B. and Schraer H. (1984). Carbonic anhydrase activity in isolated osteoclasts. Metab. Bone Dis. Rel. Res., 5, 33

    Article  CAS  Google Scholar 

  63. Grech P., Martin T. J., Barrington N. A. and Ell P. J. (1985). Diagnosis of Metabolic Bone Disease. London: Chapman & Hall

    Google Scholar 

  64. Gruber H. E. (1991). Bone and the immune system. Proc. Soc. Exp. Biol. Med., 197, 219

    PubMed  CAS  Google Scholar 

  65. Gulati G. L., Ashton J. K. and Hyuan B. H. (1988). Structure and function of the bone marrow and hematopoiesis. HematollOncol Clin. N. Amer, 2(4), 495

    CAS  Google Scholar 

  66. Hanaoka H., Yabe H. and Bun H. (1989). The origin of the osteoclast. Clin. Orthop., 239, 286

    PubMed  Google Scholar 

  67. Heersche J. N. M. (1989). Bone cells and bone turnover-the basis for pathogenesis. Tam C. S., Heersche J. N. M. and Murray T. M., Metabolic Bone Disease: Cellular and Tissue Mechanisms (p. 1). Boca Raton: CRC Press

    Google Scholar 

  68. Holick M. F., Krane S. M. and Potts J. T. (1991). Calcium, phosphorus, and bone metabolism: calcium-regulating hormones. Wilson J. D., Harrison’s Principles of Internal Medicine (p. 1888). New York: McGraw-Hill

    Google Scholar 

  69. Huffer W. E. (1988). Morphology and biochemistry of bone remodeling: possible control by vitamin D, parathyroid hormone, and other substances. Lab. Invest., 59, 418

    PubMed  CAS  Google Scholar 

  70. Islam A., Glomski C. andHenderson E. S. (1990). Bone lining (endosteal) cells and hematopoiesis: a light microscopic study of normal and pathologic human bone marrow in plastic-embedded sections. Anat. Rec., 227, 300

    Article  PubMed  CAS  Google Scholar 

  71. Jandinski J. J. (1988). Osteoclast activation factor is now interleukin-1 beta: historical perspective and biological implications. J. Oral Pathol., 17, 145

    Article  PubMed  CAS  Google Scholar 

  72. Jaworski Z. F. G. (1987). Does the mechanical usage (MU) inhibit bone “remodeling”? Calcif. Tissue Int, 41, 239

    Article  PubMed  CAS  Google Scholar 

  73. Jilka R. L. (1986). Are osteoblastic cells required for the control of osteoclastic activity by parathyroid hormone? Bone Miner., 1, 261

    PubMed  CAS  Google Scholar 

  74. Junth G., Berghauser K. H., Termine J. D. and Schulz A. (1987). Osteonectin - a differentiation marker of bone cells. Cell Tissue Res., 248, 409

    Google Scholar 

  75. Kahn A. J. and Partridge N. C. (1987). New concepts in bone remodelling: an expanding role for the osteoblast. Amer. J. Otolaryngol., 8, 258

    Article  CAS  Google Scholar 

  76. Katz E. P. and Li S-T. (1973). Structure and function of bone collagen fibrils. J. Mot Biol., 80, 1

    Article  CAS  Google Scholar 

  77. Kelly P. J. and Montgomery R. J. (1990). Circulation in bone. McCollister Evarts C., Surgery of the Musculoskeletal System, 2nd ’ edn (p. 71). New York: Churchill Livingstone

    Google Scholar 

  78. Khokher M. A. and Dandona P. (1989). Diphosphonates inhibit human osteoblast secretion and proliferation. Metabolism, 38, 184

    Article  PubMed  CAS  Google Scholar 

  79. Koshihara Y. and Kawamura M. (1989). Prostaglandin D2 stimulates calcification of human osteoblastic cells. Biophys. Res. Commun., 159, 1206

    Article  CAS  Google Scholar 

  80. Kragstrup J., Melsen F. and Mosekilde L. (1983). Thickness of lamellae in normal human iliac trabecular bone. Metab. Bone Dis. Rel. Res.,4, 291

    Article  CAS  Google Scholar 

  81. Kukita T. and Roodman G. D. (1989). Development of a monoclonal antibody to osteoclasts formed in vitro which recognizes mononuclear osteoclast precursors in the marrow. Endocrinology, 125, 630

    Article  PubMed  CAS  Google Scholar 

  82. Lanyon L. E. (1986). Biomechanical factors in adaptation of bone structure. Uhthoff H. K. and Stahl E. Current Concepts of Bone Fragility (p. 19). Berlin: Springer

    Google Scholar 

  83. Lanyon L. E. (1987). Functional strain in bone tissue as an objective, and controlling stimulus for adaptive bone remodelling. J. Biochem., 20, 1083

    CAS  Google Scholar 

  84. Lichtman M. A. (1981). The ultrastructure of the hematopoietic environment of the marrow: a review. Exp. Hematol., 9(4), 391

    PubMed  CAS  Google Scholar 

  85. Lips P., VanGinkel F. C. and Netelenbos J. C. (1985). Bone marrow and bone remodelling. Bone, 6, 343

    Article  PubMed  CAS  Google Scholar 

  86. Little K. (1973). Bone Behaviour. London: Academic Press

    Google Scholar 

  87. Lomri A. and Marie P. J. (1990). Changes in cytoskeletal proteins in response to parathyroid hormone and 1,25-dihydroxy vitamin D in human osteoblastic cells. Bone Miner, 10(1), 1

    Article  PubMed  CAS  Google Scholar 

  88. Marcus R. (1987). Normal and abnormal bone remodeling in man. Annu. Rev. Med., 38, 129

    Article  PubMed  CAS  Google Scholar 

  89. Marks S. C. (1989). Osteoclast biology: lessons from mammalian mutations. Am. J. Med. Genet., 34(1). 43

    Article  PubMed  Google Scholar 

  90. Martin T. J., Ng K. W. and Suda T. (1989). Bone cell physiology. Endocrinol. Metab. Clin. N. Amer,18(4), 833

    CAS  Google Scholar 

  91. Martin T. J., Ng K. W. and Nicholson G. C. (1988). Cell biology of bone. Martin T. J., Metabolic Bone Disease (p. 1). London: Bailliere Tindall

    Google Scholar 

  92. Martin T. J., Raisz L. G. and Rodan G. (1987). Calcium regulation and bone metabolism. Martin T. J. and Raisz L. G., Clinical Endocrinology of Calcium Metabolism (p. 1). New York: Marcel Dekker

    Google Scholar 

  93. Matsuyama T., Lau K.-H. and Wergedal J. E. (1990). Monolayer cultures of normal human bone cells contain multiple subpopulations of alkaline phosphatase positive cells. Calcif. Tissue Int., 47, 276

    Article  PubMed  CAS  Google Scholar 

  94. McGuire J. L., Marks S. C. and Drezner M. K. (1989). Metabolic bone disease. Kelley W. N., Textbook of Internal Medicine (p. 2232). Philadelphia: Lippincott

    Google Scholar 

  95. Melsen F., Mosekilde L., Eriksen E. F., Charles P. and Steinike T. (1989). In vivo hormonal effects on trabecular bone remodeling, osteoid mineralisation, and skeletal turnover. Kleerekoper M. and Krane S. M., Clinical Disorders of Bone and Mineral Metabolism (p. 25). New York: Liebert

    Google Scholar 

  96. Milgram J. W. (1990). Radiologic and Histologic Pathology of Nontumorous Diseases of Bones and Joints. South Lane Northbrook: Northbrook Publ. Co.

    Google Scholar 

  97. Miller S. C. (1987). The bone lining cell: a distinct phenotype? Calcif Tissue Int., 41, 1

    Article  PubMed  CAS  Google Scholar 

  98. Miller E. J. and Martin G. R. (1968). The collagen of bone. Clin. Orthop., 59, 195

    PubMed  CAS  Google Scholar 

  99. Minkin C. and Shapiro I. M. (1986). Osteoclasts, mononuclear phagocytes, and physiological bone resorption. Calcif. Tissue Int, 39, 357

    Article  PubMed  CAS  Google Scholar 

  100. Mosekilde L. (1990). Consequences of the remodelling process for vertebral trabecular bone structure: a scanning electron microscopic study (uncoupling of unloaded structures). Bone Miner., 10, 13

    Article  PubMed  CAS  Google Scholar 

  101. Mundy G. R. (1987). Bone resorption and turnover in health and disease. Bone, 8, Suppl., 9

    Google Scholar 

  102. Mundy G. R. (1989). Local factors in bone remodelling. Rec. Progr. Horm. Res., 45, 507

    PubMed  CAS  Google Scholar 

  103. Mundy G. R. and Bonewald L. F. (1990). Role of TGFi3 in bone remodeling. Ann. N.Y. Acad. Sci., 593, 91

    Article  PubMed  CAS  Google Scholar 

  104. Murray R. 0., Jacobson H. G. and Stocker D. J. (1990). The Radiology of Skeletal Disorders. Edinburgh: Churchill Livingstone

    Google Scholar 

  105. Nijweide P. J., Burger E. H. and Feyen J. H. M. (1986). Cells of bone: proliferation, differentiation, and hormonal regulation. Physiol. Rev., 66, 855

    PubMed  CAS  Google Scholar 

  106. Nijweide D. J., v.d.Plas A. and Olthof A. A. (1988). Osteoblastic differentiation. Ciba Foundation Symp., 136, 61

    CAS  Google Scholar 

  107. Osdoky P., Oursler M. J., Salino-Hugg T. and Krukovsky M. (1988). Osteoclast development: the cell surface and the bone environment. Ciba Foundation Symp., 136, 108

    Google Scholar 

  108. Owen M. (1985). Lineage of osteogenic cells and their relationship to the stromal system. Peck W. A., Bone and Mineral Research, vol. 3 (p. 1). Amsterdam: Elsevier

    Google Scholar 

  109. Palle S., Chappard D., Vico L., Riffat G. and Alexandre C. (1989). Evaluation of the osteoclastic population in iliac crest biopsies from 36 normal subjects: a histoenzymologic and histomorphometric study. J. Bone Miner. Res., 4, 501

    Article  PubMed  CAS  Google Scholar 

  110. Parfitt A. M. (1983). The physiologic and clinical significance of bone histomorphometric data. Recker R. R., Bone H istomorphometry: Techniques and Interpretation (p. 143). Boca Raton: CRC Press)

    Google Scholar 

  111. Parfitt A. M. (1987). Trabecular bone architecture in the pathogenesis and prevention of fracture. Amer. J. Med., 82, 68

    Article  PubMed  CAS  Google Scholar 

  112. Patten B. M. and Carlson B. M. (1974). Foundations of Embryology. New York: McGraw-Hill

    Google Scholar 

  113. Pierce A. N., Lindskog S. and Hammerstrom L. (1991). Osteoclasts: structure and function. Electron-microsc. Rev., 4, 1

    Article  PubMed  CAS  Google Scholar 

  114. Posner A. S. (1985). The mineral of bone. Clin. Orthop. Rel. Res., 200, 87

    CAS  Google Scholar 

  115. Price P. A. (1988). New bone markers. Triangle, 27(1/2), 21

    Google Scholar 

  116. Prockop D. J., Mivirikko K. I., Tuderman L. and Guzman N. A. (1979). The biosynthesis of collagen and its disorders. N. Engl. J. Med., 301, 13

    Article  PubMed  CAS  Google Scholar 

  117. Raisz L. G. (1988). Bone metabolism and its hormonal regulation. Triangle, 27(1/2), 5

    Google Scholar 

  118. Raisz L. G. (1981). What marrow does to bone. N. Engl. J. Med., 304, 1485

    Article  PubMed  CAS  Google Scholar 

  119. Raisz L. G. and Kream B. E. (1983). Regulation of bone formation. N. Engl. J. Med., 83, 309

    Google Scholar 

  120. Rasmussen H. and Bordier P. (1974). The Physiological and Cellular Basis of Metabolic Bone Disease. Baltimore: Williams & Wilkins

    Google Scholar 

  121. Reddi A. H. (1985). Regulation of bone differentiation by local and systemic factors. Peck W. A., Bone and Mineral Research,vol. 3 (p. 27). Amsterdam: Elsevier

    Google Scholar 

  122. Rees R. C. (1992). Cytokines as biological response modifiers. J. Clin. Pathol., 45, 93

    Article  PubMed  CAS  Google Scholar 

  123. Reichel H., Koeffler P. and Norman A. W. (1989). The role of the vitamin D endocrine system in health and disease. N. Engl. J. Med., 320, 980

    Article  PubMed  CAS  Google Scholar 

  124. Reid S. A. (1986). A study of lamellar organisation in juvenile and adult human bone. Anat. Embryol., 174, 329

    Article  PubMed  CAS  Google Scholar 

  125. Revell P. A. (1986). Pathology of Bone. Berlin: Springer

    Book  Google Scholar 

  126. Rhinelander F. W. (1972). Circulation of bone. Bourne G. H., The Biochemistry and Physiology of Bone, vol. 2 (p. 1). New York: Academic Press

    Google Scholar 

  127. Riggs B. L., Wahner H. W. and Melton L. J. (1986). Rates of bone loss in the appendicular and axial skeletons of women. J. Clin. Invest., 77, 1487

    Article  PubMed  CAS  Google Scholar 

  128. Robey P. J., Young M. F., Fisher L. W. and McClain T. D. (1989). Thrombospodin is an osteoblast-derived component of mineralized extracellular matrix. J. Cell Biol., 108, 719

    Article  PubMed  CAS  Google Scholar 

  129. Rodan G. A. (1991). Autocrine/paracrine regulation of osteoblast growth and differentiation. Lab. Invest., 64(5), 593

    PubMed  CAS  Google Scholar 

  130. Rodan G. A., Heath J. K., Yoon K., Noda M. and Rodan S. B. (1988). Diversity of the osteoblastic phenotype. Ciba Foundation Symp., 136, 78

    CAS  Google Scholar 

  131. Rodan S. B., Wesolovsky G., Thomas K. A., Yoon K. and Rodan G. A. (1989). Effects of acidic and basic fibroblast growth factors on osteoblastic cells. Connect. Tissue Res., 20, 283

    Article  PubMed  CAS  Google Scholar 

  132. Romanowski R., Jundt G., Termine J. D., vonderMark K. and Schulz A. (1990). Immunoelectron microscopy of osteonectin and type I collagen in osteoblasts and bone matrix. Calcif. Tissue Int., 46, 353

    Article  PubMed  CAS  Google Scholar 

  133. Roodman G. D. (1991). Osteoclast differentiation. Crit. Rev. Oral Biol. Med., 2, 389

    PubMed  CAS  Google Scholar 

  134. Ross M. H., Reith E. J. and Romrell L. J. (1989). Histology - A Text and At/as. Baltimore: Williams & Wilkins

    Google Scholar 

  135. Rubin C. T. and Lanyon L. E. (1987). Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone. J. Orthop. Res., 5, 300

    Article  PubMed  CAS  Google Scholar 

  136. Singh I. (1978). The architecture of cancellous bone. J. Anat, 127(2), 305

    PubMed  CAS  Google Scholar 

  137. Smith L. H. and Thier S. O. (1985). Pathophysiology. Philadelphia: Saunders

    Google Scholar 

  138. Smith R. (1987). Disorders of the skeleton. Weatherall D. J., Led ingham J. G. G. and Warrell D. A., Oxford Textbook of Medicine (p. 17.1). Oxford: Oxford University Press

    Google Scholar 

  139. Steiniche T., Vesterby A., Eriksen E. F., Mosekilde L. and Melsen F. (1986). A histomorphometric determination of iliac bone structure and remodelling in obese subjects. Bone, 7, 77

    Article  PubMed  CAS  Google Scholar 

  140. . Tam C. S., Hersche J. N. M. and Murray T. M. (1989). Metabolic Bone Disease: Cellular and Tissue Mechanisms. Boca Raton: CRC Press

    Google Scholar 

  141. Tavassoli M. and Friedenstein A. (1983). Haematopoietic stromal microenvironment. Amer. J. Hematol., 15, 195

    Article  CAS  Google Scholar 

  142. Termine J. D. (1983). Osteonectin and other newly described proteins of developing bone. Peck W. A., Bone and Mineral Research, vol. 1 (p. 114). Amsterdam: Elsevier

    Google Scholar 

  143. Testa N. G., Allen T. D., Molineux G., Lord B. I. and Onions D. (1988). Haematopoietic growth factors: their relevance in osteoclast formation and function. Ciba Foundation Symp., 136, 257

    CAS  Google Scholar 

  144. Trueta J. (1963). The role of vessels in osteogenesis. J. Bone Jt Surg., 45B, 402

    Google Scholar 

  145. Vaananen H. K., Hentunen T., Lakkakorpi P., Parvinen E. K., Sundquist K. and Tuukanen J. (1988). Mechanism of osteoclast mediated bone resorption. Ann. Chir. Gynaecol., 77, 193

    PubMed  CAS  Google Scholar 

  146. Vaes G. (1988). Cellular biology and biochemical mechanism of bone resorption. A review of recent developments on the formation, activation and mode of action of osteoclasts. Clin. Orthop., 231, 239

    PubMed  CAS  Google Scholar 

  147. Vaughan J. (1981). The Physiology of Bone. Oxford: Clarendon Press

    Google Scholar 

  148. Walker D. G. (1975). Control of bone resorption by hematopoietic tissue; the induction and reversal of congenital osteopetrosis in mice through use of bone marrow and splenic transplants. J. Exp. Med., 142, 651

    Article  PubMed  CAS  Google Scholar 

  149. Wallach S., Carstens J. B. and Avioli L. V. (1990). Caicitonin, osteoclasts and bone turnover. Calcif. Tissue /nt., 47, 388

    Article  Google Scholar 

  150. Weiss L. (1988). Cell and Tissue Biology - A Textbook of Histology. Baltimore: Urban & Schwarzenberg

    Google Scholar 

  151. Wegedal J. E., Mohan S. and Lundy M. (1990). Skeletal growth factor and other growth factors known to be present in bone matrix stimulate proliferation and protein synthesis in human bone cells. J. Bone Mineral Res.,5, 179

    Article  Google Scholar 

  152. Wlodarsky K. H. (1990). Properties and origin of osteoblasts. Clin. Orthop., 252, 276

    Google Scholar 

  153. Yeh C.-K. and Rodan G. A. (1984). Tensile forces enhance prostaglandin E synthesis in osteoblastic cells grown on collagen ribbons. Calcif. Tissue Int., 36, 567

    Google Scholar 

  154. Zamboni L. and Pease D. C. (1961). The vascular bed of red bone marrow. Ultrastruct. Res., 5, 65

    Article  CAS  Google Scholar 

  155. Zheng M. H., Nicholson G. C., Warton A. and Papadimitriou J. M. (1991). What’s new in osteoclast ontogeny. Pathol. Res. Pract, 187, 117

    Article  PubMed  CAS  Google Scholar 

  156. Coe F. E. and Farus M. J. (1992). Disorders of Bone and Mineral Metabolism. New York: Raven Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 R. Bartl and B. Frisch

About this chapter

Cite this chapter

Bartl, R., Frisch, B. (1993). Normal bone. In: Biopsy of Bone in Internal Medicine: An Atlas and Sourcebook. Current Histopathology, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2222-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2222-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4985-6

  • Online ISBN: 978-94-011-2222-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics