Skip to main content

Körperliches Training in Prävention und Therapie – Gestaltung und Effekte

  • Chapter
Körperliche Aktivität und Gesundheit

Zusammenfassung

Körperliches Training wird in unterschiedlichen medizinischen Kontexten von der Prävention über die Rehabilitation bis hin zum Disease Management genutzt. Das vorliegende Kapitel befasst sich mit der Gestaltung und den Effekten unterschiedlicher Formen körperlichen Trainings, sowie ausgewählter unterstützender Methoden. Die Dosierung von Ausdauer-, Kraft-, Koordinations- und Beweglichkeitstraining orientiert sich an wissenschaftlicher Evidenz, bezieht aber auch Erfahrungen aus der Trainingspraxis mit ein. Fragebogen- und testbasierte Assessments erlauben eine individuelle Anpassung und Steuerung des Trainings. Körperliches Training induziert spezifische Effekte auf körperliche Funktion, Leistungsfähigkeit, Gesundheit und Teilhabe. Die resultierenden Effekte hängen auch von individuellen Eigenschaften der trainierenden Person ab. Neben etablierten Trainingsmethoden werden auch weniger konventionelle Methoden behandelt. Es wird ein komprimierter Überblick über einige populäre Methoden - Foam Rolling, Blood Flow Restriction Training, Elektromyostimulation, Ganzkörpervibrationstraining – gegeben, insbesondere im Hinblick auf die aktuelle wissenschaftliche Datenlage zu ihren Effekten und Mechanismen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Die Sauerstoffaufnahmereserve bezeichnet die Differenz aus der maximalen Sauerstoffaufnahme einer Person bei höchster Anstrengung und deren Sauerstoffaufnahme in Ruhe.

  2. 2.

    Der Norwegische Physiotherapeut Oddvar Holten beschrieb in den 1950er Jahren den mittleren Zusammenhang zwischen Widerstand und möglicher Widerholungszahl als Basis für die Trainingssteuerung beim Krafttraining und stellte diesen Zusammenhang grafisch (als Kurve) dar.

  3. 3.

    Einfach durchführbarer klinischer Test (Vom Stuhl aufstehen, 3 Meter gehen, umdrehen, wieder hinsetzen) zur groben Einschätzung von posturaler Kontrolle, Mobilität und Sturzrisiko älterer Menschen.

  4. 4.

    In randomisierten Studien soll durch zufällige Zuordnung der Probanden zu den Untersuchungsgruppen (Randomisierung) eine gleichmäßige Verteilung bekannter und unbekannter Störgrößen in den zu vergleichenden Gruppen erreicht werden. Im Vergleich zu Studien ohne Randomisierung können Gruppenunterschiede somit mit größerer Wahrscheinlichkeit auf die Interventionen zurückgeführt werden.

  5. 5.

    »Konsistente Ergebnisse« wurden definiert als eine Übereinstimmung der Studienergebnisse von mindestens 75 %.

  6. 6.

    Im Gegensatz zu einem systematischen Review erfolgt die Studienauswahl beim narrativen Review subjektiv und nicht systematisch (d. h., selektiv), und es wird keine Qualitätsbeurteilung der Studien durchgeführt.

  7. 7.

    In einer Cross-Over-Studie erhält jeder Proband alle zu vergleichenden Treatments in zufälliger (randomisierter) Reihenfolge. Somit wird jeder Proband als seine eigene Kontrolle eingesetzt.

  8. 8.

    Ist ein Ergebnis signifikant, bedeutet das, dass es sich mit einer gewissen Irrtumswahrscheinlichkeit (in der Regel 5 %) auf die Gesamtpopulation generalisieren lässt und nicht nur zufällig in der Studie auftritt.

  9. 9.

    Das Parallelgruppendesign ist das häufigste Design für randomisierte Studien. Dabei werden die Probanden per Randomisierung zu unabhängigen Untersuchungsgruppen zugeteilt, d. h., jeder Proband erhält nur ein Treatment. Im Folgenden wird der Begriff randomisierte Studie im Sinne einer randomisierten Studie im Parallelgruppendesign verwendet.

  10. 10.

    Konfidenzintervalle sind Angaben zur Präzision der Schätzung des Effektes auf Basis der Stichprobe. Das 95 % Konfidenzintervall beschreibt den Bereich, der die wahre Effektgröße der Gesamtpopulation mit einer Wahrscheinlichkeit von 95 % beinhaltet.

Literatur

  • American College of Sports Medicine (2009) Position stand. Progression models in resistance training for healthy adults. Medicine and Science in Sports and Exercise 41: 687–708

    Google Scholar 

  • American College of Sports Medicine, Thompson WR, Gordon NF, Pescatello LS (2010) ACSM’s guidelines for exercise testing and prescription, 8th ed. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Arampatzis A, Peper A, Bierbaum S (2011) Exercise of mechanisms for dynamic stability control increases stability performance in the elderly. Journal of Biomechanics 44: 52–58

    Google Scholar 

  • Arstikaitis P, El-Husseini (2009) A Synapse Formation: Neuromuscular Junction Versus Central Nervous System. In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of Neuroscience. Springer Berlin Heidelberg, pp 3983-3944

    Google Scholar 

  • Baar K (2014) Using molecular biology to maximize concurrent training. Sports Medicine 44: S117-25

    Google Scholar 

  • Bacabac RG, Smit TH, Van Loon JJ, Doulabi BZ, Helder M, Klein-Nulend J (2006) Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm? FASEB J 20: 858–864

    Google Scholar 

  • Banzer W, Pfeifer K, Vogt L (2004) Funktionsdiagnostik des Bewegungssystems in der Sportmedizin: Mit 20 Tabellen. Springer, Berlin Heidelberg

    Google Scholar 

  • Barnes KR, Kilding AE (2015) Strategies to improve running economy. Sports Medicine 45: 37–56

    Google Scholar 

  • Barz M, Huonker M (2010) Sporttherapie – Theoretische Grundlagen und praktische Anwendung. Sport-Orthopädie - Sport-Traumatologie 26: 209–215

    Google Scholar 

  • Bax L, Staes F, Verhagen A (2005) Does neuromuscular electrical stimulation strengthen the quadriceps femoris? A systematic review of randomised controlled trials. Sports Med 35: 191–212

    Google Scholar 

  • Behara B, Jacobson BH (2015) Acute Effects of Deep Tissue Foam Rolling and Dynamic Stretching on Muscular Strength, Power, and Flexibility in Division I Linemen. J Strength Cond Res [im Druck]

    Google Scholar 

  • Behm DG, Blazevich AJ, Kay AD, McHugh M (2015) Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Applied Physiology, Nutrition, and Metabolism 41: 1–11

    Google Scholar 

  • Bell DR, Guskiewicz KM, Clark MA, Padua DA (2011) Systematic review of the balance error scoring system. Sports Health 3: 287–295

    Google Scholar 

  • Beneke R, Leithäuser RM, Ochentel O (2011) Blood lactate diagnostics in exercise testing and training. Int J Sports Physiol Perform 6: 8–24

    Google Scholar 

  • Bjarnason-Wehrens B, Schulz O, Gielen S, Halle M, Dürsch M, Hambrecht R, Lowis H, Kindermann W, Schulze R, Rauch B (2009) Leitlinie körperliche Aktivität zur Sekundärprävention und Therapie kardiovaskulärer Erkrankungen. Clinical Research in Cardiology 4 (S3): 1–44.

    Google Scholar 

  • Blickenstorfer A, Kleiser R, Keller T, Keisker B, Meyer M, Riener R, Kollias S (2009) Cortical and subcortical correlates of functional electrical stimulation of wrist extensor and flexor muscles revealed by fMRI. Hum Brain Mapp 30: 963–975

    Google Scholar 

  • Booth FW, Chakravarthy MV, Gordon SE, Spangenburg EE (2002) Waging war on physical inactivity: using modern molecular ammunition against an ancient enemy. J Appl Physiol 93: 3–30

    Google Scholar 

  • Borg G (1970) Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med 2: 92–98

    Google Scholar 

  • Bosquet L, Montpetit J, Arvisais D, Mujika I (2007) Effects of tapering on performance: a meta-analysis. Med Sci Sports Exerc 39: 1358–1365

    Google Scholar 

  • Bredin SSD, Gledhill N, Jamnik VK, Warburton DER (2013) PAR-Q+ and ePARmed-X+: new risk stratification and physical activity clearance strategy for physicians and patients alike. Canadian family physician 59: 273–277

    Google Scholar 

  • Brooks GA (2009) Cell-cell and intracellular lactate shuttles. J Physiol (Lond) 587: 5591–5600

    Google Scholar 

  • Brotzman SB, Manske RC, Daugherty K (Eds.) (2011) Clinical orthopaedic rehabilitation: An evidence-based approach, 3rd ed. Elsevier Mosby, Philadelphia, PA

    Google Scholar 

  • Burd NA, Mitchell CJ, Churchward-Venne TA, Phillips SM (2012) Bigger weights may not beget bigger muscles: evidence from acute muscle protein synthetic responses after resistance exercise. Applied Physiology, Nutrition, and Metabolism 37: 551–554

    Google Scholar 

  • Büsching G, Widmer Leu C (2009) Kardiologie und Pneumologie, 1st ed. Huber, Bern

    Google Scholar 

  • Bushell JE, Dawson SM, Webster MM (2015) Clinical Relevance of Foam Rolling on Hip Extension Angle in a Functional Lunge Position. J Strength Cond Res 29: 2397–2403

    Google Scholar 

  • Cadore EL, Pinto RS, Bottaro M, Izquierdo M (2014) Strength and endurance training prescription in healthy and frail elderly. Aging and Disease 5: 183–195

    Google Scholar 

  • Campbell KL, Neil SE, Winters-Stone KM (2012) Review of exercise studies in breast cancer survivors: attention to principles of exercise training. British Journal of Sports Medicine 46: 909–916

    Google Scholar 

  • Cobley JN, Bartlett JD, Kayani A, Murray SW, Louhelainen J, Donovan T, Waldron S, Gregson W, Burniston JG, Morton JP, Close GL (2012) PGC-1α transcriptional response and mitochondrial adaptation to acute exercise is maintained in skeletal muscle of sedentary elderly males. Biogerontology 13: 621-631

    Google Scholar 

  • Comfort P, Abrahamson E (2010) Sports Rehabilitation and Injury Prevention. John Wiley & Sons Ltd, Hoboken

    Google Scholar 

  • Cormie P, McGuigan MR, Newton RU (2011) Developing maximal neuromuscular power: Part 1--biological basis of maximal power production. Sports Medicine 41: 17–38

    Google Scholar 

  • Costantino C, Gimigliano R, Olvirri S, Gimigliano F (2014) Whole body vibration in sport: a critical review. J Sports Med Phys Fitness 54: 757–764

    Google Scholar 

  • Coudert J, Van Praagh E (2000) Endurance exercise training in the elderly: effects on cardiovascular function. Curr Opin Clin Nutr Metab Care 3: 479-83

    Google Scholar 

  • Crane JD, Ogborn DI, Cupido C, Melov S, Hubbard A, Bourgeois JM, Tarnopolsky MA (2012) Massage Therapy Attenuates Inflammatory Signaling After Exercise-Induced Muscle Damage. Sci Transl Med 4: 119ra13–119ra13

    Google Scholar 

  • Decoster LC, Cleland J, Altieri C, Russell P (2005) The effects of hamstring stretching on range of motion: a systematic literature review. The Journal of Orthopaedic and Sports Physical Therapy 35: 377–387

    Google Scholar 

  • Deutsche Gesellschaft für Sportmedizin und Prävention (2007) S 1- Leitlinie Vorsorgeuntersuchung im Sport. www.dgsp.de/_downloads/allgemein/S1_Leitlinie.pdf. Accessed 1 July 2014

  • Diemer F, Sutor V (2011) Praxis der medizinischen Trainingstherapie, 2nd ed. Thieme, Stuttgart

    Google Scholar 

  • Donath L, Faude O, Bopp M, Zahner L (2015) Grundlagen gesundheitsorientierten Krafttrainings im Alter: Ziele und Umsetzung. Therapeutische Umschau. 72: 335–342

    Google Scholar 

  • Dunn AL, Marcus BH, Kampert JB, Garcia ME, Kohl HW 3rd, Blair SN (1999) Comparison of lifestyle and structured interventions to increase physical activity and cardiorespiratory fitness: a randomized trial. JAMA 281: 327-334

    Google Scholar 

  • Fernandes IA, Kawchuk G, Bhambhani Y, Gomes PSC (2013) Does whole-body vibration acutely improve power performance via increased short latency stretch reflex response? J Sci Med Sport 16: 360–364

    Google Scholar 

  • Freriks B, Hermens HJ (2000) European recommendations for surface electromyography: Results of the SENIAM project; Biomedical and health research program, Biomed II Project (PL: 950424) sponsored by the European Union. Roessingh Research and Development b.v, Enschede

    Google Scholar 

  • Fröhlich M (2012) Überlegungen zur Trainingswissenschaft. Sportwissenschaft 42: 96–104

    Google Scholar 

  • Fry CS, Rasmussen BB (2011) Skeletal muscle protein balance and metabolism in the elderly. Curr Aging Sci 4: 260-268.

    Google Scholar 

  • Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee I, Nieman DC, Swain DP (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine and Science in Sports and Exercise 43: 1334–1359

    Google Scholar 

  • Gemeinsamer Bundesausschuss (2011) Richtlinie des Gemeinsamen Bundesausschusses über die Verordnung von Heilmitteln in der vertragsärztlichen Versorgung. Online verfügbar unter http://www.g-ba.de/informationen/richtlinien/12/ zuletzt geprüft am 07.01.2016.

  • George JD, Stone WJ, Burkett LN (1997) Non-exercise VO2max estimation for physically active college students. Med Sci Sports Exerc 29: 415–423

    Google Scholar 

  • Gibala MJ, Little JP, Macdonald MJ, Hawley JA (2012) Physiological adaptations to low-volume, high-intensity interval training in health and disease. The Journal of Physiology 590: 1077–1084

    Google Scholar 

  • Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, Mark DB, McCallister BD, Mooss AN, O’Reilly MG, Winters WL, Antman EM, Alpert JS, Faxon DP, Fuster V, Gregoratos G, Hiratzka LF, Jacobs AK, Russell RO, Smith SC (2002) ACC/AHA 2002 guideline update for exercise testing: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 106: 1883–1892

    Google Scholar 

  • Giggins O, Fullen B, Coughlan G (2012) Neuromuscular electrical stimulation in the treatment of knee osteoarthritis: a systematic review and meta-analysis. Clin Rehabil 26: 867–881

    Google Scholar 

  • Gillen JB, Gibala MJ (2014) Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Applied Physiology, Nutrition, and Metabolism 39: 409–412

    Google Scholar 

  • Gondin J, Brocca L, Bellinzona E, D’Antona G, Maffiuletti NA, Miotti D, Pellegrino MA, Bottinelli R (2011) Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis. J Appl Physiol 110: 433–450

    Google Scholar 

  • Gondin J, Guette M, Ballay Y, Martin A (2005) Electromyostimulation training effects on neural drive and muscle architecture. Med Sci Sports Exerc 37: 1291–1299

    Google Scholar 

  • Granacher U, Muehlbauer T, Zahner L, Gollhofer A, Kressig RW (2011) Comparison of traditional and recent approaches in the promotion of balance and strength in older adults. Sports Medicine 41: 377–400

    Google Scholar 

  • Gribble PA, Hertel J, Plisky P (2012) Using the Star Excursion Balance Test to assess dynamic postural-control deficits and outcomes in lower extremity injury: a literature and systematic review. Journal of Athletic Training 47: 339–357

    Google Scholar 

  • Guadalupe-Grau A, Fuentes T, Guerra B, Calbet JAL (2009) Exercise and bone mass in adults. Sports Medicine 39: 439–468

    Google Scholar 

  • Güllich A, Schmidtbleicher D (1999) Struktur der Kraftfähigkeiten und ihrer Trainingsmethoden. Dtsch Z Sportmed 50: 223–234

    Google Scholar 

  • Hatori K, Camargos G V., Chatterjee M, Faot F, Sasaki K, Duyck J, Vandamme K (2015) Single and combined effect of high-frequency loading and bisphosphonate treatment on the bone micro-architecture of ovariectomized rats. Osteoporos Int 26: 303–313

    Google Scholar 

  • Healey KC, Hatfield DL, Blanpied P, Dorfman LR, Riebe D (2014) The effects of myofascial release with foam rolling on performance. J Strength Cond Res 28: 61–68

    Google Scholar 

  • Heitkamp HC (2015) Training with blood flow restriction. Mechanisms, gain in strength and safety. J Sports Med Phys Fitness 55: 446–456

    Google Scholar 

  • Herbert RD, Noronha M de, Kamper SJ (2011) Stretching to prevent or reduce muscle soreness after exercise. The Cochrane database of systematic reviews: CD004577

    Google Scholar 

  • Hohmann A, Lames M, Letzelter M (2010) Einführung in die Trainingswissenschaft, 5th ed. Limpert, Wiebelsheim

    Google Scholar 

  • Hollmann W, Hettinger T (2000) Sportmedizin: Grundlagen für Arbeit, Training und Präventivmedizin ; mit 101 Tabellen, 4th ed. Schattauer, Stuttgart

    Google Scholar 

  • Hortobágyi T, Maffiuletti NA (2011) Neural adaptations to electrical stimulation strength training. Eur J Appl Physiol 111: 2439–49

    Google Scholar 

  • Hoover DL, VanWye WR, Judge LW (2015) Periodization and physical therapy: Bridging the gap between training and rehabilitation. Physical therapy in Sport 18: 1-20

    Google Scholar 

  • Horak FB, Wrisley DM, Frank J (2009) The Balance Evaluation Systems Test (BESTest) to differentiate balance deficits. Physical Therapy 89: 484–498

    Google Scholar 

  • Hottenrott K, Neumann G (2010) Trainingswissenschaft: Ein Lehrbuch in 14 Lektionen. Meyer & Meyer, Aachen

    Google Scholar 

  • Howe TE, Rochester L, Neil F, Skelton DA, Ballinger C (2011) Exercise for improving balance in older people. The Cochrane database of systematic reviews: CD004963

    Google Scholar 

  • Huang G, Wang R, Chen P, Huang SC, Donnelly JE, Mehlferber JP (2015) Dose-response relationship of cardiorespiratory fitness adaptation to controlled endurance training in sedentary older adults. European Journal of Preventive Cardiology 23: 518-29

    Google Scholar 

  • Hübscher M, Zech A, Pfeifer K, Hänsel F, Vogt L, Banzer W (2010) Neuromuscular training for sports injury prevention: a systematic review. Medicine and Science in Sports and Exercise 42: 413–421

    Google Scholar 

  • Ilarraza H, Myers J, Kottman W, Rickli H, Dubach P (2004) An evaluation of training responses using self-regulation in a residential rehabilitation program. Journal of Cardiopulmonary Rehabilitation 24: 27–33.

    Google Scholar 

  • Isner-Horobeti M, Dufour SP, Vautravers P, Geny B, Coudeyre E, Richard R (2013) Eccentric exercise training: modalities, applications and perspectives. Sports Medicine 43: 483–512

    Google Scholar 

  • Jubeau M, Zory R, Gondin J, Martin A, Maffiuletti NA (2006) Late neural adaptations to electrostimulation resistance training of the plantar flexor muscles. Eur J Appl Physiol 98: 202–211

    Google Scholar 

  • Junker D, Stöggl T (2015) The foam roll as a tool to improve hamstring flexibility. J Strength Cond Res 29: 3480-3485

    Google Scholar 

  • Kallerud H, Gleeson N (2013) Effects of stretching on performances involving stretch-shortening cycles. Sports Medicine 43: 733–750

    Google Scholar 

  • Kay AD, Blazevich AJ (2012) Effect of acute static stretch on maximal muscle performance: a systematic review. Medicine and Science in Sports and Exercise 44: 154–164

    Google Scholar 

  • Keogh JWL, Morrison S, Barrett R (2010) Strength and coordination training are both effective in reducing the postural tremor amplitude of older adults. Journal of Aging and Physical Activity 18: 43–60

    Google Scholar 

  • Kemmler W, Von Stengel S, Schwarz J, Mayhew JL (2012) Effect of whole-body electromyostimulation on energy expenditure during exercise. J Strength Cond Res 26: 240–245

    Google Scholar 

  • Kesaniemi YK, Danforth E, Jensen MD, Kopelman PG, Lefèbvre P, Reeder BA (2001) Dose-response issues concerning physical activity and health: an evidence-based symposium. Med Sci Sports Exerc 33: S351-8

    Google Scholar 

  • Kiel DP, Hannan MT, Barton B a., Bouxsein ML, Sisson E, Lang T, Allaire B, Dewkett D, Carroll D, Magaziner J, Shane E, Leary ET, Zimmerman S, Rubin CT (2015) Low Magnitude Mechanical Stimulation to Improve Bone Density in Persons of Advanced Age: A Randomized, Placebo-Controlled Trial. J Bone Miner Res 30: 1319-1328

    Google Scholar 

  • Kim K-M, Croy T, Hertel J, Saliba S (2010) Effects of Neuromuscular Electrical Stimulation After Anterior Cruciate Ligament Reconstruction on Quadriceps Strength, Function, and Patient-Oriented Outcomes: A Systematic Review. J Orthop Sport Phys Ther 40: 383–391

    Google Scholar 

  • Knowles A, Herbert P, Easton C, Sculthorpe N, Grace FM (2015) Impact of low-volume, high-intensity interval training on maximal aerobic capacity, health-related quality of life and motivation to exercise in ageing men. Age (Dordrecht, Netherlands) 37: 25

    Google Scholar 

  • Kruse LM, Gray B, Wright RW (2012) Rehabilitation after anterior cruciate ligament reconstruction: a systematic review. The Journal of Bone and Joint Surgery 94: 1737–1748

    Google Scholar 

  • Lam FMH, Lau RWK, Chung RCK, Pang MYC (2012) The effect of whole body vibration on balance, mobility and falls in older adults: A systematic review and meta-analysis. Maturitas 72: 206–213

    Google Scholar 

  • Landessportbund Nordrhein-Westfalen (2007) Sportmedizinische Aspekte im Breitensport und im gesundheitsorientierten Sport: Stellungnahmen und Positionspapiere der Stellungnahmen und Positionspapiere der Sportärztebünde Nordrhein und Westfalen und des LandesSportBundes Nordrhein-Westfalen. LSB Nordrhein-Westfalen, Duisburg

    Google Scholar 

  • LaRoche DP, Roy SJ, Knight CA, Dickie JL (2008) Elderly women have blunted response to resistance training despite reduced antagonist coactivation. Med Sci Sports Exerc 40: 1660-1668

    Google Scholar 

  • Lauersen JB, Bertelsen DM, Andersen LB (2014) The effectiveness of exercise interventions to prevent sports injuries: a systematic review and meta-analysis of randomised controlled trials. British Journal of Sports Medicine 48: 871–877

    Google Scholar 

  • Lawrenson L, Hoff J, Richardson RS (2004) Aging attenuates vascular and metabolic plasticity but does not limit improvement in muscle VO(2) max. Am J Physiol Heart Circ Physiol 286: H1565-1572

    Google Scholar 

  • Lee I (2007) Dose-response relation between physical activity and fitness: even a little is good; more is better. JAMA 297: 2137–2139

    Google Scholar 

  • Lesinski M, Hortobágyi T, Muehlbauer T, Gollhofer A, Granacher U (2015) Effects of Balance Training on Balance Performance in Healthy Older Adults: A Systematic Review and Meta-analysis. Sports Medicine 45: 1721–1738

    Google Scholar 

  • Lixandrão ME, Ugrinowitsch C, Laurentino G, Libardi CA, Aihara AY, Cardoso FN, Tricoli V, Roschel H (2015) Effects of exercise intensity and occlusion pressure after 12 weeks of resistance training with blood-flow restriction. Eur J Appl Physiol 115: 2471-2480

    Google Scholar 

  • Loenneke JP, Wilson JM, Marin PJ, Zourdos MC, Bemben MG (2012) Low intensity blood flow restriction training: a meta-analysis. Eur J Appl Physiol 112: 1849–1859

    Google Scholar 

  • Macdonald GZ, Button DC, Drinkwater EJ, Behm DG (2014) Foam rolling as a recovery tool after an intense bout of physical activity. Med Sci Sports Exerc 46: 131–142

    Google Scholar 

  • MacDonald GZ, Penney MDH, Mullaley ME, Cuconato AL, Drake CDJ, Behm DG, Button DC (2013) An acute bout of self-myofascial release increases range of motion without a subsequent decrease in muscle activation or force. J Strength Cond Res 27: 812–821

    Google Scholar 

  • Malone JK, Blake C, Caulfield BM (2014) Neuromuscular electrical stimulation during recovery from exercise: a systematic review. J Strength Cond Res 28: 2478–2506

    Google Scholar 

  • Mansfield A, Wong JS, Bryce J, Knorr S, Patterson KK (2015) Does perturbation-based balance training prevent falls? Systematic review and meta-analysis of preliminary randomized controlled trials. Physical Therapy 95: 700–709

    Google Scholar 

  • Martin D, Carl K, Lehnertz K (1993) Handbuch Trainingslehre. Hofmann, Schorndorf

    Google Scholar 

  • Matsuo S, Suzuki S, Iwata M, Banno Y, Asai Y, Tsuchida W, Inoue T (2013) Acute effects of different stretching durations on passive torque, mobility, and isometric muscle force. Journal of Strength and Conditioning Research 27: 3367–3376

    Google Scholar 

  • Mauntel TC, Clark M a., Padua D a. (2014) Effectiveness of Myofascial Release Therapies on Physical Performance Measurements: A Systematic Review. Athl Train Sport Heal Care 6: 189–196

    Google Scholar 

  • Mayer F, Scharhag-Rosenberger F, Carlsohn A, Cassel M, Müller S, Scharhag J (2011) The intensity and effects of strength training in the elderly. Dtsch Arztebl Int 108: 359–364

    Google Scholar 

  • Mayhew DL, Kim JS, Cross JM, Ferrando AA, Bamman MM (2009) Translational signaling responses preceding resistance training-mediated myofiber hypertrophy in young and old humans. J Appl Physiol 107: 1655-1662

    Google Scholar 

  • McCall A, Carling C, Nedelec M, Davison M, Le Gall F, Berthoin S, Dupont G (2014) Risk factors, testing and preventative strategies for non-contact injuries in professional football: current perceptions and practices of 44 teams from various premier leagues. British Journal of Sports Medicine 48: 1352–1357

    Google Scholar 

  • Meyer K, Samek L, Schwaibold M, Westbrook S, Hajric R, Beneke R, Lehmann M, Roskamm H (1997) Interval training in patients with severe chronic heart failure: analysis and recommendations for exercise procedures. Medicine and Science in Sports and Exercise 29: 306–312

    Google Scholar 

  • Mezzani A, Hamm LF, Jones AM, McBride PE, Moholdt T, Stone JA, Urhausen A, Williams MA (2012) Aerobic exercise intensity assessment and prescription in cardiac rehabilitation: a joint position statement of the European Association for Cardiovascular Prevention and Rehabilitation, the American Association of Cardiovascular and Pulmonary Rehabilitation, and the Canadian Association of Cardiac Rehabilitation. Journal of Cardiopulmonary Rehabilitation and Prevention 32: 327–350

    Google Scholar 

  • Milanović Z, Sporiš G, Weston M (2015) Effectiveness of High-Intensity Interval Training (HIT) and Continuous Endurance Training for VO2max Improvements: A Systematic Review and Meta-Analysis of Controlled Trials. Sports Medicine 45: 1469–1481

    Google Scholar 

  • Morton JP, Kayani AC, McArdle A, Drust B (2009) The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Medicine 39: 643–662

    Google Scholar 

  • Mujika, I. (Ed.) (2012) Endurance Training - Scientific Principles and Practical Aspects. Iñigo Mujika S.L.U.

    Google Scholar 

  • Myer GD, Paterno MV, Ford KR, Hewett TE (2008) Neuromuscular training techniques to target deficits before return to sport after anterior cruciate ligament reconstruction. Journal of Strength and Conditioning Research 22: 987–1014

    Google Scholar 

  • Nascimento LR, Michaelsen SM, Ada L, Polese JC, Teixeira-Salmela LF (2014) Cyclical electrical stimulation increases strength and improves activity after stroke: a systematic review. J Physiother 60: 22–30

    Google Scholar 

  • Neumaier A (2006) Koordinatives Anforderungsprofil und Koordinationstraining: Grundlagen, Analyse, Methodik, 3rd ed. Sportverlag Strauß, Köln

    Google Scholar 

  • Nordlund MM, Thorstensson A (2006) Strength training effects of whole-body vibration? Scand J Med Sci Sport 17: 12-17

    Google Scholar 

  • Nussbaumer S, Leunig M, Glatthorn JF, Stauffacher S, Gerber H, Maffiuletti NA (2010) Validity and test-retest reliability of manual goniometers for measuring passive hip range of motion in femoroacetabular impingement patients. BMC Musculoskeletal Disorders 11: 194

    Google Scholar 

  • Oesch P (2011) Bewegungsapparat: [mit CD-ROM], 2nd ed. Huber, Bern

    Google Scholar 

  • de Oliveira Melo M, Aragão FA, Vaz MA (2013) Neuromuscular electrical stimulation for muscle strengthening in elderly with knee osteoarthritis – A systematic review. Complement Ther Clin Pract 19: 27–31

    Google Scholar 

  • Olivier N (2001) Eine Beanspruchungstheorie sportlichen Trainings und Wettkampfs. Sportwissenschaft 31: 437–453

    Google Scholar 

  • Opdenacker J, Boen F, Coorevits N, Delecluse C (2008) Effectiveness of a lifestyle intervention and a structured exercise intervention in older adults. Prev Med 46: 518-524

    Google Scholar 

  • Osawa Y, Oguma Y, Ishii N (2013) The effects of whole-body vibration on muscle strength and power: a meta-analysis. J Musculoskelet Neuronal Interact 13: 380–390

    Google Scholar 

  • Padua DA, Marshall SW, Boling MC, Thigpen CA, Garrett WE, Beutler AI (2009) The Landing Error Scoring System (LESS) Is a valid and reliable clinical assessment tool of jump-landing biomechanics: The JUMP-ACL study. The American Journal of Sports Medicine 37: 1996–2002

    Google Scholar 

  • Pan L, Guo Y, Liu X, Yan J (2014) Lack of efficacy of neuromuscular electrical stimulation of the lower limbs in chronic obstructive pulmonary disease patients: A meta-analysis. Respirology 19: 22–29

    Google Scholar 

  • Pearcey GEP, Bradbury-Squires DJ, Kawamoto J-E, Drinkwater EJ, Behm DG, Button DC (2015) Foam Rolling for Delayed-Onset Muscle Soreness and Recovery of Dynamic Performance Measures. J Athl Train 50: 5–13

    Google Scholar 

  • Pearson SJ, Hussain SR (2015) A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Medicine 45: 187–200

    Google Scholar 

  • Pedersen BK (2011) Exercise-induced myokines and their role in chronic diseases. Brain Behav Immun 25: 811–816

    Google Scholar 

  • Petersen J, Hölmich P (2005) Evidence based prevention of hamstring injuries in sport. British Journal of Sports Medicine 39: 319–323

    Google Scholar 

  • Peterson MD, Rhea MR, Alvar BA (2004) Maximizing strength development in athletes: a meta-analysis to determine the dose-response relationship. Journal of Strength and Conditioning Research 18: 377–382

    Google Scholar 

  • Pfeifer K, Sudeck G, Brüggemann S, Huber G (2010) DGRW-Update: Bewegungstherapie in der medizinischen Rehabilitation – Wirkungen, Qualität, Perspektiven. Rehabilitation 49: 224–236

    Google Scholar 

  • Pfeifer K, Vogt L, Banzer W (2003) Standards der Sportmedizin: Kinesiologische Elektromyographie (EMG). Dtsch Z Sportmed 54: 331–332

    Google Scholar 

  • Pfeiffer M, Hohmann A (2012) Applications of neural networks in training science. Hum Mov Sci 31: 344–359

    Google Scholar 

  • Prior M, Guerin M, Grimmer K (2009) An evidence-based approach to hamstring strain injury: a systematic review of the literature. Sports Health 1: 154–164

    Google Scholar 

  • Prisby RD, Lafage-Proust M-H, Malaval L, Belli A, Vico L (2008) Effects of whole body vibration on the skeleton and other organ systems in man and animal models: what we know and what we need to know. Ageing Res Rev 7: 319–329

    Google Scholar 

  • Quintner JL, Bove GM, Cohen ML (2014) A critical evaluation of the trigger point phenomenon. Rheumatology: 392–399

    Google Scholar 

  • Radaelli R, Fleck SJ, Leite T, Leite RD, Pinto RS, Fernandes L, Simão R (2015) Dose-response of 1, 3, and 5 sets of resistance exercise on strength, local muscular endurance, and hypertrophy. Journal of Strength and Conditioning Research 29: 1349–1358

    Google Scholar 

  • Rankinen T, Roth SM, Bray MS, Loos R, Pérusse L, Wolfarth B, Hagberg JM, Bouchard C (2010) Advances in exercise, fitness, and performance genomics. Med Sci Sports Exerc 42: 835–846

    Google Scholar 

  • Rhea MR, Alvar BA, Burkett LN, Ball SD (2003) A meta-analysis to determine the dose response for strength development. Medicine and Science in Sports and Exercise 35: 456–464

    Google Scholar 

  • Ritzmann R, Gollhofer A, Kramer A (2013) The influence of vibration type, frequency, body position and additional load on the neuromuscular activity during whole body vibration. Eur J Appl Physiol 113: 1–11

    Google Scholar 

  • Ritzmann R, Kramer A, Bernhardt S, Gollhofer A (2014) Whole Body Vibration Training - Improving Balance Control and Muscle Endurance. PLoS One 9 (2): e89905

    Google Scholar 

  • Ritzmann R, Kramer A, Gollhofer A, Taube W (2013) The effect of whole body vibration on the H-reflex, the stretch reflex, and the short-latency response during hopping. Scand J Med Sci Sport 23: 331–339

    Google Scholar 

  • Rognmo Ø, Hetland E, Helgerud J, Hoff J, Slørdahl SA (2004) High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. European Journal of Cardiovascular Prevention and Rehabilitation 11: 216–222

    Google Scholar 

  • Rohmert W, Rutenfranz J (1975) Arbeitswissenschaftliche Beurteilung der Belastung und Beanspruchung an unterschiedlichen Arbeitsplätzen. Bundesminister für Arbeit und Sozialordnung, Referat Öffentlichkeitsarbeit, Bonn

    Google Scholar 

  • Rowlands DS, Thomson JS, Timmons BW et al. (2011) Transcriptome and translational signaling following endurance exercise in trained skeletal muscle: impact of dietary protein. Physiol Genomics 43: 1004–1020

    Google Scholar 

  • Sarabon N, Panjan A, Rosker J, Fonda B (2013) Functional and neuromuscular changes in the hamstrings after drop jumps and leg curls. Journal of Sports Science & Medicine 12: 431–438

    Google Scholar 

  • Sasaki H, Kasagi F, Yamada M, Fujita S (2007) Grip strength predicts cause-specific mortality in middle-aged and elderly persons. The American Journal of Medicine 120: 337–342

    Google Scholar 

  • Sbruzzi G, Ribeiro R a, Schaan BD, Signori LU, Silva AM V, Irigoyen MC, Plentz RD (2010) Functional electrical stimulation in the treatment of patients with chronic heart failure: a meta-analysis of randomized controlled trials. Eur J Cardiovasc Prev Rehabil 17: 254–260

    Google Scholar 

  • Schabrun SM, Ridding MC, Galea MP, Hodges PW, Chipchase LS (2012) Primary sensory and motor cortex excitability are co-modulated in response to peripheral electrical nerve stimulation. PLoS One 7: e51298.

    Google Scholar 

  • Scharhag-Rosenberger F, Becker T, Streckmann F, Schmidt K, et al. (2014) Studien zu körperlichem Training bei onkologischen Patienten: Empfehlungen zu den Erhebungsmethoden. Dtsch Z Sportmed 65: 304–313

    Google Scholar 

  • Scharhag-Rosenberger F, Meyer T, Gässler N, Faude O, Kindermann W (2010) Exercise at given percentages of VO2max: heterogeneous metabolic responses between individuals. J Sci Med Sport 13: 74–79

    Google Scholar 

  • Schleip R (2003) Fascial plasticity - A new neurobiological explanation. Part 2. J Bodyw Mov Ther 7: 104–116

    Google Scholar 

  • Schleip R, Jäger H, Klingler W (2012) What is »fascia«? A review of different nomenclatures. J Bodyw Mov Ther 16: 496–502

    Google Scholar 

  • Schlicht W (1992) Das sportliche Training: Überlegungen auf dem Wege zu einem integrierten Belastungs-Beanspruchungs-Konzept. In: Janssen JP, Schlicht W, Rieckert H, Carl K (Eds.), Belastung und Beanspruchung. Strauß: Köln

    Google Scholar 

  • Schlumberger A, Schmidtbleicher D (2000) Grundlagen der Kraftdiagnostik in Prävention und Rehabilitation. Manuelle Medizin 38: 223–231

    Google Scholar 

  • Schmidt K, Vogt L, Thiel C, Jäger E, Banzer W (2013) Validity of the six-minute walk test in cancer patients. Int J Sports Med 34: 631–636

    Google Scholar 

  • Schnabel G, Harre D, Borde A (1994) Trainingswissenschaft. Sportverlag, Berlin

    Google Scholar 

  • Schroeder AN, Best TM (2015) Is Self Myofascial Release an Effective Preexercise and Recovery Strategy? A Literature Review. Curr Sports Med Rep 14: 200-208

    Google Scholar 

  • Shrier I (2005) When and whom to stretch? Gauging the benefits and drawbacks for individual patients. The Physician and Sportsmedicine 33: 22–26

    Google Scholar 

  • Silva NL, Oliveira RB, Fleck SJ, Leon, Antonio C M P, Farinatti P (2014) Influence of strength training variables on strength gains in adults over 55 years-old: a meta-analysis of dose-response relationships. Journal of Science and Medicine in Sport 17: 337–344

    Google Scholar 

  • Simic L, Sarabon N, Markovic G (2013) Does pre-exercise static stretching inhibit maximal muscular performance? A meta-analytical review. Scandinavian Journal of Medicine & Science in Sports 23: 131–148

    Google Scholar 

  • Simons DG (1997) Triggerpunkte und Myogelose. Man Medizin 35: 290–294

    Google Scholar 

  • Sitjà Rabert M, Rigau Comas D, Fort Vanmeerhaeghe A, Santoyo Medina C, Roqué i Figuls M, Romero-Rodríguez D, Bonfill Cosp X (2012) Whole-body vibration training for patients with neurodegenerative disease. Cochrane Database Syst Rev 2: 2–4

    Google Scholar 

  • Slatkovska L, Alibhai SMH, Beyene J, Cheung AM (2010) Effect of whole-body vibration on BMD: a systematic review and meta-analysis. Osteoporos Int 21: 1969–1980

    Google Scholar 

  • Slatkovska L, Alibhai SMH, Beyene J, Hu HX, Demaras A, Cheung AM (2011) Effect of 12 Months of Whole-Body Vibration Therapy on Bone Density and Structure in Postmenopausal Women A Randomized Trial. Ann Intern Med 155: 668–679

    Google Scholar 

  • Sloth M, Sloth D, Overgaard K, Dalgas U (2013) Effects of sprint interval training on VO2max and aerobic exercise performance: A systematic review and meta-analysis. Scandinavian Journal of Medicine & Science in Sports 23: e341-52

    Google Scholar 

  • Slysz J, Stultz J, Burr JF (2015) The efficacy of blood flow restricted exercise: A systematic review & meta-analysis. J Sci Med Sport http://dx.doi.org/10.1016/j.jsams.2015.09.005

  • Stahn A, Terblanche E, Grunert S, Strobel G (2006) Estimation of maximal oxygen uptake by bioelectrical impedance analysis. Eur J Appl Physiol 96: 265–273

    Google Scholar 

  • Steib S, Schoene D, Pfeifer K (2010) Dose-response relationship of resistance training in older adults: a meta-analysis. Medicine and Science in Sports and Exercise 42: 902–914

    Google Scholar 

  • Steinhöfer D (2008) Athletiktraining im Sportspiel: Theorie und Praxis zu Kondition, Koordination und Trainingssteuerung. Philippka-Sportverlag, Münster

    Google Scholar 

  • Sudeck G, Pfeifer K (2016) Physical Activity-related Health Competence as an Integrative Objective in Exercise Therapy and Health Sports – Conception and Validation of a Short Questionnaire. Sportwissenschaft 46 [im Druck]

    Google Scholar 

  • Swain DP (2014) ACSM’s resource manual for Guidelines for exercise testing and prescription, 7th ed. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Takano H, Morita T, Iida H, Asada K, Kato M, Uno K, Hirose K, Matsumoto A, Takenaka K, Hirata Y, Eto F, Nagai R, Sato Y, Nakajima T (2005) Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol 95: 65–73

    Google Scholar 

  • Thiel C, Vogt L, Banzer W (2012) Narrative Übersicht zur Bewegungsdosis in Prävention und Therapie. Bewegungstherapie & Gesundheitssport 28: 43–46

    Google Scholar 

  • Timmons JA (2011) Variability in training-induced skeletal muscle adaptation. J Appl Physiol 110: 846–853

    Google Scholar 

  • Tough E, White AR, Richards S, Campbell J (2007) Variability of criteria used to diagnose myofascial trigger point pain syndrome--evidence from a review of the literature. Clin J Pain 23: 278–286

    Google Scholar 

  • Trudelle-Jackson E, Leonard D, Morrow JR (2014) Musculoskeletal risk factors as predictors of injury in community-dwelling women. Medicine and Science in Sports and Exercise 46: 1752–1757

    Google Scholar 

  • Tschiene P (2006) Streit um die Superkompensation. Leistungssport 18: 5–15

    Google Scholar 

  • Tulder MW van, Assendelft WJ, Koes BW, Bouter LM (1997) Method guidelines for systematic reviews in the Cochrane Collaboration Back Review Group for Spinal Disorders. Spine 22: 2323–2330

    Google Scholar 

  • Vanderthommen M, Duchateau J (2007) Electrical stimulation as a modality to improve performance of the neuromuscular system. Exerc Sport Sci Rev 35: 180–185

    Google Scholar 

  • Vanderthommen M, Duteil S, Wary C, Raynaud JS, Leroy-Willig A, Crielaard JM, (2003) A comparison of voluntary and electrically induced contractions by interleaved 1H- and 31P-NMRS in humans. J Appl Physiol 94: 1012–1024

    Google Scholar 

  • Vanderthommen M, Gilles R, Carlier P, Ciancabilla F, Zahlan O, Sluse F, Crielaard JM (1999) Human muscle energetics during voluntary and electrically induced isometric contractions as measured by 31P NMR spectroscopy. Int J Sports Med 20: 279–283

    Google Scholar 

  • Wang X, Pi Y, Chen P, Liu Y, Wang R, Chan C (2015) Cognitive motor interference for preventing falls in older adults: a systematic review and meta-analysis of randomised controlled trials. Age and Ageing 44: 205–212

    Google Scholar 

  • Weerapong P, Hume P, Kolt GS (2005) The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports Med 35: 235–256

    Google Scholar 

  • Weineck J (2000) Optimales Training: Leistungsphysiologische Trainingslehre unter besonderer Berücksichtigung des Kinder- und Jugentrainings, 12th ed. Spitta, Balingen

    Google Scholar 

  • Wernbom M, Järrebring R, Andreasson MA, Augustsson J (2009) Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load. Journal of Strength and Conditioning Research 23: 2389–2395

    Google Scholar 

  • Wernbom M, Apro W, Paulsen G, Nilsen TS, Blomstrand E, Raastad T (2013) Acute low-load resistance exercise with and without blood flow restriction increased protein signalling and number of satellite cells in human skeletal muscle. Eur J Appl Physiol 113: 2953–2965

    Google Scholar 

  • West DWD, Phillips SM (2012) Associations of exercise-induced hormone profiles and gains in strength and hypertrophy in a large cohort after weight training. Eur J Appl Physiol 112: 2693–2702

    Google Scholar 

  • Weston M, Taylor KL, Batterham AM, Hopkins WG (2014) Effects of low-volume high-intensity interval training (HIT) on fitness in adults: a meta-analysis of controlled and non-controlled trials. Sports Medicine 44: 1005–1017

    Google Scholar 

  • Wilke J, Vogt L, Niederer D, Hübscher M, Rothmayr J, Ivkovic D, Rickert M, Banzer W (2014) Short-term effects of acupuncture and stretching on myofascial trigger point pain of the neck: A blinded, placebo-controlled RCT. Complement. Ther Med 22: 835–841

    Google Scholar 

  • Woods C, Hawkins R, Maltby S, Hulse M, Thomas A, Hodson A (2004) The Football Association Medical Research Programme: An audit of injuries in professional football--analysis of hamstring injuries. British Journal of Sports Medicine 38: 36–41

    Google Scholar 

  • Wysocki A, Butler M, Shamliyan T, Kane RR (2011) Whole-Body Vibration Therapy for Osteoporosis: State of the Science. Ann Intern Med 155: 680–686

    Google Scholar 

  • Zaciorskij VM, Kraemer WJ (2008) Krafttraining: Praxis und Wissenschaft, 3rd ed. Meyer & Meyer, Aachen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Thiel , Andreas Bernardi , Christian Thiel , Andreas Bernardi , Christian Thiel , Andreas Bernardi or Markus Hübscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thiel, C., Bernardi, A., Hübscher, M. (2017). Körperliches Training in Prävention und Therapie – Gestaltung und Effekte. In: Banzer, W. (eds) Körperliche Aktivität und Gesundheit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-50335-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-50335-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50334-8

  • Online ISBN: 978-3-662-50335-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics