Skip to main content

Viren mit doppelsträngigem, segmentierten RNA-Genom

  • Chapter
Molekulare Virologie
  • 14k Accesses

Zusammenfassung

Reoviridae und Birnaviridae verfügen über ein segmentiertes, doppelsträngiges RNA-Genom. Ähnliche molekulare Eigenschaften findet man bei Pflanzenviren, wie beispielsweise den Partitiviren. Das Genom der Birnaviren, von denen es keine humanpathogenen Vertreter gibt, verfügt über zwei Genomsegmente. Bei den Reo-viren findet man dagegen ein aus neun bis zwölf RNA-Segmenten bestehendes Genom. Sie sind weltweit verbreitet und verursachen in Menschen und Tieren zum Teil schwere Erkrankungen

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

17.1.6 Weiterführende Literatur

  • Becht, H. Infectious bursal disease virus. In: Curr. Top. Microbiol. Immunol. 90 (1980) S. 107–121.

    CAS  PubMed  Google Scholar 

  • Birghan, C.; Mundt, E.; Gorbalenya, A. A non-canonical Lon proteinase deficient of the ATPase domain employs the Ser-Lys catalytic dyad to impose broad control over the life cycle of a double-stranded RNA virus. In: The EMBO Journal 19 (2000) S. 114–123.

    Article  CAS  PubMed  Google Scholar 

  • Coulibaly, F.; Chevalier, C.; Gutsche, I.; Pous, J.; Navaza, J.; Bressanelli, S.; Delmas, B.; Rey, F.A. The birnavirus crystal structure reveals structural relationships among icosahedral viruses. In: Cell 120 (2005) S. 761–772.

    Article  CAS  PubMed  Google Scholar 

  • Da Costa, B.; Soignier, S.; Chevalier, C.; Henry, C.; Thory, C.; Huet, J.-C.; Delmas, B. Blotched snakehead virus is a new aquatic birnavirus that is slightly more related to avibirnavirus than to aquabirnavirus. In: J. Virol. 77 (2003) S. 719–725.

    Article  PubMed  Google Scholar 

  • Dobos, P. The molecular biology of infectious pancreatic necrosis virus (IPNV). In: Annual Review of Fish Diseases 5 (1995) S. 24–54.

    Article  Google Scholar 

  • Granzow, H.; Brighan, C.; Mettenleiter, T. C.; Beyer, J.; Köllner, B.; Mundt, E. A second form of infectious bursal disease virus associated tubules contains VP4. In: J. Virol. 71 (1997) S. 8879–8885.

    CAS  PubMed  Google Scholar 

  • Hon, C. C.; Lam, T. Y.; Drummond, A.; Rambaut, A.; Lee, Y. F.; Yip, C. W.; Zeng, F.; Lam, P. Y.; Ng, P. T.; Leung, F. C. Phylogenetic analysis reveals a correlation between the expansion of very virulent infectious bursal disease virus and reassortment of its genome segment B. In: J. Virol. 80 (2006) S. 8503–8509.

    Article  CAS  PubMed  Google Scholar 

  • Lejal, N.; Da Costa, B.; Huet, J. C.; Delmas, B. Role of Ser-652 and Lys-692 in the protease activity of infectious bursal disease virus VP4 and identification of its substrate cleavage sites. In: J. Gen. Virol. 81 (2000) S. 983–992.

    CAS  PubMed  Google Scholar 

  • Mundt, E.; Beyer, J.; Müller, H. Identification of a novel viral protein in infectious bursal disease virus infected cells. In: J. Gen. Virol. 76 (1995) S. 437–443.

    Article  CAS  PubMed  Google Scholar 

  • Berg, T. van den. Acute infectiuos bursal disease in poultry: a review. In: Avian Pathology 29 (2000) S. 175–194.

    Article  CAS  PubMed  Google Scholar 

Weiterführende Literatur

  • Anderson, E. J.; Weber, S. G. Rotavirus infection in adults. In: Lancet Infect. Dis. 4 (2004) S. 91–99.

    Article  PubMed  Google Scholar 

  • Aoki, S. T.; Settembre, E. C.; Trask, S. D.; Greenberg, H. B.; Harrison, S. C.; Dormitzer, P. R. Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. In: Science 324 (2009) S. 1444–1447.

    Article  CAS  PubMed  Google Scholar 

  • Ball, J. M.; Mitchell, D. M.; Gibbons, T. F.; Parr, R. D. Rotavirus NSP4: a multifunctional viral enterotoxin. In: Viral Immunol. 18 (2005) S.27–40.

    Article  CAS  PubMed  Google Scholar 

  • Barro, M.; Patton, J. T. Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3. In: Proc. Natl. Acad. Sci. USA 102 (2005) S. 4114–4119.

