Skip to main content

Modellbasierte Methoden der Reliabilitätsschätzung

  • Chapter
  • First Online:
Testtheorie und Fragebogenkonstruktion

Zusammenfassung

Die modellbasierten Methoden der Reliabilitätsschätzung verwenden die konfirmatorische Faktorenanalyse (CFA) zur Schätzung der Reliabilitätskoeffizienten und beruhen im Vergleich zu den klassischen Methoden auf realitätsnäheren, weniger strengen Annahmen. Ein weiterer Vorteil besteht darin, dass modellbasiert auch die Reliabilität mehrdimensionaler Tests geschätzt werden kann und dass bei allen Maßen korrelierte Messfehler berücksichtigt werden können. Anhand eines empirischen Beispiels werden verschiedene Omega-Koeffizienten zur Schätzung der Reliabilität ein- und mehrdimensionaler Tests erläutert. Diese Koeffizienten können als Punktschätzungen vorteilhaft durch Intervallschätzungen ergänzt werden. Für mehrdimensionale Tests werden Koeffizienten sowohl für den Gesamttest als auch für die Subskalen vorgestellt und Empfehlungen für die Praxis gegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Die Bezeichnung \(\omega^{*}\) (Omega-Stern) wurde von Kenneth Bollen auf der 13. Tagung der Fachgruppe „Methoden und Evaluation“ der Deutschen Gesellschaft für Psychologie in Tübingen im Jahr 2017 persönlich autorisiert.

Literatur

  • Altstötter-Gleich, C. & Bergemann, N. (2006). Testgüte einer deutschsprachigen Version der Mehrdimensionalen Perfektionismus Skala von Frost, Marten, Lahart und Rosenblate (MPS-F). Diagnostica, 52, 105–118.

    Google Scholar 

  • Amend, N. (2015). Who’s perfect? Pilotstudie zur Untersuchung potenzieller Korrelatedes Merkmals Perfektionismus. Unveröffentlichte Bachelorarbeit, Institut für Psychologie, Goethe Universität, Frankfurt am Main.

    Google Scholar 

  • Bandalos, D. L. (2002). The effects of item parceling on goodness-of-fit and parameter estimate bias in structural equation modeling. Structural Equation Modeling, 9, 78–102.

    Google Scholar 

  • Bandalos, D. L. (2008). Is parceling really necessary? A comparison of results from item parceling and categorical variable methodology. Structural Equation Modeling, 15, 211–240.

    Google Scholar 

  • Bandalos, D. L. (2018). Measurement Theory and Applications for the Social Sciences. New York, NY: The Guilford Press.

    Google Scholar 

  • Bentler, P. M. (2009). Alpha, dimension-free, and model-based internal consistency reliability. Psychometrika, 74, 137–143.

    PubMed  PubMed Central  Google Scholar 

  • Bieling, P. J., Israeli, A. L. & Anthony, M. M. (2004). Is perfectionism good, bad, or both? Examining models of the perfectionism construct. Personality and Individual Differences, 36, 1373–1385.

    Google Scholar 

  • Bollen, K. A. (1980). Issues in the comparative measurement of political democracy. American Sociological Review45, 370–390.

    Google Scholar 

  • Bollen, K. A. (1989). Structural Equations with Latent Variables. New York, NY: John Wiley and Sons.

    Google Scholar 

  • Chen, F. F., West, S. G. & Sousa, K. H. (2006). A comparison of bifactor and second-order models of quality of life. Multivariate Behavioral Research, 41, 189–225.

    PubMed  Google Scholar 

  • Cox, B. J., Enns, M. W. & Clara, I. P. (2002). The multidimensional structure of perfectionism in clinically distressed and college student samples. Psychological Assessment, 14, 365–373.

    PubMed  Google Scholar 

  • Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334.

    Google Scholar 

  • Eid, M. & Schmidt, K. (2014). Testtheorie und Testkonstruktion. Göttingen: Hogrefe.

    Google Scholar 

  • Eid, M., Notz, P., Steyer, R. & Schwenkmezger, P. (1994). Validating scales for the assessment of mood level and variability by latent state-trait analyses. Personality and Individual Differences, 16, 63–76.

    Google Scholar 

  • Eid, M., Nussbeck, F. W., Geiser, C., Cole, D. A., Gollwitzer, M. & Lischetzke, T. (2008). Structural equation modeling of multitrait-multimethod data: Different models for different types of methods. Psychological Methods, 13, 230–253.

    PubMed  Google Scholar 

  • Eid, M., Geiser, C. & Koch, T. (2016). Measuring method effects: From traditional to design-oriented approaches. Current Directions in Psychological Science, 25, 275–280.

    Google Scholar 

  • Eid, M., Geiser, C., Koch, T. & Heene, M. (2017a). Anomalous results in g-factor models: Explanations and alternatives. Psychological Methods, 22, 541–562.

    PubMed  Google Scholar 

  • Eid, M., Gollwitzer, M. & Schmitt, M. (2017b). Statistik und Forschungsmethoden (5. Aufl.). Weinheim: Beltz.

    Google Scholar 

  • Frost, R. O., Marten, P., Lahart, C. & Rosenblate, R. (1990). The dimensions of perfectionism. Cognitive Therapy and Research, 14, 449–468.

    Google Scholar 

  • Gäde, J. C., Schermelleh-Engel, K. & Klein, A. G. (2017). Disentangling the common variance of perfectionistic strivings and perfectionistic concerns: A bifactor model of perfectionism. Frontiers in Psychology, 8, 160. https://doi.org/10.3389/fpsyg.2017.00160

    Article  PubMed  PubMed Central  Google Scholar 

  • Geiser, C. & Lockhart, G. (2012). A comparison of four approaches to account for method effects in latent state-trait analyses. Psychological Methods, 17, 255–283.

    PubMed  PubMed Central  Google Scholar 

  • Geiser, C., Bishop, J. & Lockhart, G. (2015). Collapsing factors in multitrait-multimethod models: examining consequences of a mismatch between measurement design and model. Frontiers in Psychology, 6:946.

    PubMed  PubMed Central  Google Scholar 

  • Geldhof, G. J., Preacher, K. J. & Zyphur, M. J. (2014). Reliability estimation in a multilevel confirmatory factor analysis framework. Psychological Methods, 19, 72–91.

    PubMed  Google Scholar 

  • Gignac, G. E. (2008). Higher-order models versus direct hierarchical models: G as superordinate or breadth factor? Psychology Science, 50, 21–43.

    Google Scholar 

  • Green, S. B. & Yang, Y. (2009). Reliability of summed item scores using structural equation modeling: An alternative to coefficient alpha. Psychometrika, 74, 155–167.

    Google Scholar 

  • Guttman, L. (1945). A basis for analyzing test-retest reliability. Psychometrika, 10, 255–282.

    PubMed  Google Scholar 

  • Holzinger, K. J. & Swineford, F. (1937). The bi-factor method. Psychometrika, 2, 41–54.

    Google Scholar 

  • Jöreskog, K. G. (1971). Statistical analysis of sets of congeneric tests. Psychometrika, 36, 109–133.

    Google Scholar 

  • Kelley, K. & Pornprasertmanit, S. (2016). Confidence intervals for population reliability coefficients: Evaluation of methods, recommendations, and software for homogeneous composite measures. Psychological Methods, 21, 69–92.

    PubMed  Google Scholar 

  • Little, T. D., Rhemtulla, M., Gibson, K. & Schoemann, A. M. (2013). Why the items versus parcels controversy needn’t be one. Psychological Methods, 18, 285–300.

    PubMed  PubMed Central  Google Scholar 

  • McDonald, R. P. (1970). The theoretical foundations of principal factor analysis, canonical factor analysis, and alpha factor analysis. British Journal of Mathematical and Statistical Psychology, 23, 1–21.

    Google Scholar 

  • McDonald, R. P. (1978). A simple comprehensive model for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 31, 59–72.

    Google Scholar 

  • McDonald, R. P. (1999). Test theory: A unified treatment. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Muthén, L. K. & Muthén, B. O. (2017). Mplus User’s Guide (8th ed.). Los Angeles, CA: Muthén & Muthén.

    Google Scholar 

  • Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y. & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Psychological Methods, 88, 879–903.

    Google Scholar 

  • Podsakoff, P. M., MacKenzie, S. B. & Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. Annual Review of Psychology, 63, 539–569.

    PubMed  Google Scholar 

  • Rauch, W. A. & Moosbrugger, H. (2011). Klassische Testtheorie. Grundlagen und Erweiterungen für heterogene Tests und Mehrfacettenmodelle. In L. F. Hornke, M. Amelang & M. Kersting (Hrsg.), Enzyklopädie der Psychologie: Themenbereich B Methodologie und Methoden, Serie II Psychologische Diagnostik, Band 2, Methoden der psychologischen Diagnostik (S. 1–87). Göttingen: Hogrefe.

    Google Scholar 

  • Raykov, T. (1997). Estimation of composite reliability for congeneric measures. Applied Psychological Measurement, 21, 173–184.

    Google Scholar 

  • Raykov, T. (2002) Analytic estimation of standard error and confidence interval for scale reliability. Multivariate Behavioral Research, 37, 89–103.

    PubMed  Google Scholar 

  • Raykov, T. (2004). Point and interval estimation of reliability for multiple component measuring instruments via linear constraint covariance structure modeling. Structural Equation Modeling, 11, 452–483.

    Google Scholar 

  • Raykov, T. & Marcoulides, G. A. (2004). Using the delta method for approximate interval estimation of parameter functions in SEM. Structural Equation Modeling, 11, 621–637.

    Google Scholar 

  • Raykov, T. & Marcoulides, G. A. (2011). Psychometric Theory. New York: Routledge.

    Google Scholar 

  • Raykov, T. & Marcoulides, G. A. (2015). Scale reliability evaluation with heterogeneous populations. Educational and Psychological Measurement, 75, 146–156.

    PubMed  Google Scholar 

  • Raykov, T. & Marcoulides, G. A. (2016). Scale reliability evaluation under multiple assumption violations. Structural Equation Modeling, 23, 302–313.

    Google Scholar 

  • Raykov, T., Dimitrov, D. M. & Asparouhov, T. (2010). Evaluation of scale reliability with binary measures using latent variable modeling. Structural Equation Modeling, 17, 122–132.

    Google Scholar 

  • Reinecke, J. (2014). Strukturgleichungsmodelle in den Sozialwissenschaften (2. Aufl.). München: Oldenbourg Wissenschaftsverlag.

    Google Scholar 

  • Reise, S. P., Bonifay, W. E. & Haviland, M. G. (2013a). Scoring and modeling psychological measures in the presence of multidimensionality. Journal of Personality Assessment, 95, 129–140.

    PubMed  Google Scholar 

  • Reise, S. P., Scheines, R., Widaman, K. F. & Haviland, M. G. (2013b). Multidimensionality and structural coefficient bias in structural equation modeling: A bifactor perspective. Educational and Psychological Measurement, 73, 5–26.

    Google Scholar 

  • Revelle, W. & Condon, D. M. (2018). Reliability. In P. Irwing, T. Booth & D. Hughes (Eds.), The Wiley-Blackwell Handbook of Psychometric Testing. West Sussex, UK: Blackwell Publishing Ltd.

    Google Scholar 

  • Revelle, W. & Zinbarg, R. E. (2009). Coefficients alpha, beta, omega, and the glb: Comments on Sijtsma. Psychometrika, 74, 145–154.

    Google Scholar 

  • Rhemtulla, M., Brosseau-Liard, P. E. & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17, 354–373.

    PubMed  Google Scholar 

  • Rodriguez, A., Reise, S. P. & Haviland, M. G. (2016). Evaluating bifactor models: Calculating and interpreting statistical indices. Psychological Methods, 21, 137–150.

    PubMed  Google Scholar 

  • Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48, 1–36.

    Google Scholar 

  • Schermelleh-Engel, K., Moosbrugger, H. & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research-Online, 8, 23–74.

    Google Scholar 

  • Sijtsma, K. (2009). The use, the misuse, and the very limited usefulness of Cronbach’s alpha. Psychometrika, 74, 107–120.

    PubMed  Google Scholar 

  • Smith, M. M. & Saklofske, D. H. (2017). The structure of multidimensional perfectionism: Support for a bifactor model with a dominant general factor. Journal of Personality Assessment,99, 297–303.

    PubMed  Google Scholar 

  • Smits, I. A. M., Timmerman, M. E., Barelds, D. P. H. & Meijer, R. R. (2015). The Dutch Symptom Checklist-90-Revised: Is the use of the subscales justified? European Journal of Psychological Assessment, 31, 263–271.

    Google Scholar 

  • Sörbom, D. (1989). Model modification. Psychometrika, 54, 371–384.

    Google Scholar 

  • Steyer, R. & Eid, M. (2001). Messen und Testen (2. Aufl.). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Steyer, R., Mayer, A., Geiser, C. & Cole, D. A. (2015). A Theory of States and Traits – Revised. Annual Review of Clinical Psychology, 11, 71–98.

    PubMed  Google Scholar 

  • Stöber, J. (1995). Frost Multidimensional Perfectionism Scale-Deutsch (FMPS-D). Unveröff. Manuskript. Freie Universität Berlin, Institut für Psychologie.

    Google Scholar 

  • Stoeber, J. (2014). Perfectionism. In R. C. Eklund & G. Tenenbaum (Eds.), Encyclopedia of sport and exercise psychology (Vol. 2, pp. 527–530). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Stoeber, J. & Damian, L. (2014). The clinical perfectionism questionnaire: further evidence for two factors capturing perfectionistic strivings and perfectionistic concerns. Personality and Individual Differences, 61–62, 38–42.

    Google Scholar 

  • Werts, C. E., Linn, R. L. & Jöreskog, K. G. (1974). Intraclass reliability estimates: Testing structural assumptions. Educational and Psychological Measurement, 34, 25–33.

    Google Scholar 

  • Wolf, E. J., Harrington, K. M., Clark, S. L. & Miller, M. W. (2013). Sample size requirements for structural equation models: An evaluation of power, bias, and solution propriety. Educational and Psychological Measurement, 73, 913–934.

    Google Scholar 

  • Yang, Y. & Green, S. B. (2015). Evaluation of structural equation modeling estimates of reliability for scales with ordered categorical items. Methodology, 11, 23–34.

    Google Scholar 

  • Yang, Y. & Xia, Y. (2019). Categorical omega with small sample sizes via Bayesian estimation: an alternative to Frequentist estimators. Educational and Psychological Measurement, 79, 19–39.

    PubMed  Google Scholar 

  • Zinbarg, R. E., Revelle, W., Yovel, I. & Li, W. (2005). Cronbach’s α, Revelle’s β, and McDonald’s ω H: Their relations with each other and two alternative conceptualizations of reliability. Psychometrika, 70, 1–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Schermelleh-Engel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schermelleh-Engel, K., Gäde, J.C. (2020). Modellbasierte Methoden der Reliabilitätsschätzung. In: Moosbrugger, H., Kelava, A. (eds) Testtheorie und Fragebogenkonstruktion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61532-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61532-4_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61531-7

  • Online ISBN: 978-3-662-61532-4

  • eBook Packages: Psychology (German Language)

Publish with us

Policies and ethics