Skip to main content

Allergien und allergische Erkrankungen

  • Chapter
  • First Online:
Janeway Immunologie

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Murphy .

Appendices

Aufgaben

1 14.1 Richtig oder falsch

Nur TH2-Zellen können eine Signalkette auslösen, um bei B-Zellen einen Isotypwechsel zu IgE hervorzurufen.

1 14.2 Multiple Choice

Welcher der folgenden Faktoren hängt nicht mit einer genetisch bedingten Anfälligkeit für allergisches Asthma und atopische Ekzeme zusammen?

  1. A.

    β-Untereinheit von FcεRI

  2. B.

    GM-CSF

  3. C.

    IL-3

  4. D.

    IL-4

  5. E.

    IFN-γ

1 14.3 Multiple Choice

Verschiedene Faktoren beeinflussen die Anfälligkeit für allergische Erkrankungen. Welche der folgenden Aussagen ist falsch?

  1. A.

    Umweltfaktoren tragen selten zur Entwicklung einer allergischen Krankheit bei.

  2. B.

    Die Häufigkeit von Atopien nimmt in den Industrieländern stetig zu.

  3. C.

    Personen mit den Allelvarianten GSTP1 und GSTM1 zeigen eine größere Anfälligkeit für eine erhöhte Überaktivität der Atemwege.

  4. D.

    Kinder im Alter von unter sechs Monaten, die in Kinderkrippen mit anderen Kindern in Kontakt kommen, sind anscheinend teilweise vor Asthma geschützt.

1 14.4 Richtig oder falsch

IgE kommt wie andere Antikörper vor allem in den Körperflüssigkeiten vor.

1 14.5 Bitte zuordnen

Welcher der folgenden Faktoren wird von welcher Aussage am besten beschrieben?

A.

Prostaglandin und Thromboxan _____

i.

Erzeugung durch den Lipoxygenaseweg

B.

Leukotriene _____

ii.

Hemmung der Cyclooxygenaseaktivität für die Umsetzung der Arachidonsäure

C.

TNF-α _____

iii.

Erzeugung durch den Cyclooxygenaseweg

D.

Histamin _____

iv.

Erzeugung in großen Mengen durch Mastzellen nach ihrer Aktivierung

E.

entzündungshemmende nichtsteroidale Wirkstoffe _____

v.

Verstärkung der Antigenpräsentation bei dendritischen Zellen durch Bindung an den H1-Rezeptor

1 14.6 Multiple Choice

Welche der folgenden Aussagen trifft zu?

  1. A.

    Mastzellen der Bindegewebe sind nicht am Auslösen eines anaphylaktischen Schocks beteiligt.

  2. B.

    Patienten, die an einem anaphylaktischen Schock leiden, sollten kein Adrenalin erhalten, da sich deren Zustand dadurch noch verschlechtern könnte.

  3. C.

    Bei einem anaphylaktischen Schock geht die Durchlässigkeit von Blutgefäßen verloren und der hohe Blutdruck führt schließlich zum Tod.

  4. D.

    Penicillin kann körpereigene Proteine verändern, sodass es bei einigen Patienten zu einer Immunantwort mit IgE-Produktion kommt, die bei einem erneuten Kontakt mit dem Wirkstoff eine Anaphylaxie hervorrufen kann.

1 14.7 Multiple Choice

Hypersensitivitätsreaktionen können durch die Ablagerung von Immunkomplexen pathologische Auswirkungen haben. Welcher der folgenden Mechanismen ist dafür verantwortlich, dass Immunkomplexe pathogen sein können? Mehr als eine Antwort ist möglich.

  1. A.

    Immunkomplexe lagern sich an den Wänden von Blutgefäßen ab.

  2. B.

    IgE an den Oberflächen von Mastzellen und Basophilen wird quervernetzt, was zur Aktivierung der Zellen führt.

  3. C.

    Die Vernetzung des Fc-Rezeptors führt zur Aktivierung von Leukocyten und zu einer Schädigung des Gewebes.

  4. D.

    Das Komplementsystem wird aktiviert, was zur Produktion des Anaphylatoxins C5a führt.

  5. E.

    CD8+-T-Zellen werden zur Freisetzung von IL-4 angeregt.

1 14.8 Bitte ergänzen: Bei einer allergischen Reaktion der Haut unterscheidet man zwei Phasen

_______ und _______. Die erste Phase ist gekennzeichnet durch die Aktivierung von T-Zellen durch antigenpräsentierende Zellen der Haut, die man mit _______ bezeichnet, während in der zweiten Phase nach einem erneutem Antigenkontakt Chemokine und Cytokine durch _______ freigesetzt werden.

1 14.9 Bitte zuordnen

Welche der folgenden allergischen Reaktionen gehört zu welchem Immunprozess?

A.

Arthus-Reaktion _____

i.

Bildung von lokalen Immunkomplexen durch IgG-Antikörper, die gegen ein Antigen gerichtet sind, für das eine Person vorher sensibilisiert wurde

B.

Ausschlag durch den Giftsumach _____

ii.

systemische Reaktion auf eine Infektion mit großen Mengen an fremdem Antigen, die vor allem von IgG abhängig ist

C.

Serumkrankheit _____

iii.

Form einer allergischen Kontaktdermatitis, die durch lipidlösliche Substanzen hervorgerufen wird, welche zelluläre Proteine verändern; vor allem durch CD8+-T-Zellen befördert

D.

Nickelallergie _____

iv.

vor allem durch T-Zellen beförderte zelluläre Hypersensitivität; kann auch bei Bindung von TLR-4 eine Entzündungsreaktion hervorrufen

1 14.10 Multiple Choice

Welche der folgenden Aussagen ist falsch?

  1. A.

    Am Tuberkulintest lässt sich eine Hypersensitivitätsreaktion vom verzögerten Typ besonders gut veranschaulichen.

  2. B.

    TH1-Zellen sind nicht direkt an Hypersensitivitätsreaktionen vom verzögerten Typ beteiligt.

  3. C.

    Eine allergische Kontaktdermatitis kann von CD4- oder CD8-T-Zellen vermittelt werden.

  4. D.

    Mäuse mit einem Defekt der B-Zellen oder des Komplementsystems zeigen schwächere Hypersensitivitätsreaktionen.

1 14.11 Kurze Antwort

Warum führt man eine Endotypisierung von Asthma durch?

1 14.12 Richtig oder falsch

Allergisches Asthma kann durch andere Faktoren als durch das ursprüngliche spezifische Antigen ausgelöst werden.

Literatur

1.1 Allgemeine Literatur

  • ■ Fahy, J.V.: Type 2 inflammation in asthma – present in most, absent in many. Nat. Rev. Immunol. 2015, 15:57–65.

  • ■ Holgate, S.T.: Innate and adaptive immune responses in asthma. Nat. Med. 2012, 18:673–683.

  • ■ Johansson, S.G., Bieber, T., Dahl, R., Friedmann, P.S., Lanier, B.Q., Lockey, R.F., Motala, C., Ortega Martell, J.A., Platts-Mills, T.A., Ring, J., et al.: Revised nomenclature for allergy for global use: report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J. Allergy Clin. Immunol. 2004, 113:832–836.

  • ■ Kay, A.B.: Allergy and allergic diseases. First of two parts. N. Engl. J. Med. 2001, 344:30–37.

  • ■ Kay, A.B.: Allergy and allergic diseases. Second of two parts. N. Engl. J. Med. 2001, 344:109–113.

  • ■ Valenta, R., Hochwallner, H., Linhart, B., and Pahr, S.: Food Allergies: the basics. Gastroenterology 2015, 148:1120–1131.

1.2 Literatur zu den einzelnen Abschnitten

1.2.1 Abschnitt 14.1.1

  • ■ Akuthota, P., Wang, H., and Weller, P.F.: Eosinophils as antigen-presenting cells in allergic upper airway disease. Curr. Opin. Allergy Clin. Immunol. 2010, 10:14–19.

  • ■ Berkowska, M.A., Heeringa, J.J., Hajdarbegovic, E., van der Burg, M., Thio, H.B., van Gahen, P.M., Boon, L., Orfao, A., van Dongen, J.J.M, and van Zelm, M.C.: Human IgE+B cells are derived from T cell-dependent and T cell-independent pathways. J. Allergy Clin. Immunol. 2014, 134:688–697.

  • ■ Bieber T.: The pro- and anti-inflammatory properties of human antigen-presenting cells expressing the high affinity receptor for IgE (FcεRI). Immunobiology 2007, 212:499–503.

  • ■ Gold, M.J., Antignano, F., Halim, T.Y.F., Hirota, J.A., Blanchet, M.-R., Zaph, C., Takei, F., and McNagny, K.M.: Group 2 innate lymphoid cells facilitate sensitization to local, but not systemic, TH2-inducing allergen exposures. J. Allergy Clin. Immunol. 2014, 133:1142–1148.

  • ■ He, J.S., Narayanan, S., Subramaniam, S., Ho, W.Q., Lafaille, J.J., and Curotto de Lafaille, M.A.: Biology of IgE production: IgE cell differentiation and the memory of IgE responses. Curr. Opin. Microbiol. Immunol. 2015, 388:1–19.

  • ■ Kumar, V.: Innate lymphoid cells: new paradigm in immunology of inflammation. Immunol. Lett. 2014, 157:23–37.

  • ■ Mikhak, Z. and Luster, A.D.: The emergence of basophils as antigen-presenting cells in Th2 inflammatory responses. J. Mol. Cell Biol. 2009, 1:69–71.

  • ■ Mirchandani, A.S., Salmond, R.J., and Liew, F.Y.: Interleukin-33 and the function of innate lymphoid cells. Trends Immunol. 2012, 33:389–396.

  • ■ Platzer, B., Baker, K., Vera, M.P., Singer, K., Panduro, M., Lexmond, W.S., Turner, D., Vargas, S. O., Kinet, J.-P., Maurer, D., et al.: Dendritic cell-bound IgE functions to restrain allergic inflammation at mucosal sites. Mucosal Immunol. 2015, 8:516–532.

  • ■ Spencer, L.A. and Weller, P.F.: Eosinophils and Th2 immunity: contemporary insights. Immunol. Cell Biol. 2010, 88:250–256.

  • ■ Wu, L.C. and Zarrin, A.A.: The production and regulation of IgE by the immune system. Nat. Rev. Immunol. 2014, 14:247–259.

1.2.2 Abschnitt 14.1.2

  • ■ Alvarez, D., Arkinson, J.L., Sun, J., Fattouh, R., Walker, T., and Jordana, M.: TH2 differentiation in distinct lymph nodes influences the site of mucosal TH2 immune-inflammatory responses. J. Immunol. 2007, 179:3287–3296.

  • ■ Brown, S.J. and McLean, W.H.I.: One remarkable molecule: Filaggrin. J. Invest. Dermatol. 2012, 132:751–762.

  • ■ Grunstein, M.M., Veler, H., Shan, X., Larson, J., Grunstein, J.S., and Chuang, S.: Proasthmatic effects and mechanisms of action of the dust mite allergen, Der p 1, in airway smooth muscle. J. Allergy Clin. Immunol. 2005, 116:94–101.

  • ■ Lambrecht, B.N. and Hammad, H.: Allergens and the airway epithelium response: gateway to allergic sensitization. J. Allergy Clin. Immunol. 2014, 134:499–507.

  • ■ Nordlee, J.A., Taylor, S.L., Townsend, J.A., Thomas, L.A., and Bush, R.K.: Identification of a Brazil-nut allergen in transgenic soybeans. N. Engl. J. Med. 1996, 334:688–692.

  • ■ Papzian, D., Wagtmann, V.R., Hansen, S., and Wurtzen, P.A.: Direct contact between dendritic cells and bronchial epithelial cells inhibits T cell recall responses towards mite and pollen allergen extracts in vitro. Clin. Exp. Immunol. 2015, 181:207–218.

  • ■ Sehgal, N., Custovic, A., and Woodcock, A.: Potential roles in rhinitis for protease and other enzymatic activities of allergens. Curr. Allergy Asthma Rep. 2005, 5:221–226.

  • ■ Sprecher, E., Tesfaye-Kedjela, A., Ratajczak, P., Bergman, R., and Richard, G.: Deleterious mutations in SPINK5 in a patient with congenital ichthyosiform erythroderma: molecular testing as a helpful diagnostic tool for Netherton syndrome. Clin. Exp. Dermatol. 2004, 29:513–517.

  • ■ Wan, H., Winton, H.L., Soeller, C., Tovey, E.R., Gruenert, D.C., Thompson, P.J., Stewart, G.A., Taylor, G.W., Garrod, D.R., Cannell, M.B., et al.: Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J. Clin. Invest. 1999, 104:123–133.

1.2.3 Abschnitt 14.1.3

  • ■ Cookson, W.: The immunogenetics of asthma and eczema: a new focus on the epithelium. Nat. Rev. Immunol. 2004, 4:978–988.

  • ■ Illing, P.R., Vivian, J.P., Purcell, A.W., Rossjohn, J., and McCluskey J.: Human leukocyte antigen-associated drug hypersensitivity. Curr. Opin. Immunol. 2013, 25:81–89.

  • ■ Li, Z., Hawkins, G.A., Ampleford, E.J., Moore, W.C., Li, H., Hastie, A.T., Howard, T.D., Boushey H.A., Busse, W.W., Calhoun, W.J., et al.: Genome-wide association study identifies TH1 pathway genes associated with lung function in asthmatic patients. J. Allergy Clin. Immunol. 2013, 132:313–320.

  • ■ Peiser, M.: Role of TH17 cells in skin inflammation of allergic contact dermatitis. Clin. Dev. Immunol. 2013, https://doi.org/10.1155/2013/261037.

  • ■ Thyssen, J.P., Carlsen, B.C., Menné, T., Linneberg, A., Nielsen, N.H., Meldgaard, M., Szecsi, P.B., Stender, S., and Johansen, J.D.: Filaggrin null-mutations increase the risk and persistence of hand eczema in subjects with atopic dermatitis: results from a general population study. Br. J. Dermatol. 2010, 163:115–120.

  • ■ Van den Oord, R.A.H.M., and Sheikh, A.: Filaggrin gene defects and risk of developing allergic sensitisation and allergic disorders: systematic review and meta-analysis. BMJ 2009, 339:b2433.

  • ■ Van Eerdewegh, P., Little, R.D., Dupuis, J., Del Mastro, R.G., Falls, K., Simon, J., Torrey, D., Pandit, S., McKenny, J., Braunschweiger, K., et al.: Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 2002, 418:426–430.

  • ■ Weiss, S.T., Raby, B.A., and Rogers, A.: Asthma genetics and genomics. Curr. Opin. Genet. Dev. 2009, 19:279–282.

1.2.4 Abschnitt 14.1.4

  • ■ Culley, F.J., Pollott, J., and Openshaw, P.J.: Age at first viral infection determines the pattern of T cell-mediated disease during reinfection in adulthood. J. Exp. Med. 2002, 196:1381–1386.

  • ■ Deshane, J., Zmijewski, J.W., Luther, R., Gaggar, A., Deshane, R., Lai, J.F., Xu, X., Spell, M., Estell, K., Weaver, C.T., et al.: Free radical-producing myeloid-derived regulatory cells: potent activators and suppressors of lung inflammation and airway hyperresponsiveness. Mucosal Immunol. 2011, 4:503–518.

  • ■ Fuchs, C. and von Mutius, E.: Prenatal and childhood infections: implications for the development and treatment of childhood asthma. Lancet Respir. Med. 2013, 1:743–754.

  • ■ Harb, H. and Renz, H.: Update on epigenetics in allergic disease. J. Allergy Clin. Immunol. 2015, 135:15–24.

  • ■ Huang, L., Baban, B., Johnson III, B.A. and Mellor, A.L.: Dendritic cells, indoleamine 2,3 dioxygenase and acquired immune privilege. Int. Rev. Immunol. 2010, 29:133–155.

  • ■ Meyers, D.A., Bleecker, E.R., Holloway, J.W., and Holgate, S.T.: Asthma genetics and personalized medicine. Lancet Respir. Med. 2014, 2:405–415.

  • ■ Minelli, C., Granell, R., Newson, R., Rose-Zerilli, M.-J., Torrent, M., Ring, S.M., Holloway, J.W., Shaheen, S.O., and Henderson, J.A.: Glutathione-S-transferase genes and asthma phenotypes: a Human Genome Epidemiology (HuGE) systematic review and meta-analysis including unpublished data. Int. J. Epidemiol. 2010, 39:539–562.

  • ■ Morahan, G., Huang, D., Wu, M., Holt, B.J., White, G.P., Kendall, G.E., Sly, P.D., and Holt, P.G.: Association of IL12B promoter polymorphism with severity of atopic and non-atopic asthma in children. Lancet 2002, 360:455–459.

  • ■ Romieu, I., Ramirez-Aguilar, M., Sienra-Monge, J.J., Moreno-Macías, H., del Rio-Navarro, B.E., David, G., Marzec, J., Hernández-Avila, M., and London, S.: GSTM1 and GSTP1 and respiratory health in asthmatic children exposed to ozone. Eur. Respir. J. 2006, 28:953–959.

  • ■ Saxon, A. and Diaz-Sanchez, D.: Air pollution and allergy: you are what you breathe. Nat. Immunol. 2005, 6:223–226.

  • ■ von Mutius, E.: Allergies, infections and the hygiene hypothesis – the epidemiologic evidence. Immunobiology 2007, 212:433–439.

1.2.5 Abschnitt 14.1.5

  • ■ Bohm, L., Meyer-Martin, H., Reuter, S., Finotto, S., Klein, M., Schild, H., Schmitt, E., Bopp, T., and Taube, C.: IL-10 and regulatory T cells cooperate in allergen-specific immunotherapy to ameliorate allergic asthma. J. Immunol. 2015, 194:887–897.

  • ■ Duan, W. and Croft, M.: Control of regulatory T cells and airway tolerance by lung macrophages and dendritic cells. Ann. Am. Thorac. Soc. 2014, 11 Suppl 5:S305–S313.

  • ■ Hawrylowicz, C.M.: Regulatory T cells and IL-10 in allergic inflammation. J. Exp. Med. 2005, 202:1459–1463.

  • ■ Lin, W., Truong, N., Grossman, W.J., Haribhai, D., Williams, C.B., Wang, J., Martin, M.G., and Chatila, T.A.: Allergic dysregulation and hyperimmunoglobulinemia E in Foxp3 mutant mice. J. Allergy Clin. Immunol. 2005, 116:1106–1115.

  • ■ Mellor, A.L. and Munn, D.H.: IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 2004, 4:762–774.

1.2.6 Abschnitt 14.2.1

  • ■ Conner, E.R. and Saini, S.S.: The immunoglobulin E receptor: expression and regulation. Curr. Allergy Asthma Rep. 2005, 5:191–196.

  • ■ Gilfillan, A.M. and Tkaczyk, C.: Integrated signalling pathways for mast-cell activation. Nat. Rev. Immunol. 2006, 6:218–230.

  • ■ Mcglashan Jr., D.W.: IgE-dependent signalling as a therapeutic target for allergies. Trends Pharmacol. Sci. 2012, 33:502–509.

  • ■ Suzuki, R., Scheffel, J., and Rivera, J.: New insights on the signalling and function of the high-affinity receptor for IgE. Curr. Top. Microbiol.Immunol. 2015, 388:63–90.

1.2.7 Abschnitt 14.2.2

  • ■ Eckman, J.A., Sterba, P.M., Kelly, D., Alexander, V., Liu, M.C., Bochner, B.S., MacGlashan, D.W., and Saini, S.S.: Effects of omalizumab on basophil and mast cell responses using an intranasal cat allergen challenge. J. Allergy Clin. Immunol. 2010, 125:889–895.

  • ■ Galli, S.J., Nakae, S., and Tsai, M.: Mast cells in the development of adaptive immune responses. Nat. Immunol. 2005, 6:135–142.

  • ■ Gonzalez-Espinosa, C., Odom, S., Olivera, A., Hobson, J.P., Martinez, M. E., Oliveira-Dos-Santos, A., Barra, L., Spiegel, S., Penninger, J.M., and Rivera, J.: Preferential signaling and induction of allergy-promoting lymphokines upon weak stimulation of the high affinity IgE receptor on mast cells. J. Exp. Med. 2003, 197:1453–1465.

  • ■ Islam, S.A. and Luster, A.D.: T cell homing to epithelial barriers in allergic disease. Nat. Med. 2012, 18:705–715.

  • ■ Kitamura, Y., Oboki, K., and Ito, A.: Development of mast cells. Proc. Jpn Acad, Ser. B 2007, 83:164–174.

  • ■ Kulka, M., Sheen, C.H., Tancowny, B.P., Grammer, L.C., and Schleimer, R.P.: Neuropeptides activate human mast cell degranulation and chemokine production. Immunology 2007, 123:398–410.

  • ■ Metcalfe, D.: Mast cells and mastocytosis. Blood 2007, 112:946–956.

  • ■ Schwartz, L.B.: Diagnostic value of tryptase in anaphylaxis and mastocytosis. Immunol. Allergy Clin. N. Am. 2006, 26:451–463.

  • ■ Smuda, C. and Bryce, P.J.: New development in the use of histamine and histamine receptors. Curr. Allergy Asthma Rep. 2011, 11:94–100.

  • ■ Taube, C., Miyahara, N., Ott, V., Swanson, B., Takeda, K., Loader, J., Shultz, L.D., Tager, A.M., Luster, A.D., Dakhama, A., et al.: The leukotriene B4 receptor (BLT1) is required for effector CD8+ T cell-mediated, mast cell-dependent airway hyperresponsiveness. J. Immunol. 2006, 176:3157–3164.

  • ■ Thurmond, R.L.: The histamine H4 receptor: from orphan to the clinic. Front. Pharmacol. 2015, 6:65.

1.2.8 Abschnitt 14.2.3

  • ■ Blanchard, C. and Rothenberg, M. E.: Biology of the eosinophil. Adv. Immunol. 2009, 101:81–121.

  • ■ Hogan, S.P., Rosenberg, H.F., Moqbel, R., Phipps, S., Foster, P.S., Lacy, P., Kay, A.B., and Rothenberg, M. E.: Eosinophils: biological properties and role in health and disease. Clin. Exp. Allergy 2008, 38:709–750.

  • ■ Lee, J.J., Jacobsen, E.A., McGarry, M.P., Schleimer, R.P., and Lee, N.A.: Eosinophils in health and disease: the LIAR hypothesis. Clin. Exp. Allergy 2010, 40:563–575.

  • ■ MacGlashan Jr., D., Gauvreau, G., and Schroeder, J.T.: Basophils in airway disease. Curr. Allergy Asthma Rep. 2002, 2:126–132.

  • ■ Ohnmacht, C., Schwartz, C., Panzer, M., Schiedewitz, I., Naumann, R., and Voehringer, D.: Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity 2010, 33:364–374.

  • ■ Schwartz, C., Eberle, J.U., and Voehringer, D.: Basophils in inflammation. Eur J. Pharmacol. 2015, https://doi.org/10.1016/j.ejphar.2015.04.049.

  • ■ Tomankova, T., Kriegova, E., and Liu, M.: Chemokine receptors and their therapeutic opportunities in diseased lung: far beyond leukocyte trafficking. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015, 308:L603–L618.

1.2.9 Abschnitt 14.2.4

  • ■ deShazo, R.D. and Kemp, S.F.: Allergic reactions to drugs and biologic agents. JAMA 1997, 278:1895–1906.

  • ■ Nabe, T., Ikedo A., Hosokawa, F., Kishima, M., Fujii, M., Mizutani, N., Yoshino, S., Ishihara, K., Akiba, S., and Chaplin, D.D.: Regulatory role of antigen-induced interleukin-10, produced by CD4(+) T cells, in airway neutrophilia in a murine model for asthma. Eur. J. Pharmacol. 2012, 677:154–162.

  • ■ Pawankar, R., Hayashi, M., Yamanishi, S., and Igarashi, T.: The paradigm of cytokine networks in allergic airway inflammation. Curr. Opin. Allergy Clin. Immunol. 2015, 15:27–32.

  • ■ Taube, C., Duez, C., Cui, Z.H., Takeda, K., Rha, Y.H., Park, J.W., Balhorn, A., Donaldson, D.D., Dakhama, A., and Gelfand, E.W.: The role of IL-13 in established allergic airway disease. J. Immunol. 2002, 169:6482–6489.

1.2.10 Abschnitt 14.2.5

  • ■ Fernandez, M., Warbrick, E. V., Blanca, M., and Coleman, J.W.: Activation and hapten inhibition of mast cells sensitized with monoclonal IgE anti-penicillin antibodies: evidence for two-site recognition of the penicillin derived determinant. Eur. J. Immunol. 1995, 25:2486–2491.

  • ■ Finkelman, F.D., Rothenberg, M. E., Brandt, E.B., Morris, S.C., and Strait, R.T.: Molecular mechanisms of anaphylaxis: lessons from studies with murine models. J. Allergy Clin. Immunol. 2005, 115:449–457.

  • ■ Golden, D.B.: Anaphylaxis to insect stings. Immunol. Allergy Clin. North Am. 2015, 35:287–302.

  • ■ Kemp, S.F., Lockey, R.F., Wolf, B.L., and Lieberman, P.: Anaphylaxis. A review of 266 cases. Arch. Intern. Med. 1995, 155:1749–1754.

  • ■ Sicherer, S.H. and Leung, D.Y.: Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects in 2014. J. Allergy Clin. Immunol. 2015, 35:357–367.

  • ■ Weltzien, H.U. and Padovan, E.: Molecular features of penicillin allergy. J. Invest. Dermatol. 1998, 110:203–206.

1.2.11 Abschnitt 14.2.6

  • ■ Bousquet, J., Jeffery, P.K., Busse, W.W., Johnson, M., and Vignola, A.M.: Asthma. From bronchoconstriction to airways inflammation and remodeling. Am. J. Respir. Crit. Care Med. 2000, 161:1720–1745.

  • ■ Boxall, C., Holgate, S.T., and Davies, D.E.: The contribution of transforming growth factor-β and epidermal growth factor signalling to airway remodelling in chronic asthma. Eur. Respir. J. 2006, 27:208–229.

  • ■ Dakhama, A., Park, J.W., Taube, C., Joetham, A., Balhorn, A., Miyahara, N., Takeda, K., and Gelfand, E.W.: The enhancement or prevention of airway hyperresponsiveness during reinfection with respiratory syncytial virus is critically dependent on the age at first infection and IL-13 production. J. Immunol. 2005, 175:1876–1883.

  • ■ Finotto, S., Neurath, M.F., Glickman, J.N., Qin, S., Lehr, H.A., Green, F.H., Ackerman, K., Haley, K., Galle, P.R., Szabo, S.J., et al.: Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 2002, 295:336–338.

  • ■ George, B.J., Reif, D.M., Gallagher, J.E., Williams-DeVane, C.R., Heidenfelder, B.L., Hudgens, E.E., Jones, W., Neas, L., Cohen Hubal, E.A., and Edwards, S.W.: Data-driven asthma endotypes defined from blood biomarker and gene expression data. PLoS ONE 2015, 10:e0117445.

  • ■ Gour, N. and Wills-Karp, M.: IL-4 and IL-13 signaling in allergic airway disease. Cytokine 2015, 75:68–78.

  • ■ Haselden, B.M., Kay, A.B., and Larche, M.: Immunoglobulin E-independent major histocompatibility complex-restricted T cell peptide epitope-induced late asthmatic reactions. J. Exp. Med. 1999, 189:1885–1894.

  • ■ Kuperman, D.A., Huang, X., Koth, L.L., Chang, G.H., Dolganov, G.M., Zhu, Z., Elias, J.A., Sheppard, D., and Erle, D.J.: Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat. Med. 2002, 8:885–889.

  • ■ Lambrecht, B.N. and Hammad, H.: The role of dendritic and epithelial cells as master regulators of allergic airway inflammation. Lancet 2010, 376:835–843.

  • ■ Lloyd, C.M. and Hawrylowicz, C.M.: Regulatory T cells in asthma. Immunity 2009, 31:438–449.

  • ■ Lotvall, J., Akdis, C.A., Bacharier, L.B., Bjermer, L., Casale, T.B., Custovic, A., Lemanske Jr., R.F., Wardlaw, A.J., Wenzel, S.E., and Greenberger, P.A.: Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J. Allergy Clin. Immunol. 2011, 127:355–360.

  • ■ Meyer, E.H., DeKruyff, R.H., and Umetsu, D.T.: T cells and NKT cells in the pathogenesis of asthma. Annu. Rev. Med. 2008, 59:281–292.

  • ■ Newcomb, D.C. and Peebles Jr., R.S.: Th17-mediated inflammation in asthma. Curr. Opin. Immunol. 2013, 25:755–760.

  • ■ Peebles Jr., R.S.: The emergence of group 2 innate lymphoid cells in human disease. J. Leukoc. Biol. 2015, 97:469–475.

  • ■ Robinson, D.S.: Regulatory T cells and asthma. Clin. Exp. Allergy 2009, 39:1314–1323.

  • ■ Yan, X., Chu, J.-H., Gomez, J., Koenigs, M., Holm, C., He, X., Perez, M.F., Zhao, H., Mane, S., Martinez, F.D., et al.: Non-invasive analysis of the sputum transcriptome discriminates clinical phenotypes of asthma. Am. J. Respir. Crit. Care Med. 2015, 191:1116–1125.

1.2.12 Abschnitt 14.2.7

  • ■ Du Toit, G., Robert, G., Sayre, P.H., Bahnson, H.T., Radulovic, S., Santos, A.D., Brough, H.A., Phippard, D., Basting, M., Feeney, M., et al.: Randomized trial of peanut consumption in infants at risk for peanut allergy. N. Engl. J. Med. 2015, 372:803–813.

  • ■ Lee, L.A. and Burks, A.W.: Food allergies: prevalence, molecular characterization, and treatment/prevention strategies. Annu. Rev. Nutr. 2006, 26:539–565.

1.2.13 Abschnitt 14.2.8

  • ■ Akdis, C.A. and Akdis, M.: Mechanisms of allergen-specific immunotherapy and immune tolerance to allergens. World Allergy Organ. J. 2015, 8:17.

  • ■ Bryan, S.A., O’Connor, B.J., Matti, S., Leckie, M.J., Kanabar, V., Khan, J., Warrington, S.J., Renzetti, L., Rames, A., Bock, J.A., et al.: Effects of recombinant human interleukin-12 on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 2000, 356:2149–2153.

  • ■ Dunn, R.M. and Wechsler, M. E.: Anti-interleukin therapy in asthma. Clin. Pharmacol. Ther. 2015, 97:55–65.

  • ■ Haldar, P., Brightling, C.E., Hargadon, B., Gupta, S., Monteiro, W., Sousa, A., Marshall, R.P., Bradding, P., Green, R.H., Wardlaw A.J., et al.: Mepolizumab and exacerbations of refractory eosinophilic asthma. N. Engl. J. Med. 2009, 360:973–984.

  • ■ Lai, T., Wang, S., Xu, Z., Zhang, C., Zhao, Y., Hu, Y., Cao, C., Ying, S., Chen, Z., Li, W., et al.: Long-term efficacy and safety of omalizumab in patients with persistent uncontrolled allergic asthma: a systematic review and meta-analysis. Sci. Rep. 2015, 5:8191.

  • ■ Larche, M.: Mechanisms of peptide immunotherapy in allergic airways disease. Ann. Am. Thorac. Soc. 2014, 11:S292–S296.

  • ■ Nair, P., Pizzichini, M.M.M., Kjarsgaard, M., Inman, M.D., Efthimiadis, A., Pizzichini, E., Hargreave, F.E., and O’Byrne, P.M.: Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N. Engl. J. Med. 2009, 360:985–993.

  • ■ Peters-Golden, M. and Henderson, Jr., W.R.: The role of leukotrienes in allergic rhinitis. Ann. Allergy Asthma Immunol. 2005, 94:609–618.

  • ■ Roberts, G., Hurley, C., Turcanu, V., and Lack, G.: Grass pollen immunotherapy as an effective therapy for childhood seasonal allergic asthma. J. Allergy Clin. Immunol. 2006, 117:263–268.

  • ■ Shamji, M.H. and Durham, S.R.: Mechanisms of immunotherapy to aeroallergens. Clin. Exp.. Allergy 2011, 41:1235–1246.

  • ■ Zhu, D., Kepley, C.L., Zhang, K., Terada, T., Yamada, T., and Saxon, A.: A chimeric human–cat fusion protein blocks cat-induced allergy. Nat. Med. 2005, 11:446–449.

1.2.14 Abschnitt 14.3.1

  • ■ Arndt, P.A.: Drug-induced immune hemolytic anemia: the last 30 years of changes. Immunohematology 2014, 30:44–54.

  • ■ Greinacher, A., Potzsch, B., Amiral, J., Dummel, V., Eichner, A., and Mueller Eckhardt, C.: Heparin-associated thrombocytopenia: isolation of the antibody and characterization of a multimolecular PF4–heparin complex as the major antigen. Thromb. Haemost. 1994, 71:247–251.

  • ■ Semple, J.W. and Freedman, J.: Autoimmune pathogenesis and autoimmune hemolytic anemia. Semin. Hematol. 2005, 42:122–130.

1.2.15 Abschnitt 14.3.2

  • ■ Bielory, L., Gascon, P., Lawley, T.J., Young, N.S., and Frank, M.M.: Human serum sickness: a prospective analysis of 35 patients treated with equine anti-thymocyte globulin for bone marrow failure. Medicine (Baltimore) 1988, 67:40–57.

  • ■ Davies, K. A., Mathieson, P., Winearls, C.G., Rees, A.J., and Walport, M.J.: Serum sickness and acute renal failure after streptokinase therapy for myocardial infarction. Clin. Exp. Immunol. 1990, 80:83–88.

  • ■ Hansel, T.T., Kropshofer, H., Singer, T., Mitchell, J.A., and George, A.J.: The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discov. 2010, 9:325–338.

  • ■ Schifferli, J.A., Ng, Y.C., and Peters, D.K.: The role of complement and its receptor in the elimination of immune complexes. N. Engl. J. Med. 1986, 315:488–495.

  • ■ Schmidt, R.E. and Gessner, J.E.: Fc receptors and their interaction with complement in autoimmunity. Immunol. Lett. 2005, 100:56–67.

  • ■ Skokowa, J., Ali, S.R., Felda, O., Kumar, V., Konrad, S., Shushakova, N., Schmidt, R.E., Piekorz, R.P., Nurnberg, B., Spicher, K., et al.: Macrophages induce the inflammatory response in the pulmonary Arthus reaction through Gαi2 activation that controls C5aR and Fc receptor cooperation. J. Immunol. 2005, 174:3041–3050.

1.2.16 Abschnitt 14.3.3

  • ■ Fyhrquist, N., Lehto, E., and Lauerma, A.: New findings in allergic contact dermatitis. Curr. Opin. Allergy Clin. Immunol. 2014, 14:430–435.

  • ■ Kalish, R.S., Wood, J.A., and LaPorte, A.: Processing of urushiol (poison ivy) hapten by both endogenous and exogenous pathways for presentation to T cells in vitro. J. Clin. Invest. 1994, 93:2039–2047.

  • ■ Mark, B.J. and Slavin, R.G.: Allergic contact dermatitis. Med. Clin. North Am. 2006, 90:169–185.

  • ■ Muller, G., Saloga, J., Germann, T., Schuler, G., Knop, J., and Enk, A.H.: IL-12 as mediator and adjuvant for the induction of contact sensitivity in vivo. J. Immunol. 1995, 155:4661–4668.

  • ■ Schmidt, M., Raghavan, B., Müller, V., Vogl, T., Fejer, G., Tchaptchet, S., Keck, S., Kalis, C., Nielsen, P.J., Galanos, C., et al.: Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat. Immunol. 2010, 11:814–819.

  • ■ Vollmer, J., Weltzien, H.U., and Moulon, C.: TCR reactivity in human nickel allergy indicates contacts with complementarity-determining region 3 but excludes superantigen-like recognition. J. Immunol. 1999, 163:2723–2731.

1.2.17 Abschnitt 14.3.4

  • ■ Ciccocioppo, R., Di Sabatino, A., and Corazza, G.R.: The immune recognition of gluten in celiac disease. Clin. Exp. Immunol. 2005, 140:408–416.

  • ■ Green, P.H.R., Lebwohl, B., and Greywoode, R.: Celiac disease. J. Allergy Clin. Immunol. 2015, 135:1099–1106.

  • ■ Koning, F.: Celiac disease: caught between a rock and a hard place. Gastroenterology 2005, 129:1294–1301.

  • ■ Shan, L., Molberg, O., Parrot, I., Hausch, F., Filiz, F., Gray, G.M., Sollid, L.M., and Khosla, C.: Structural basis for gluten intolerance in celiac sprue. Science 2002, 297:2275–2279.

  • ■ van Bergen, J., Mulder, C.J., Mearin, M.L., and Koning, F.: Local communication among mucosal immune cells in patients with celiac disease. Gastroenterology 2015, 148:1187–1194.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murphy, K., Weaver, C. (2018). Allergien und allergische Erkrankungen. In: Janeway Immunologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56004-4_14

Download citation

Publish with us

Policies and ethics