Skip to main content

Bewegung und metabolisches Syndrom

  • Chapter
Körperliche Aktivität und Gesundheit

Zusammenfassung

Das metabolische Syndrom beinhaltet einen Cluster verschiedener kardiovaskulärer Risikofaktoren. Die Risikofaktoren umfassen Übergewicht, Insulinresistenz, arterielle Hypertonie sowie eine typische Fettstoffwechselstörung. Es wird geschätzt, dass derzeit weltweit annähernd 100 Millionen Menschen ein metabolisches Syndrom aufweisen. Die Sinnhaftigkeit der Zusammenfassung dieser Risikofaktoren zu einem Syndrom wird nach wie vor kontrovers diskutiert. Dennoch gibt es keinen Zweifel, dass das metabolische Syndrom mit einer deutlich erhöhten Inzidenz für Diabetes mellitus Typ 2 und verschiedenen kardiovaskulären Erkrankungen einhergeht. Es ist mittlerweile akzeptiert, dass neben einer genetischen Prädisposition ein ungesunder Lebensstil im Sinne einer hyperkalorischen, unausgewogenen Ernährung sowie eine vermindertes körperliches Aktivitätsniveau die entscheidenden Risikofaktoren für die Entstehung eines metabolischen Syndroms sind. In Kapitel 11 wird die Pathophysiologie der metabolischen Risikokonstellation näher beleuchtet, und Möglichkeiten der Prävention und Therapie über einen gesunden Lebensstil, vor allem in Hinblick auf die Rolle der körperlichen Aktivität, werden dargestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Al Dokhi LM (2009) Adipokines and etiopathology of metabolic disorders. Saudi Med J 30: 1123-32

    Google Scholar 

  • Andersen CJ, Fernandez ML (2013) Dietary strategies to reduce metabolic syndrome. Rev Endocr Metab Disord 14: 241-54

    Google Scholar 

  • Bassi N, Karagodin I, Wang S, Vassallo P, Priyanath A, Massaro E, Stone NJ (2014) Lifestyle modification for metabolic syndrome: a systematic review. Am J Med 127: 1242-10

    Google Scholar 

  • Beltowski J (2003) Adiponectin and resistin--new hormones of white adipose tissue. Med Sci Monit 9: RA55-RA61

    Google Scholar 

  • Brady MJ (2004) IRS2 takes center stage in the development of type 2 diabetes. J Clin Invest 114: 886-8

    Google Scholar 

  • Carroll S, Dudfield M (2004) What is the relationship between exercise and metabolic abnormalities? A review of the metabolic syndrome. Sports Med 34: 371-418

    Google Scholar 

  • Christensen JO, Svendsen OL, Hassager C, Christiansen C (1998) Leptin in overweight postmenopausal women: no relationship with metabolic syndrome X or effect of exercise in addition to diet. Int J Obes Relat Metab Disord 22: 195-9

    Google Scholar 

  • Das UN (2004) Metabolic syndrome X: an inflammatory condition? Curr Hypertens Rep 6: 66-73

    Google Scholar 

  • Farrell SW, Cheng YJ, Blair SN (2004) Prevalence of the metabolic syndrome across cardiorespiratory fitness levels in women. Obes Res 12: 824-30

    Google Scholar 

  • Ford ES, Giles WH, Dietz WH (2002) Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 287: 356-9

    Google Scholar 

  • Galassi A, Reynolds K, He J (2006) Metabolic syndrome and risk of cardiovascular disease: a meta-analysis. Am J Med 119: 812-9

    Google Scholar 

  • Gordon B, Chen S, Durstine JL (2014) The effects of exercise training on the traditional lipid profile and beyond. Curr Sports Med Rep 13: 253-9

    Google Scholar 

  • Grundy SM (1998) Hypertriglyceridemia, atherogenic dyslipidemia, and the metabolic syndrome. Am J Cardiol 81: 18B

    Google Scholar 

  • Grundy SM (2003) Inflammation, hypertension, and the metabolic syndrome. JAMA 290: 3000-2

    Google Scholar 

  • Grundy SM (2012) Pre-diabetes, metabolic syndrome, and cardiovascular risk. J Am Coll Cardiol 59: 635-43

    Google Scholar 

  • Helge JW, Kriketos AD, Storlien LH (1998) Insulin sensitivity, muscle fibre types, and membrane lipids. [Review] [56 refs]. Adv Exp Med Biol 441: 129-38

    Google Scholar 

  • Hoffstedt J, Wahrenberg H, Thorne A, Lonnqvist F (1996) The metabolic syndrome is related to beta 3-adrenoceptor sensitivity in visceral adipose tissue. Diabetologia 39: 838-44

    Google Scholar 

  • Hwang CL, Wu YT, Chou CH (2011) Effect of aerobic interval training on exercise capacity and metabolic risk factors in people with cardiometabolic disorders: a meta-analysis. J Cardiopulm Rehabil Prev 31: 378-85

    Google Scholar 

  • Jurca R, LaMonte MJ, Barlow CE, Kampert JB, Church TS, Blair SN (2005) Association of muscular strength with incidence of metabolic syndrome in men. Med Sci Sports Exerc 37: 1849-55

    Google Scholar 

  • Konig D, Berg A (2012) [Physical exercise as treatment of type 2 diabetes mellitus]. Internist (Berl) 53: 678-87

    Google Scholar 

  • Konig D, Bonner G, Berg A (2007) [The role of adiposity and inactivity in primary prevention of cardiovascular disease]. Herz 32: 553-9

    Google Scholar 

  • König D, Deibert P, Dickhut HH, Berg A (2010) Bewegungstherapie bei Diabetes mellitus Typ II - metabolische Grundlagen und evidenzbasierte Empfehlungen. Deu Z Sportmed 57: 242-7

    Google Scholar 

  • König D, Deibert P, Dickhuth HH, Berg A (2004) Physical activity and dyslipoproteinemia. MMW Fortschr Med 146: 34-7

    Google Scholar 

  • Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, Salonen JT (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288: 2709-16

    Google Scholar 

  • Lee S, Kim Y (2013) Effects of exercise alone on insulin sensitivity and glucose tolerance in obese youth. Diabetes Metab J 37: 225-32

    Google Scholar 

  • Lee S, Kuk JL, Katzmarzyk PT, Blair SN, Church TS, Ross R (2005) Cardiorespiratory fitness attenuates metabolic risk independent of abdominal subcutaneous and visceral fat in men. Diabetes Care 28: 895-901

    Google Scholar 

  • Lin CH, Chiang SL, Tzeng WC, Chiang LC (2014) Systematic review of impact of lifestyle-modification programs on metabolic risks and patient-reported outcomes in adults with metabolic syndrome. Worldviews Evid Based Nurs 11: 361-8

    Google Scholar 

  • Montesi L, Moscatiello S, Malavolti M, Marzocchi R, Marchesini G (2013) Physical activity for the prevention and treatment of metabolic disorders. Intern Emerg Med 8: 655-66

    Google Scholar 

  • Orchard TJ, Temprosa M, Goldberg R, Haffner S, Ratner R, Marcovina S, Fowler S (2005) The effect of metformin and intensive lifestyle intervention on the metabolic syndrome: the Diabetes Prevention Program randomized trial. Ann Intern Med 142: 611-9

    Google Scholar 

  • Owens S, Galloway R (2014) Childhood obesity and the metabolic syndrome. Curr Atheroscler Rep 16: 436

    Google Scholar 

  • Pattyn N, Cornelissen VA, Eshghi SR, Vanhees L (2013) The effect of exercise on the cardiovascular risk factors constituting the metabolic syndrome: a meta-analysis of controlled trials. Sports Med 43: 121-33

    Google Scholar 

  • Pedersen BK, Saltin B (2015) Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports 25 Suppl 3: 1-72

    Google Scholar 

  • Rasmussen BB, Holmback UC, Volpi E, Morio-Liondore B, Paddon-Jones D, Wolfe RR (2002) Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle. J Clin Invest 110: 1687-93

    Google Scholar 

  • Ravussin E, Smith SR (2002) Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Ann N Y Acad Sci 967: 363-78

    Google Scholar 

  • Reaven GM (1988) Role of insulin resistance in human disease. Diabetes 37: 1595-607

    Google Scholar 

  • Savage DB, Petersen KF, Shulman GI (2005) Mechanisms of insulin resistance in humans and possible links with inflammation. Hypertension 45: 828-33

    Google Scholar 

  • Steinberg HO, Paradisi G, Hook G, Crowder K, Cronin J, Baron AD (2000) Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes 49: 1231-8

    Google Scholar 

  • Unger RH (2002) Lipotoxic diseases. Annu Rev Med 53: 319-36

    Google Scholar 

  • Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 21: 697-738

    Google Scholar 

  • Whitehead JP, Richards AA, Hickman IJ, Macdonald GA, Prins JB (2006) Adiponectin--a key adipokine in the metabolic syndrome. Diabetes Obes Metab 8: 264-80

    Google Scholar 

  • You T, Ryan AS, Nicklas BJ (2004) The Metabolic Syndrome in Obese Postmenopausal Women: Relationship to Body Composition, Visceral Fat, and Inflammation. J Clin Endocrinol Metab 89: 5517-22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

König, D. (2017). Bewegung und metabolisches Syndrom. In: Banzer, W. (eds) Körperliche Aktivität und Gesundheit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-50335-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-50335-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50334-8

  • Online ISBN: 978-3-662-50335-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics