Skip to main content

Blutgasanalyse und Sauerstofftherapie

  • Chapter
Neugeborenenintensivmedizin
  • 4386 Accesses

Zusammenfassung

Obwohl der menschliche Fetus sich bei niedrigem Sauerstoffpartialdruck gut entwickelt, wurde früher nach der Geburt oft Sauerstoff eingesetzt, um die adulte Oxygenierung schnell herbeizuführen. Dieses Vorgehen wird in den letzten Jahren zunehmend kritisiert. Das Kapitel schildert die Blutgasanalyse als Grundpfeiler von Sauerstoffzufuhr und künstlicher Beatmung. Außerdem stellt es die Nebenwirkungen von Sauerstoff dar, insbesondere die Retinopathie des Frühgeborenen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Andersen CC, Phelps DL (2000) Peripheral retinal ablation for threshold retinopathy of prematurity in preterm infants. Cochrane Database Syst Rev (2):CD001693

    Google Scholar 

  2. Askie LM (2013) Optimal oxygen saturations in preterm infants: a moving target. Curr Opin Pediatr 25(2):188–92

    Google Scholar 

  3. Askie LM, Henderson-Smart DJ, Ko H (2009) Restricted versus liberal oxygen exposure for preventing morbidity and mortality in preterm or low birth weight infants. Cochrane Database Syst Rev (1):CD001077

    Google Scholar 

  4. Bancalari A, Schade R, Munoz T, Lazcano C, Parada R, Pena R (2016) Oral propranolol in early stages of retinopathy of prematurity. J Perinat Med 44(5):499–503

    Google Scholar 

  5. Barrington KJ (2000) Umbilical artery catheters in the newborn: effects of catheter design (end vs side hole). Cochrane Database Syst Rev (2):CD000508

    Google Scholar 

  6. Barrington KJ (2000) Umbilical artery catheters in the newborn: effects of heparin. Cochrane Database Syst Rev (2):CD000507

    Google Scholar 

  7. Barrington KJ (2000) Umbilical artery catheters in the newborn: effects of position of the catheter tip. Cochrane Database Syst Rev (2):CD000505

    Google Scholar 

  8. Campbell JP, Ryan MC, Lore E et al. (2016) Diagnostic Discrepancies in Retinopathy of Prematurity Classification. Ophthalmology 123(8):1795–801

    Google Scholar 

  9. Carlo WA, Finer NN, Walsh MC et al. (2010) Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med 362(21):1959–69

    Google Scholar 

  10. Chow LC, Wright KW, Sola A (2003) Can changes in clinical practice decrease the incidence of severe retinopathy of prematurity in very low birth weight infants? Pediatrics 111(2):339–45

    Google Scholar 

  11. Darlow BA, Graham PJ (2007) Vitamin A supplementation to prevent mortality and short and long-term morbidity in very low birthweight infants. Cochrane Database Syst Rev (4):CD000501

    Google Scholar 

  12. Dunn PM (1966) Localization of the umbilical catheter by post-mortem measurement. Arch Dis Child 41(215):69-75

    Google Scholar 

  13. Filippi L, Cavallaro G, Bagnoli P et al. (2013) Oral propranolol for retinopathy of prematurity: risks, safety concerns, and perspectives. J Pediatr 163(6):1570–7.e6

    Google Scholar 

  14. Geloneck MM, Chuang AZ, Clark WL et al. (2014) Refractive outcomes following bevacizumab monotherapy compared with conventional laser treatment: a randomized clinical trial. JAMA Ophthalmol 132(11):1327–33

    Google Scholar 

  15. Gillies D, Wells D, Bhandari AP (2012) Positioning for acute respiratory distress in hospitalised infants and children. Cochrane Database Syst Rev 7:CD003645

    Google Scholar 

  16. Hafferl A (1957) Lehrbuch der topographischen Anatomie. Springer, Berlin Heidelberg New York

    Google Scholar 

  17. International Committee for the Classification of Retinopathy of Prematurity (2005) The International Classification of Retinopathy of Prematurity revisited. Arch Ophthalmol 123(7):991–9

    Google Scholar 

  18. Jorge EC, Jorge EN, El Dib RP (2013) Early light reduction for preventing retinopathy of prematurity in very low birth weight infants. Cochrane Database Syst Rev 6(8):CD 000122

    Google Scholar 

  19. Kecskes ZB, Davies MW (2002) Rapid correction of early metabolic acidaemia in comparison with placebo, no intervention or slow correction in LBW infants. Cochrane Database Syst Rev (1):CD002976

    Google Scholar 

  20. Lawn CJ, Weir FJ, McGuire W (2005) Base administration or fluid bolus for preventing morbidity and mortality in preterm infants with metabolic acidosis. Cochrane Database Syst Rev (2):CD003215

    Google Scholar 

  21. Lloyd J, Askie L, Smith J, Tarnow-Mordi W (2003) Supplemental oxygen for the treatment of prethreshold retinopathy of prematurity. Cochrane Database Syst Rev (2):CD003482

    Google Scholar 

  22. Makhoul IR, Peleg O, Miller B et al. (2013) Oral propranolol versus placebo for retinopathy of prematurity: a pilot, randomised, double-blind prospective study. Arch Dis Child 98(7):565-7

    Google Scholar 

  23. Manja V, Lakshminrusimha S, Cook DJ (2015) Oxygen saturation target range for extremely preterm infants: a systematic review and meta-analysis. JAMA Pediatr 169(4):332–40

    Google Scholar 

  24. Mintz-Hittner HA, Kennedy KA, Chuang AZ (2011) Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N Engl J Med 364(7):603–15

    Google Scholar 

  25. Qureshi MJ, Kumar M (2013) D-Penicillamine for preventing retinopathy of prematurity in preterm infants. Cochrane Database Syst Rev 9:CD001073

    Google Scholar 

  26. Schmidt B, Whyte RK, Asztalos EV et al. (2013) Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: a randomized clinical trial. JAMA 309(20):2111–20

    Google Scholar 

  27. Stenson BJ, Tarnow-Mordi WO, Darlow BA et al. (2013) Oxygen saturation and outcomes in preterm infants. N Engl J Med 368(22):2094-104

    Google Scholar 

  28. Subhani M, Combs A, Weber P, Gerontis C, DeCristofaro JD (2001) Screening guidelines for retinopathy of prematurity: the need for revision in extremely low birth weight infants. Pediatrics 107(4):656–9

    Google Scholar 

  29. Tarnow-Mordi W, Stenson B, Kirby A et al. (2016) Outcomes of Two Trials of Oxygen-Saturation Targets in Preterm Infants. N Engl J Med 374(8):749–60

    Google Scholar 

  30. Tingay DG, Stewart MJ, Morley CJ (2005) Monitoring of end tidal carbon dioxide and transcutaneous carbon dioxide during neonatal transport. Arch Dis Child Fetal Neonatal Ed 90(6):F523–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Obladen, M. (2017). Blutgasanalyse und Sauerstofftherapie. In: Neugeborenenintensivmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53576-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53576-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53575-2

  • Online ISBN: 978-3-662-53576-9

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics