Skip to main content

Viren mit einzelsträngigem, kontinuierlichem RNA-Genom in Negativstrangorientierung

  • Chapter
Molekulare Virologie

Zusammenfassung

Die Viren, die ein einzelsträngiges, durchgängiges RNA-Genom in Negativstrangorientierung haben, fasst man in der Ordnung der Mononegavirales zusammen. Zu ihnen zählen die Familien Rhabdoviridae, Bornaviridae, Paramyxoviridae und Filoviridae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

15.1.7 Weiterführende Literatur

  • Albertini, A. A.; Schoehn, G.; Weissenhorn, W.; Ruigrok, R. W. Structural aspects of rabies virus replication. In: Cell. Mol. Life. Sci. 65 (2008) S. 282–294.

    Article  PubMed  CAS  Google Scholar 

  • Baer, G. M. Rabies — An historical perspective. In: Infect. Agents and Dis. 3 (1994) S. 168–180.

    CAS  Google Scholar 

  • Bronnert, J.; Wilde, H.; Tepsumethanon, V.; Lumlertdacha, B.; Hemachudha, T. Organ transplantations and rabies transmission. In: J. Travel Med. 14 (2007) S. 177–180.

    Article  PubMed  Google Scholar 

  • Chelbi-Alix, M. K.; Vidy, A.; El Bougrini, J.; Blondel, D. Rabies viral mechanisms to escape the IFN system: the viral protein P interferes with IRF-3, Stat1, and PML nuclear bodies. In: J. Interferon Cytokine Res. 26 (2006) S. 271–280.

    Article  PubMed  CAS  Google Scholar 

  • Coil, D. A.; Miller, A. D. Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus In: J. Virol. 78 (2004) S. 10920–10926.

    Article  PubMed  CAS  Google Scholar 

  • Conzelmann, K. K.; Cox, J. H.; Schneider, L. G.; Thiel, H. J. Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19. In: Virology 175 (1990) S. 485–499.

    Article  PubMed  CAS  Google Scholar 

  • Dietzschold, B.; Schnell, M.; Koprowski, H. Pathogenesis of rabies. In: Curr. Top. Microbiol. Immunol. 292 (2005) S. 45–56.

    Article  PubMed  CAS  Google Scholar 

  • Etessami, R.; Conzelmann, K. K.; Fadai-Ghotbi, B.; Natelson, B.; Tsiang, H.; Ceccaldi, P. E. Spread and pathogenic characteristics of a G-deficient rabies virus recombinant: an in vitro and in vivo study. In: J. Gen. Virol. 81 (2000) S. 214–2153.

    Google Scholar 

  • Faber, M.; Pulmanausahakul, R.; Nagao, K.; Prosniak, M.; Rice, A. B.; Koprowski, H.; Schnell, M. J.; Dietzschold, B. Identification of viral genomic elements responsible for rabies virus neuroinvasiveness. In: Proc. Natl. Acad. Sci. USA 101 (2004) S. 16328–16332.

    Article  PubMed  CAS  Google Scholar 

  • Finke, S.; Conzelmann, K. K. Replication strategies of rabies virus. In: Virus Res. 111 (2005) S. 120–131.

    Article  PubMed  CAS  Google Scholar 

  • Graham, S. C.; Assenberg, R.; Delmas, O.; Verma, A.; Gholami, A.; Talbi, C.; Owens, R. J.; Stuart, D. I.; Grimes, J. M.; Bourhy, H. Rhabdovirus matrix protein structures reveal a novel mode of self-association. In: PLoS. Pathog. 4 (2008) e1000251.

    Article  CAS  Google Scholar 

  • Ito, N.; Takayama M.; Yamada, K.; Sugiyama, M.; Minamoto, N. Rescue of rabies virus from cloned cDNA and identification of the pathogenicity-related gene: glycoprotein gene is associated with virulence for adult mice. In: J. Virol. 75 (2001) S. 9121–9128.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, A. C. Rabies. In: Can. J. Neurol. Sci. 27 (2000) S. 278–282.

    PubMed  CAS  Google Scholar 

  • Lafon, J.; Lafage, M.; Martinez-Anrends, A.; Ramirez, R.; Vuillier, F.; Charron, D.; Lotteau, V.; Scott-Algara, D. Evidence of a viral superantigen in humans. In: Nature 358 (1992) S. 507–509.

    Article  PubMed  CAS  Google Scholar 

  • Lafon, M.; Scott-Algara, D.; Marche, P. N.; Cazenave, P. A.; Jouvin-Marche, E. Neonatal deletion and selective expansion of mouse T cells by exposure to rabiesvirus nucleocapsid superantigen. In: J. Exp. Med. 180 (1994) S. 1207–1215.

    Article  PubMed  CAS  Google Scholar 

  • Lafon, M. Immune evasion, a critical strategy for rabies virus. In: Dev. Biol. (Basel) 131 (2008) S. 413–419.

    CAS  Google Scholar 

  • Lewis, P.; Fu, Y.; Lentz, T. L. Rabies virus entry into endosomes on IMR-32 human neuroblastoma cells. In: Exp. Neurol. 153 (1998) S. 65–73.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, P.; Fu, Y.; Lentz, T. L. Rabies virus entry at the neuromuscular junction in nerve-muscle cocultures. In: Muscle Nerve 23 (2000) S. 720–730.

    Article  PubMed  CAS  Google Scholar 

  • Lichty, B. D.; Power, A. T.; Stojdl, D. F.; Bell, J. C. Vesicular stomatitis virus: re-inventing the bullet. In: Trends Mol. Med. 10 (2004) S: 210–6.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto, K.; Shoji, Y.; Inoue, S. Characterization of P gene-deficient rabies virus: propagation, pathogenicity and antigenicity. In: Virus Res. 11 (2005) S. 61–67.

    Article  CAS  Google Scholar 

  • Nadin-Davis, S. A.; Fehlner-Gardiner, C. Lyssaviruses: current trends. In: Adv. Virus Res. 71 (2008) S. 207–250.

    Article  PubMed  CAS  Google Scholar 

  • Nel, L. H.; Markotter, W. Lyssaviruses. In: Crit. Rev. Microbiol. 33 (2007) S. 301–324.

    Article  PubMed  CAS  Google Scholar 

  • Ogino, T.; Banerjee, A. K. Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus. In: Mol. Cell. 5 (2007) S. 85–97.

    Article  CAS  Google Scholar 

  • Rose, J. K.; Schubert, M. Rhabdovirus genomes and their products. In: Wagner, R. R. (Hrsg.) The rhabdoviruses. New York (Plenum Press) 1987. S. 129–166.

    Google Scholar 

  • Rupprecht, C. E.; Dietzschold, B.; Koprowski, H. (Hrsg.) Lyssaviruses. In: Curr. Topics Microbiol. Immunol., Bd. 187. Berlin, Heidelberg, New York (Springer) 1994.

    Google Scholar 

  • Swanepoel, R. Rabies. In: Coetzer, J. A. W.; Thomson, G. R.; Tustin, R. C. (Hrsg.) Infectious diseases of livestock with special reference to Southern Africa. Oxford University Press. (1995) S. 493–552.

    Google Scholar 

  • Theerasurakarn, S.; Ubol, S. Apoptosis induction in brain during the fixed strain of rabies virus infection correlates with the onset and severety of illness. In: J. Neurovirol. 4 (1998) S. 407–414.

    Article  PubMed  CAS  Google Scholar 

  • Thoulouze, M. I.; Lafage, M.; Schachner, M.; Hartmann, U.; Cremer, H.; Lafon, M. The neural cell adhesion molecule is a receptor for rabies virus. In: J. Virol. 72 (1998) S. 7181–7190.

    PubMed  CAS  Google Scholar 

  • Tuffereau, C.; Schmidt, K.; Langevin, C.; Lafay, F.; Dechant, G.; Koltzenburg, M. The rabies virus glycoprotein receptor p75NTR is not essential for rabies virus infection. In: J. Virol. 81 (2007) S. 13622–13630.

    Article  PubMed  CAS  Google Scholar 

  • Ubol, S.; Sukwattanapan, C.; Maneerat, Y. Inducible nitric oxide synthase inhibition delays death of rabies virus-infected mice. In: J. Med. Microbiol. 50 (2001) S. 238–242.

    PubMed  CAS  Google Scholar 

  • Willoughby, R. E. Jr.; Tieves, K. S.; Hoffman, G. M.; Ghanayem, N. S.; Amlie-Lefond, C. M.; Schwabe, M. J.; Chusid, M. J.; Rupprecht, C. E. Survival after treatment of rabies with induction of coma. In: N. Engl. J. Med. 352 (2005) S. 2508–2514.

    Article  PubMed  CAS  Google Scholar 

Weiterführende Literatur

  • Allmang, U.; Hofer, M.; Herzog, S.; Bechter, K.; Staeheli, P. Low avidity of human serum antibodies for Borna disease virus antigens questions their diagnostic value. In: Mol. Psychiatry 6 (2001) S. 329–333.

    Article  PubMed  CAS  Google Scholar 

  • Bode, L.; Zimmermann, W.; Ferszt, P.; Steinbach, F.; Ludwig, H. Borna disease virus genome transcribed and expresses in psychiatric patients. In: Nature Medicine 1 (1995) S. 232–237.

    Article  PubMed  CAS  Google Scholar 

  • Briese, T.; Schneemann, A.; Lewis, A.; Ludwig, H.; Lipkin, W. I. Genomic organization of Borna disease virus. In: Proc. Natl. Acad. Sci. USA 91 (1994) S. 4362–4366.

    Article  PubMed  CAS  Google Scholar 

  • Chase, G.; Mayer, D.; Hildebrand, A.; Frank, R.; Hayashi, Y.; Tomonaga, K.; Schwemmle, M. Borna disease virus matrix protein is an integral component of the viral ribonucleoprotein complex that does not interfere with polymerase activity. In: J. Virol. 81 (2007) S. 743–749.

    Article  PubMed  CAS  Google Scholar 

  • Clemente, R.; de la Torre, J. C. Cell entry of Borna Disease Virus follows a clathrin mediated endocytosis pathway that requires Rab5 and microtubules. In: J. Virol. 83 (2009) S. 10406–10416.

    Article  PubMed  CAS  Google Scholar 

  • Clemente, R.; de la Torre, J. C. Cell-to-cell spread of Borna disease virus proceeds in the absence of the virus primary receptor and furin-mediated processing of the virus surface glycoprotein. In: J. Virol. 81 (2007) S. 5968–5977.

    Article  PubMed  CAS  Google Scholar 

  • Clemente, R.; de Parseval, A.; Perez, M.; de la Torre, J. C. Borna Disease Virus requires cholesterol in both cellular membrane and viral envelope for efficient cell entry. In: J. Virol. 83 (2009) S. 2655–2662.

    Article  PubMed  CAS  Google Scholar 

  • Cros, J. F.; Palese, P. Trafficking of viral genomic RNA into and out of the nucleus: influenza, Thogoto and Borna disease viruses. In: Virus Res. 95 (2003) S. 3–12.

    Article  PubMed  CAS  Google Scholar 

  • Cubitt, B.; Ly, C.; Torre, J. C. de la. Identification and characterization of a new intron in Borna disease virus. In: J. Gen. Virol. 82 (2001) S. 641–646.

    PubMed  CAS  Google Scholar 

  • Dürrwald, R.; Kolodziejek, J.; Herzog, S.; Nowotny, N. Meta-analysis of putative human bornavirus sequences fails to provide evidence implicating Borna disease virus in mental illness. In: Rev. Med. Virol. 17 (2007) S. 181–203.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, Y.; Horie, M.; Daito, T.; Honda, T.; Ikuta, K.; Tomonaga, K. Heat shock cognate protein 70 controls Borna disease virus replication via interaction with the viral non-structural protein X. In: Microbes Infect. 11 (2009) S. 394–402.

    Article  PubMed  CAS  Google Scholar 

  • Honkavuori, K. S.; Shivaprasad, H. L.; Williams, B. L.; Quan, P. L.; Hornig, M.; Street, C.; Palacios, G.; Hutchison, S. K.; Franca, M.; Egholm, M.; Briese, T.; Lipkin, W. I. Novel borna virus in psittacine birds with proventricular dilatation disease. In: Emerg. Infect. Dis. 14 (2008) S. 1883–1886.

    Article  PubMed  CAS  Google Scholar 

  • Kraus, I.; Bogner, E.; Lilie, H.; Eickmann, M.; Garten, W. Oligomerization and assembly of the matrix protein of Borna disease virus. In: FEBS Lett. 579 (2005) S. 2686–2692.

    Article  PubMed  CAS  Google Scholar 

  • Ohtaki, N.; Kamitani, W.; Watanabe, Y.; Hayashi, Y.; Yanai, H.; Ikuta, K.; Tomonaga, K. Downregulation of an astrocyte-derived inflammatory protein, S100B, reduces vascular inflammatory responses in brains persistently infected with Borna disease virus. In: J. Virol. 81 (2007) S. 5940–5948.

    Article  PubMed  CAS  Google Scholar 

  • Peng, G.; Yan, Y.; Zhu, C.; Wang, S.; Yan, X.; Lu, L.; Li, W.; Hu, J.; Wei, W.; Mu, Y.; Chen, Y.; Feng, Y.; Gong, R.; Wu, K.; Zhang, F.; Zhang, X.; Zhu, Y.; Wu, J. Borna disease virus P protein affects neural transmission through interactions with gamma-aminobutyric acid receptor-associated protein. In: J. Virol. 82 (2008) S. 12487–12497.

    Article  PubMed  CAS  Google Scholar 

  • Perez, M.; Watanabe, M.; Whitt, M. A.; Torre, J. C. de la. N-terminal domain of Borna disease virus G (p56)-protein is sufficient for virus receptor regognition and cell entry. In: J. Virol. 75 (2001) S. 7078–7085.

    Article  PubMed  CAS  Google Scholar 

  • Poenisch, M.; Burger, N.; Staeheli, P.; Bauer, G.; Schneider, U. Protein X of Borna disease virus inhibits apoptosis and promotes viral persistence in the CNS of newborn-infected rats. In: J. Virol. 83 (2009) S. 4297–4307.

    Article  PubMed  CAS  Google Scholar 

  • Poenisch, M.; Unterstab, G.; Wolff, T.; Staeheli, P.; Schneider, U. The X protein of Borna disease virus regulates viral polymerase activity through interaction with the P protein. In: J. Gen. Virol. 85 (2004) S. 1895–1898.

    Article  PubMed  CAS  Google Scholar 

  • Rinder, M.; Ackermann, A.; Kempf, H.; Kaspers, B.; Korbel, R.; Staeheli, P. Broad tissue and cell tropism of avian bornavirus in parrots with proventricular dilatation disease. In: J. Virol. 83 (2009) S. 5401–5407.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, U.; Martin, A.; Schwemmle, M.; Staeheli, P. Genome trimming by Borna disease viruses: viral replication control or escape from cellular surveillance? In: Cell Mol. Life Sci. 64 (2007) S. 1038–1042.

    Article  PubMed  CAS  Google Scholar 

  • Staeheli, P.; Stauder, C.; Hausmann, J.; Ehrensperger, F.; Schwemmle, M. Epidemiology of Borna disease virus. In: J. Gen. Virol. 81 (2000) S. 2123–2135.

    PubMed  CAS  Google Scholar 

  • Torre, J. C. de la. Bornavirus and the brain. In: J. Infect. Dis. 186 (2002) S. 241–247.

    Article  Google Scholar 

  • Walker, M. P.; Jordan, I.; Briese, T.; Fischer, N.; Lipkin, W. I. Expression and characterization of the Borna disease virus polymerase. In: J. Virol. 74 (2000) S. 4425–4428.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, T.; Pfleger, R.; Wehner, T.; Reinhardt, J.; Richt, J. A short leucin-rich sequence in the Borna disease virus p10 proteins mediates association with the viral phospho-and nucleoproteins. In: J. Gen. Virol. 81 (2000) S. 939–947.

    PubMed  CAS  Google Scholar 

Weiterführende Literatur

  • Appel, M. J. G.; Summers, B. A. Pathogenicity of morbilliviruses for terrestial carnivores. In: Veterinary Microbiology 44 (1995) S. 187–191.

    Article  PubMed  CAS  Google Scholar 

  • Avota, E.; Avots, A.; Niewiesk, S.; Kane, L. P.; Bommhardt, U.; Meulen, V. ter; Schneider-Schaulis, S. Disruption of Akt kinase activation is important for immunosuppression induced by measles virus. In: Nature Medicine 7 (2001) S. 725–731.

    Article  PubMed  CAS  Google Scholar 

  • Bao, X., Kolli, D., Liu, T., Shan, Y., Garofalo, R. P., Casola, A. Human metapneumovirus small hydrophobic protein inhibits NF-kappaB transcriptional activity. In: J. Virol. 82 (2008) S. 8224–8229.

    Article  PubMed  CAS  Google Scholar 

  • Barrett, T. Recombinant DNA technology for producing new rinderpest virus vaccines. In: Expert Rev. Vaccines. 4 (2005) S. 113–120.

    Article  PubMed  CAS  Google Scholar 

  • Bowden, T. A.; Aricescu, A. R.; Gilbert, R. J.; Grimes, J. M.; Jones, E. Y.; Stuart, D. I. Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. In: Nat. Struct. Mol. Biol. 15 (2008) S. 567–572.

    Article  PubMed  CAS  Google Scholar 

  • Briss, P. A.; Fehrs, L. J. et al. Sustained transmission of mumps in a highly vaccinated population: Assessment of primary vaccine failure and waning vaccine-induced immunity. In: J. Infect. Dis. 169 (1994) S. 77–82.

    PubMed  CAS  Google Scholar 

  • Cuesta, J.; Geng, X.; Asenjo, A.; Villanneva, N. Structural phosphoprotein M 2-1 of the human respiratory syncytialvirus is an RNA binding protein. In: J. Virol. 74 (2000) S. 9858–9867.

    Article  PubMed  CAS  Google Scholar 

  • Deem, S. L.; Spelman, S. H.; Yates, R. A.; Montali, R. J. Canine distemper in terrestrial carnivores: a review. In: J. Zoo. Wildl. Med. 31 (2000) S. 441–451.

    PubMed  CAS  Google Scholar 

  • Deffrasnes, C.; Hamelin, M. E.; Boivin, G. Human metapneumovirus. In: Semin. Respir. Crit. Care Med. 28 (2007) S. 213–221.

    Article  PubMed  Google Scholar 

  • Dhiman, N.; Jacobson, R. M.; Poland, G. A. Measles virus receptors: SLAM and CD46. In: Rev. Med. Virol. 14 (2004) S. 217–229.

    Article  PubMed  CAS  Google Scholar 

  • Durbin, A. P.; McAuliffe, J. M.; Collins, P. L.; Murphy, B. R. Mutations in the C, D, and V open reading frames of human parainfluenza virus type 3 attenuate replication in rodents and primates. In: Virology 261 (1999) S. 319–330.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, J.; Lynch, O. T.; Suessmuth, Y.; Qian, P.; Boyd, C. R.; Burrows, J. F.; Buick, R.; Stevenson, N. J.; Touzelet, O.; Gadina, M.; Power, U. F.; Johnston, J. A. Respiratory syncytial virus NS1 protein degrades STAT2 by using the Elongin-Cullin E3 ligase. In: J. Virol. 81 (2007) S. 3428–3436.

    Article  PubMed  CAS  Google Scholar 

  • Erbar, S.; Diederich, S.; Maisner A. Selective receptor expression restricts Nipah virus infection of endothelial cells. In: Virol. J. 5 (2008) 142.

    Article  PubMed  CAS  Google Scholar 

  • Fontana, J. M.; Bankamp, B.; Rota, P. A. Inhibition of interferon induction and signaling by paramyxoviruses. In: Immunol. Rev. (2008) 225 S. 46–67.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann, M. A.; Banerjee, A. K. Analysis of RNA secondary structure in replication of human parainfluenza virus type 3. In: Virology 272 (2000) S. 151–158.

    Article  CAS  Google Scholar 

  • Hoogen, B. G. van den; Jong, J. C. de; Kuiken, T.; Groot, R de.; Fouchier, R. A. M.; Osterhaus A. D. M. E. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. In: Nature Medicine 71 (2001) S. 719–724.

    Article  CAS  Google Scholar 

  • Hooper, P. New fruit bat viruses affecting horses, pigs and humans. In: Brown, C.; Bolin, C. (Hrsg.) Emerging diseases of animals. Washington D.C. (ASM Press) 2000. S. 85–99.

    Google Scholar 

  • Hviid, A.; Rubin, S.; Mühlemann, K. Mumps. In: Lancet 371 (2008) S. 932–944.

    Article  PubMed  Google Scholar 

  • Kahn, J. S. Epidemiology of Human Metapneumovirus. In: Clin. Microbiol. Rev. 19 (2006) S. 546–557.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, R. A.; Jardetzky, T. S. Structural basis of viral invasion: lessons from paramyxovirus F. In: Curr. Opin. Struct. Biol. 17 (2007) S. 427–436.

    Article  PubMed  CAS  Google Scholar 

  • Leung, A. K.; Kellner, J. D.; Davies, H. D. Respiratory syncytial virus bronchiolitis. In: J. Natl. Med. Assoc. 97 (2005) S. 1708–1713.

    PubMed  Google Scholar 

  • Li, D.; Jans, D. A.; Bardin, P. G.; Meanger, J.; Mills, J.; Ghildyal, R. Association of respiratory syncytial virus M protein with viral nucleocapsids is mediated by the M2-1 protein. In: J. Virol. 82 (2008) S. 8863–8870.

    Article  PubMed  CAS  Google Scholar 

  • Li, M.; Schmitt, P. T.; Li, Z.; McCrory, T. S.; He, B.; Schmitt, A. P. Mumps virus matrix, fusion, and nucleocapsid proteins cooperate for efficient production of virus-like particles. In: J. Virol. 83 (2009) S. 7261–7272.

    Article  PubMed  CAS  Google Scholar 

  • Lin, G. Y.; Lamb, R. A. The paramyxovirus simian virus 5 V protein slows progression of the cell cycle. In: J. Virol. 74 (2000) S. 9152–9166.

    Article  PubMed  CAS  Google Scholar 

  • Ling, Z.; Tran, K. C.; Teng, M. N. Human respiratory syncytial virus nonstructural protein NS2 antagonizes the activation of beta interferon transcription by interacting with RIG-I. In: J. Virol. 83 (2009) S. 3734–3742.

    Article  PubMed  CAS  Google Scholar 

  • Manchester, M.; Eto, D. E.; Valsamakis, A.; Liton, P. B.; Fernandez-Munoz, R.; Rota, P. A.; Bellini, W. J.; Forthal, D. N.; Oldstone, M. B. A. Clinical isolates of measles virus use CD46 as a cellular receptor. In: J. Virol. 74 (2000) S. 3967–3974.

    Article  PubMed  CAS  Google Scholar 

  • Moll, M.; Klenk, H.-D.; Herrler, G.; Maisner, A. A single amino acid change in the cytoplasmic domains of measles virus glycoproteins H and F alters targeting, endocytosis, and cell fusion in polarized Madin-Darby canine kidney cells. In: J. Biol. Chem. 276 (2001) S. 17887–17894.

    Article  PubMed  CAS  Google Scholar 

  • Muscat, M.; Bang, H.; Wohlfahrt, J.; Glismann, S.; Mølbak, K; EUVAC.NET Group. Measles in Europe: an epidemiological assessment. In: Lancet 373 (2009) S. 383–389.

    Article  PubMed  Google Scholar 

  • Nokes, J. D.; Cane, P. A. New strategies for control of respiratory syncytial virus infection. In: Curr. Opin. Infect. Dis. 21 (2008) S. 639–643.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, J. B.; Thomas, D.; Lewick, H.; Billeter, M. A.; Oldstone, M. B. A. V and C proteins of measles virus function as virulence factors in vivo. In: Virology 267 (2000) S. 80–89.

    Article  PubMed  CAS  Google Scholar 

  • Rima, B. K.; Duprex, W. P. Morbilliviruses and human disease. In: J. Pathol. 208 (2006) S. 199–214.

    Article  PubMed  CAS  Google Scholar 

  • Rossiter, B. Rinderpest. In: Coetzer, J. A. W.; Thomson, G. R.; Tustin, R. C. (Hrsg.) Infectious diseases of livestock with special reference to Southern Africa. Oxford (Oxford University Press) 1994. S. 735–757.

    Google Scholar 

  • Russell, C. J.; Luque, L. E. The structural basis of paramyxovirus invasion. In: Trends Microbiol. 14 (2006) S. 243–246.

    Article  PubMed  CAS  Google Scholar 

  • Schneider-Schaulies, S.; Schneider-Schaulies, J. Measles virusinduced immunosuppression. In: Curr. Top. Microbiol. Immunol. 330 (2009) S. 243–269.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, T.; Portner, A.; Scroggs, R. A.; Uchikawa, M.; Koyama, N.; Matsuo, K.; Suzuki, Y.; Takimoto, T. Receptor specifities of human respiroviruses. In: J. Virol. 75 (2001) S. 4604–4613.

    Article  PubMed  CAS  Google Scholar 

  • Tatsuo, H.; Ono, N.; Yanagi, Y. Morbilliviruses use signalling lymphocyte activation molecules (CD150) as cellular receptors. In: J. Virol. 75 (2001) S. 5842–5850.

    Article  PubMed  CAS  Google Scholar 

  • Tebbey, P. W.; Hagen, M.; Hancock, G. E. Atypical pulmonary eosinophilia is mediated by a specific amino acid sequence of the attachment (G) protein of respiratory syncytial virus. In: J. Exp. Med. 188 (1998) S. 1967–1972.

    Article  PubMed  CAS  Google Scholar 

  • Warris, A.; Groot, R. de. Human metapneumovirus: an important cause of acute respiratory illness. In: Adv. Exp. Med. Biol. 582 (2006) S. 251–264.

    Article  PubMed  Google Scholar 

  • Weingartl, H. M.; Berhane, Y.; Czub, M. Animal models of henipavirus infection: A review. In: Vet. J. 181 (2008) S. 211–220.

    Article  PubMed  Google Scholar 

  • Wild, T. F. Henipaviruses: a new family of emerging Paramyxoviruses. In: Pathol. Biol. (Paris) 57 (2009) S. 188–196.

    CAS  Google Scholar 

  • Xu, K.; Rajashankar, K. R.; Chan, Y. P.; Himanen, J. P.; Broder, C. C.; Nikolov, D. B. Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. In: Proc. Natl. Acad. Sci. USA 105 (2008) S. 9953–9958.

    Article  PubMed  Google Scholar 

  • Yanagi, Y.; Takeda, M.; Ohno, S. Measles virus: cellular receptors, tropism and pathogenesis. In: J. Gen. Virol. 87 (2006) S. 2767–2779.

    Article  PubMed  CAS  Google Scholar 

  • Yanagi, Y. The cellular receptor for measles virus — elusive no more. In: Rev. Med. Virol. 11 (2001) S. 149–156.

    Article  PubMed  CAS  Google Scholar 

  • Young, D. F.; Didcook, L.; Goodbourn, S.; Randall, R. E. Paramyxoviridae use distinct virus-specific mechanisms to circumvent the interferon response. In: Virology 269 (2000) S. 383–390.

    Article  PubMed  CAS  Google Scholar 

Weiterführende Literatur

  • Baize, S.; Leroy, E. M.; Georges-Courbot, M.-C.; Capron, M.; Lansoud-Soukate, J.; Debré, P.; Fisher-Hoch, S. P.; McCormick, J. B.; Georges, A. J. Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients. In: Nature Medicine 5 (1999) S. 423–426.

    Article  PubMed  CAS  Google Scholar 

  • Barrette, R. W.; Metwally, S. A.; Rowland, J. M.; Xu, L.; Zaki, S. R.; Nichol, S. T.; Rollin, P. E.; Towner, J. S.; Shieh, W. J.; Batten, B.; Sealy, T. K.; Carrillo, C.; Moran, K. E.; Bracht, A. J.; Mayr, G. A.; Sirios-Cruz, M.; Catbagan, D. P.; Lautner, E. A.; Ksiazek, T. G.; White, W. R.; McIntosh, M. T. Discovery of swine as a host for the Reston ebolavirus. In: Science 325 (2009) S. 204–206.

    Article  PubMed  CAS  Google Scholar 

  • Becker, S.; Spiess, M.; Klenk, H.-D. The asialoglycoprotein receptor is a potential liver-specific receptor for Marburg virus. In: J. Gen. Virol. 76 (1995) S. 393–399.

    Article  PubMed  CAS  Google Scholar 

  • Cárdenas, W. B.; Loo, Y. M.; Gale, M. Jr.; Hartman, A. L.; Kimberlin, C. R.; Martínez-Sobrido, L.; Saphire, E. O.; Basler, C. F. Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. In: J. Virol. 80 (2006) S. 5168–5178.

    Article  PubMed  CAS  Google Scholar 

  • Falzarano, D.; Krokhin, O.; Van Domselaar, G.; Wolf, K.; Seebach, J.; Schnittler, H. J.; Feldmann, H. Ebola sGP-the first viral glycoprotein shown to be C-mannosylated. In: Virology 368 (2007) S. 83–90.

    Article  PubMed  CAS  Google Scholar 

  • Groseth, A.; Feldmann, H.; Strong, J. E. The ecology of Ebola virus. In: Trends Microbiol. 15 (2007) S. 408–416.

    Article  PubMed  CAS  Google Scholar 

  • Hartman, A. L.; Bird, B. H.; Towner, J. S.; Antoniadou, Z. A.; Zaki, S. R.; Nichol, S. T. Inhibition of IRF-3 activation by VP35 is critical for the high level of virulence of ebola virus. In: J. Virol. 82 (2008) S. 2699–2704.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, M.; Mahanty S.; Bray, M.; Ahemd, R.; Rollin, P. E. Passive transfer of antibodies protects immunocompetent and immunodeficient mice against lethal Ebola virus infection without complete inhibition of viral replication. In: J. Virol. 75 (2001) S. 4649–4654.

    Article  PubMed  CAS  Google Scholar 

  • Hoenen, T.; Volchkov, V.; Kolesnikova, L.; Mittler, E.; Timmins, J.; Ottmann, M.; Reynard, O.; Becker, S.; Weissenhorn, W. VP40 octamers are essential for Ebola virus replication. In: J. Virol. 79 (2005) S. 1898–1905.

    Article  PubMed  CAS  Google Scholar 

  • Hoenen, T.; Groseth, A.; Falzarano, D.; Feldmann, H. Ebola virus: unravelling pathogenesis to combat a deadly disease. In: Trends Mol. Med. 12 (2006) S. 206–215.

    Article  PubMed  CAS  Google Scholar 

  • Hoenen, T.; Groseth, A.; Kolesnikova, L.; Theriault, S.; Ebihara, H.; Hartlieb, B.; Bamberg, S.; Feldmann, H.; Ströher, U.; Becker, S. Infection of naive target cells with virus-like particles: implications for the function of ebola virus VP24. In: J. Virol. 14 (2006) S. 7260–7264.

    Article  CAS  Google Scholar 

  • Kaletsky, R. L.; Simmons, G.; Bates, P. Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity. In: J. Virol. 81 (2007) S. 13378–13384.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, T.; Matsuoka, M.; Chang, T. H.; Bray, M.; Jones, S.; Tashiro, M.; Kato, A.; Ozato, K. Ebolavirus VP35 interacts with the cytoplasmic dynein light chain 8. In: J. Virol. 83 (2009) S. 6952–6956.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. E.; Fusco, M. L.; Hessell, A. J.; Oswald, W. B.; Burton, D. R.; Saphire, E. O. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. In: Nature 454 (2008) S. 177–182.

    Article  PubMed  CAS  Google Scholar 

  • Leung, D. W.; Ginder, N. D.; Fulton, D. B.; Nix, J.; Basler, C. F.; Honzatko, R. B.; Amarasinghe, G. K. Structure of the Ebola VP35 interferon inhibitory domain. In: Proc. Natl. Acad. Sci. USA 106 (2009) S. 411–416.

    Article  PubMed  Google Scholar 

  • Mohamadzadeh, M.; Chen, L.; Schmaljohn, A. L. How Ebola and Marburg viruses battle the immune system. In: Nat. Rev. Immunol. 7 (2007) S. 556–567.

    Article  PubMed  CAS  Google Scholar 

  • Martini, G. A.; Siegert, R. (Hrsg.) Marburg Virus Disease. Berlin (Springer) 1971.

    Google Scholar 

  • Reynard, O.; Borowiak, M.; Volchkova, V. A.; Delpeut, S.; Mateo, M.; Volchkov, V. E. Ebola virus glycoprotein GP masks both its own epitopes and the presence of cellular surface proteins. In: J. Virol. 83 (2009) S. 9596–9601.

    Article  PubMed  CAS  Google Scholar 

  • Volchkov, V. E.; Volchkova, V. A.; Mühlberger, E.; Kolesnikova, L. V.; Weik, M.; Dolnik, O.; Klenk, H.-D. Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. In: Science 291 (2001) S. 1965–1969.

    Article  PubMed  CAS  Google Scholar 

  • Wahl-Jensen, V. M.; Afanasieva, T. A.; Seebach, J.; Ströher, U.; Feldmann, H.; Schnittler, H. J. Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function. In: J. Virol. 79 (2005) S. 10442–10450.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z.-Y.; Duckers, H. J.; Sullivan, N. J.; Sanchez, A.; Nabel, E. G.; Nabel, G. J. Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. In: Nature Medicine 6 (2000) S. 886–889.

    Article  PubMed  CAS  Google Scholar 

  • Zampieri, C. A.; Sullivan, N. J.; Nabel, G. J. Immunopathology of highly virulent pathogens: insights from Ebola virus. In: Nat. Immunol. 8 (2007) S. 1159–1164.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Spektrum Akademischer Verlag Heidelberg

About this chapter

Cite this chapter

Modrow, S., Falke, D., Truyen, U., Schätzl, H. (2010). Viren mit einzelsträngigem, kontinuierlichem RNA-Genom in Negativstrangorientierung. In: Molekulare Virologie. Spektrum Akademischer Verlag. https://doi.org/10.1007/978-3-8274-2241-5_15

Download citation

Publish with us

Policies and ethics