    Article  CAS  PubMed  Google Scholar 

  • Blutt, S. E.; Conner, M. E. Rotavirus: to the gut and beyond! In: Curr. Opin. Gastro. 23 (2007) S. 39–43.

    Article  Google Scholar 

  • Brunet, J.-P.; Jourdan, N.; Cotte-Lafitte, J.; Linxe, C.; Géniteau-Legendre, M.; Servin, A.; Quéro, A.-M. Rotavirus infection induces cytoskeleton disorganization in human intestinal epithelial cells: Implication of an increase in intracellular calcium concentration. In: J. Virol. 74 (2000) S. 10801–10806.

    Article  CAS  PubMed  Google Scholar 

  • Conner, M. E.; Matson, D. O.; Estes, M. K. Rotavirus vaccines and vaccination potential. In: Curr. Top. Microbiol. Immunol. 185 (1994) S. 285–337.

    CAS  PubMed  Google Scholar 

  • Cook, N.; Bridger, J.; Kendall, K.; Gomara, M. I.; El-Attar, L.; Gray, J. The zoonotic potential of rotavirus. In: J. Infect. 48 (2004) S. 289–302.

    Article  PubMed  Google Scholar 

  • Delmas, O.; Gardet, A.; Chwetzoff, S.; Breton, M.; Cohen, J.; Colard, O.; Sapin, C.; Trugnan, G. Different ways to reach the top of a cell. Analysis of rotavirus assembly and targeting in human intestinal cells reveals an original raft-dependent, Golgi-independent apical targeting pathway. In: Virology 327 (2004) S. 157–161.

    Article  CAS  PubMed  Google Scholar 

  • Dhama, K.; Chauhan, R. S.; Mahendran, M.; Malik, S. V. Rotavirus diarrhea in bovines and other domestic animals. In: Vet. Res. Commun. 33 (2009) S. 1–23.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, T. K.; Ashley, D.; Kerin., T.; Reynolds-Hedmann, E.; Gentsch, J.; Widdowson, M. A.; Westerman, L.; Puhr, N.; Turcios, R. M.; Glass, R. I. Rotavirus antigenemia in patients with acute gastroenteritis. In: J. Infect. Dis. 192 (2005) S. 913–919.

    Article  PubMed  Google Scholar 

  • Fuentes-Panama, E. M.; Lopez, S.; Gorziglia, M.; Arias, C. F. Mapping of the hemagglutination domain of rotaviruses. In: J. Virol. 69 (1995) S. 2629–2632.

    Google Scholar 

  • Gardet, A.; Breton, M.; Fontanges, P.; Trugnan, G.; Chwetzoff, S. Rotavirus spike protein VP4 binds to and remodels actin bundles of the epithelial brush border into actin bodies. In: J. Virol. 80 (2006) S. 3947–3956.

    Article  CAS  PubMed  Google Scholar 

  • Gentsch, J. R.; Laird, A. R.; Bielfelt, B.; Griffin, D. D.; Banyai, K.; Ramachandran, M.; Jain, V.; Cunliffe, N. A.; Nakagomi, O.; Kirkwood, C. D.; Fischer, T. K.; Parashar, U. D.; Bresee, J. S.; Jiang, B.; Glass, R. I. Serotype diversity and reassortment between human and animal rotavirus strains: implications for rotavirus vaccine programs. In: J. Infect. Dis. 192, Suppl. 1 (2005) S. 146–159.

    Article  Google Scholar 

  • Glass, R. I.; Parashar, U. D.; Bresee, J. S.; Turcios, R.; Fischer, T. K.; Widdowson, M. A.; Jiang, B.; Gentsch, J. R. Rotavirus vaccines: current prospects and future challenges. In: Lancet 368 (2006) S. 323–332.

    Article  CAS  PubMed  Google Scholar 

  • Goldwater, P. N.; Rowland, K.; Thesinger, M.; Abbott, K.; Grieve, A.; Palombo, E. A.; Masendycz, P. J.; Wilkinson, I.; Bear, J. Rotavirus encephalopathy: pathogenesis reviewed. In: J. Paediatr. Child Health 37 (2001) S. 206–209.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg, H. B.; Estes, M. K. Rotaviruses: from pathogenesis to vaccination. In: Gastroenterology 136 (2009) S. 1939–1951.

    Article  CAS  PubMed  Google Scholar 

  • Hewish, M. J.; Takada, Y.; Coulson, B. S. Integrins alpha 2 beta 1 and alpha 4 beta 1 can mediate SA11 rotavirus attachment and entry into cells. In: J. Virol. 74 (2000) S. 228–236.

    Article  CAS  PubMed  Google Scholar 

  • Jayaram, H.; Estes, M. K.; Prasad, B. V. Emerging themes in rotavirus cell entry, genome organization, transcription and replication. In: Virus Res. 101 (2004) S. 67–81.

    Article  CAS  PubMed  Google Scholar 

  • Joklik, W. K.; Roner, M. R. What reassorts when reovirus reassorts? In: J. Biol. Chem. 270 (1995) S. 4181–4184.

    Article  CAS  PubMed  Google Scholar 

  • Labbe, M.; Baudoux, P.; Charpilienne, A.; Poncet, D.; Cohen, J. Identification of the nucleic acid binding domain of the rotavirus VP2 protein. In: J. Gen. Virol. 75 (1994) S. 3423–3430.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, T. A.; Khamrin, P.; Trinh, Q. D.; Phan, T. G.; Pham, le D.; Hoang, le P.; Hoang, K. T.; Yagyu, F.; Okitsu, S.; Ushijima, H. Sequence analysis of Vietnamese P[6] rotavirus strains suggests evidence of interspecies transmission. In: J. Med. Virol. 79 (2007), S. 1959–1965.

    Article  CAS  PubMed  Google Scholar 

  • Parr, R. D.; Storey, S. M.; Mitchell, D. M.; McIntosh, A. L.; Zhou, M.; Mir, K. D.; Ball, J. M. The rotavirus enterotoxin NSP4 directly interacts with the caveolar structural protein caveolin-1. In: J. Virol. 80 (2006) S. 2842–2854.

    Article  CAS  PubMed  Google Scholar 

  • Parra, G. I.; Vidales, G.; Gomez, J. A.; Fernandez, F. M.; Parreño, V.; Bok, K. Phylogenetic analysis of porcine rotavirus in Argentina: Increasing diversity of G4 strains and evidence of interspecies transmission. In: Vet. Microbiol. 126 (2008) S. 243–250.

    Article  CAS  PubMed  Google Scholar 

  • Patton, J. T.; Spencer, E. Genome replication and packaging of segmented double-stranded RNA viruses. In: Virol. 277 (2000) 217–225.

    Article  CAS  Google Scholar 

  • Poncet, D.; Laurent, S.; Cohen, J. Four nucleotides are the minimal requirement for RNA recognition by rotavirus nonstructural protein NSP3. In: EMBO J. 13 (1994) S. 4165–4173.

    CAS  PubMed  Google Scholar 

  • Purse, B. V.; Brown, H. E.; Harrup, L.; Mertens, P. P.; Rogers, D. J. Invasion of bluetongue and other orbivirus infections into Europe: the role of biological and climatic processes. In: Rev. Sci. Tech. 27 (2008) S. 427–442.

    CAS  PubMed  Google Scholar 

  • Ramig, R. F. Pathogenesis of intestinal and systemic rotavirus infection. In: J. Virol. 78 (2004) S. 10213–10220.

    Article  CAS  PubMed  Google Scholar 

  • Roy, P.; Boyce, M.; Noad, R. Prospects for improved bluetongue vaccines. In: Nat. Rev. Microbiol. 7 (2009) S. 120–128.

    Article  CAS  PubMed  Google Scholar 

  • Schuck, P.; Tarapolewara, Z.; McPhie, P.; Patton, J. Rotavirus nonstructural protein NSP2 self-assembles into octamers that undergo ligand-induced conformational changes. In: J. Biol. Chem. 276 (2001) S. 9679–9687.

    Article  CAS  PubMed  Google Scholar 

  • Taraporewala, Z. F.; Patton, J. T. Identification and characterization of the helix-destabilizing activity of rotavirus nonstructural protein NSP2. In: J. Virol. 75 (2001) S. 4519–4527.

    Article  CAS  PubMed  Google Scholar 

  • Taraporewala, Z. F.; Patton, J. T. Nonstructural proteins involved in genome packaging and replication of rotaviruses and other members of the Reoviridae. In: Virus Res. 101 (2004) S. 57–66.

    Article  CAS  PubMed  Google Scholar 

  • Vesikari, T. Rotavirus vaccines. In: Scand. J. Infect. Dis. 40 (2008) S. 691–695.

    Article  CAS  PubMed  Google Scholar 

  • Yaeger, M.; Berriman, J. A.; Baker, T. S.; Bellamy, A. R. Three-dimensional structure of the rotavirus haemagglutinin by cryo-electron microscopy and difference map analysis. In: EMBO J. 13 (1994) S. 1011–1018.

    Google Scholar 

  • Zhang, M.; Zeng, C. Q.-Y.; Morris, A. P.; Estes, M. K. A functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells. In: J. Virol. 74 (2000) S. 11663–11670.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Spektrum Akademischer Verlag Heidelberg

About this chapter

Cite this chapter

Modrow, S., Falke, D., Truyen, U., Schätzl, H. (2010). Viren mit doppelsträngigem, segmentierten RNA-Genom. In: Molekulare Virologie. Spektrum Akademischer Verlag. https://doi.org/10.1007/978-3-8274-2241-5_17

Download citation

Publish with us

Policies and ethics