Skip to main content

Neurophysiologische Diagnostik

  • Chapter
  • First Online:
NeuroIntensiv

Zusammenfassung

Untersuchungsmethoden der klinischen Elektroneurophysiologie sind die Elektroenzephalographie, die Messung evozierter Potenziale, die Elektroneurographie und die Elektromyographie. In den letzten Jahrzehnten haben die Fortschritte in der Neurosonologie die Untersuchung der extra- und intrakraniellen Gefäße mit hoher Sensitivität und Spezifität ermöglicht. Weitere physiologische Parameter, die zum Monitoring und zur Überwachung des neurologischen Intensivpatienten Anwendung finden, sind die Messung des intrakraniellen Drucks, des zerebralen Perfusionsdrucks, des O2-Partialdrucks im Hirngewebe, die Nahinfrarotspektroskopie, die zerebrale Mikrodialyse sowie die Messung des zerebralen Blutflusses.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-662-46500-4_44

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Zu 5.1

  1. Aminoff MJ (2012) Electrodiagnosis in clinical neurology. Livingstone, New York

    Google Scholar 

  2. Bischoff C, Dengler R, Hopf HC (2008) EMG, NLG. Thieme, Stuttgart, New York

    Book  Google Scholar 

  3. Buchner H (2014) Praxisbuch Evozierte Potenziale. Thieme, Stuttgart, New York

    Book  Google Scholar 

  4. Claassen J, Taccone FS, Horn P, Holtkamp M, Stocchetti N, Oddo M (2013) Recommendations on the use of EEG monitoring in critically ill patients: consensus statement from the neurointensive care section of the ESICM. Intensive Care Med 39:1337–1351

    Article  CAS  PubMed  Google Scholar 

  5. Guérit JM, Fischer C, Facco E, Tinuper P, Murri L, Ronne-Engström E, Nuwer M (1999) Standards of clinical practice of EEG and EPs in comatose and other unresponsive states. In: Deuschl G, Eisen A (Hrsg) Recommendations for the practice of clinical neurophysiology: Guidelines of the international federation of clinical neurophysiology Electroencephalography and clinical neurophysiology, Bd. Suppl 52.

    Google Scholar 

  6. Hermans G, De Jonghe B, Bruyninckx F, Van den Berghe G (2008) Clinical review: Critical illness polyneuropathy and myopathy. Crit Care 12:238

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stöhr M, Schulte-Matter W, Quasthoff S (2014) Klinische Elektromyographie und Neurographie – Lehrbuch und Atlas. Kohlhammer, Stuttgart

    Google Scholar 

  8. Zschoke S, Hansen HC (2012) Klinische Elektroenzephalographie. Springer, Berlin

    Book  Google Scholar 

Zu 5.2

  1. Allendörfer J, Görtler M, von Reutern GM (2006) Prognostic relevance of ultra-early doppler sonography in acute ischaemic stroke: a prospective multicentre study. Lancet Neurol 5:835–840 (for the Neurosonology in Acute Ischemic Stroke Study Group)

    Article  Google Scholar 

  2. Arning C, Widder B, von Reutern GM, Stiegler H, Görtler M (2010) Revison of DEGUM ultrasound criteria for grading internal carotid artery stenoses and transfer to NASCET measurement. Ultraschall Med 31:251–257

    Article  CAS  PubMed  Google Scholar 

  3. Baumgartner RW, Mattle HP, Schroth G (1999) Assessment of ≥50 % and. Stroke 30:87–92

    Article  CAS  PubMed  Google Scholar 

  4. Brandt T, Knauth M, Wildermuth S, Winter R, von Kummer R, Sartor K, Hacke W (1999) CT angiography and Doppler sonography for emergency assessment in acute basilar artery ischemia. Stroke 30:606–612

    Article  CAS  PubMed  Google Scholar 

  5. de Bray JM, Daugy J, Legrand MS, Pulci S (1998) Acute middle cerebral artery stroke and transcranial Doppler sonography. Eur J Ultrasound 7:31–36

    Article  PubMed  Google Scholar 

  6. Demchuk AM, Christou I, Wein TH, Felberg RA, Malkoff M, Grotta JC, Alexandrov AV (2000) Accuracy and criteria for localizing arterial occlusion with transcranial Doppler. J Neuroimaging 10:1–12

    Article  CAS  PubMed  Google Scholar 

  7. Droste DW, Lakemeier S, Wichter T, Stypmann J, Dittrich R, Ritter M, Moeller M, Freund M, Ringelstein EB (2002) Optimizing the technique of contrast transcranial Doppler ultrasound in the detection of right-to-left shunts. Stroke 33:2211–2216

    Article  PubMed  Google Scholar 

  8. Gahn G, Gerber J, Hallmeyer S et al (2000) Contrast enhanced transcranial colour-coded duplex sonography in stroke patients with limited bone window. AJNR 21:509–514

    CAS  PubMed  Google Scholar 

  9. Gahn G, von Kummer R (2001) Ultrasound in acute stroke: a review. Neuroradiology 43:702–711

    Article  CAS  PubMed  Google Scholar 

  10. Gerriets T, Seidel G, Fiss I, Modrau B, Kaps M (1999) Contrast-enhanced transcranial color-coded duplex sonography: efficiency and validity. Neurology 52:1133–1137

    Article  CAS  PubMed  Google Scholar 

  11. Gerriets T, Stolz E, Modrau B, Fiss I, Seidel G, Kaps M (1999) Sonographic monitoring of midline shift in hemispheric infarctions. Neurology 52:45–49

    Article  CAS  PubMed  Google Scholar 

  12. Görtler M, Baeumer M, Kross R, Blaser T, Lutze G, Jost S, Wallesch CW (1999) Rapid decline of cerebral microemboli of arterial origin after intravenous acetylsalicylic acid. Stroke 30:66–69

    Article  Google Scholar 

  13. Kenton AR, Martin PJ, Abbott RJ, Moody AR (1997) Comparison of transcranial color-coded sonography and magnetic resonance angiography in acute stroke. Stroke 28:1601–1606

    Article  CAS  PubMed  Google Scholar 

  14. Klötzsch C, Janssen G, Berlit P (1994) Transesophageal echocardiography and contrast-TCD in the detection of a patent foramen ovale: experiences with 111 patients. Neurology 44:1603–1606

    Article  PubMed  Google Scholar 

  15. Mäurer M, Shambal S, Berg D, Woydt M, Hofmann E, Georgiadis D, Lindner A, Becker G (1998) Differentiation between intracerebral hemorrhage and ischemic stroke by transcranial color-coded duplex-sonography. Stroke 29:2563–2567

    Article  PubMed  Google Scholar 

  16. Mariak Z, Krejza J, Swiercz M, Kordecki K, Lewko J (2002) Accuracy of transcranial color Doppler ultrasonography in the diagnosis of middle cerebral artery spasm determined by receiver operating characteristic analysis. J Neurosurg 96:323–330

    Article  PubMed  Google Scholar 

  17. Markus HS, Droste DW, Kaps M, Larrue V, Lees KR, Siebler M, Ringelstein EB (2005) Dual antiplatelet therapy with clopidogrel and aspirin in symptomatic carotid stenosis evaluated using doppler embolic signal detection: the Clopidogrel and Aspirin for Reduction of Emboli in Symptomatic Carotid Stenosis (CARESS) trial. Circulation 111:2233–2240

    Article  CAS  PubMed  Google Scholar 

  18. Schulte-Altedorneburg G, Droste DW, Popa V, Wohlgemuth WA, Kellermann M, Nabavi DG, Csiba L, Ringelstein EB (2000) Visualization of the basilar artery by transcranial color-coded duplex sonography: comparison with postmortem results. Stroke 31:1123–1127

    Article  CAS  PubMed  Google Scholar 

  19. Sturzenegger M, Mattle HP, Rivoir A, Baumgartner RW (1995) Ultrasound findings in carotid artery dissection: analysis of 43 patients. Neurology 45:691–698

    Article  CAS  PubMed  Google Scholar 

  20. von Reutern GM, Goertler MW, Bornstein NM, Del Sette M, Evans DH, Hetzel A, Kaps M, Perren F, Razumovky A, von Reutern M, Shiogai T, Titianova E, Traubner P, Venketasubramanian N, Wong LK, Yasaka M, Neurosonology Research Group of the World Federation of Neurology (2012) Grading carotid stenosis using ultrasonic methods. Stroke 43:916–921

    Article  Google Scholar 

  21. Wijdicks EF (2001) The diagnosis of brain death. N Engl J Med 344:1215–1221

    Article  CAS  PubMed  Google Scholar 

Zu 5.3

  1. Aschoff A, Steiner T (1999) Messung von Hirndruck und Perfusionsdruck. In: Schwab S, Krieger D, Müllges W, Hahmann G, Hacke W (Hrsg) Neurologische Intensivmedizin. Springer, Heidelberg, New-York, S 261–303

    Google Scholar 

  2. Asgeirsson B, Grände PO et al (1994) A new therapy of post-trauma brain oedema based on haemodynamic principles for brain volume regulation. Intensive Care Med 20:260–267

    Article  CAS  PubMed  Google Scholar 

  3. Brawanski A, Gaab MR (1981) Intracranial pressure gradients in the presence of various intracranial space-occupying lesions. Advanc Neurosurg 9:355–362

    Article  Google Scholar 

  4. Bullock MR, Chesnut RM (2007) Guidelines for the management of severe traumatic brain injury. Brain Trauma Foundation and American Association of Neurological Surgeons, New York

    Google Scholar 

  5. Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W et al (2012) A trial of intracranial-pressure monitoring in traumatic brain injury. New Engl J Med 376:2471–2481

    Article  CAS  Google Scholar 

  6. Cremer OL, van Dijk GW et al (2005) Effect of intracranial pressure monitoring and targeted intensive care on functional outcome after severe head injury. Crit Care Med 33:2207–2213

    Article  PubMed  Google Scholar 

  7. Czosnyka M, Pickard JD (2004) Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry 75:813–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grände PO (2006) „The Lund Concept” for the treatment of severe head trauma – physiological principles and clinical application. Intensive Care Med 32:1475–1484

    Article  PubMed  Google Scholar 

  9. Holloway KL, Barnes T et al (1996) Ventriculostomy Infections: The Effect of Monitoring Duration and Catheter Exchange in 584 Patients. J Neurosurg 85:419–424

    Article  CAS  PubMed  Google Scholar 

  10. Lundberg N (1960) Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand 36(Suppl 149):1–193

    CAS  Google Scholar 

  11. Pfeifer G (1980) Über die gegenseitige Beeinflussung von intrakraniellem Druck und Körperkreislauf unter Einbeziehung der Aktivität vegetativer Nerven. Medizinische Habilitationsschrift, Universität Bonn

    Google Scholar 

  12. Piek J (2006) Intrakranieller Druck – zerebraler Perfusionsdruck. In: Piek J, Unterberg A (Hrsg) Grundlagen Neurochirurgischer Intensivmedizin. Zuckschwerdt, München, Wien, New York, S 38–50

    Google Scholar 

  13. Piek J, Plewe P et al (1988) Intrahemispheric gradients of brain tissue pressure in patients with brain tumours. Acta Neurochir (Wien) 93:129–135

    Article  CAS  Google Scholar 

  14. Richard KE (1978) Long-term measuring of ventricular CSF pressure with tumors of the posterior fossa. Adv Neurosurg 5:179–187

    Google Scholar 

  15. Rosner MJ, Rosner SD et al (1995) Cerebral perfusion pressure: management protocol and clinical results. J Neurosurgery 83:949–962

    Article  CAS  Google Scholar 

  16. Sarrafzadeh AS, Smoll NR, Unterberg AW (2014) Lessons from the intracranial pressure-monitoring trial in patients with traumatic brain injury. World Neurosurg 82:E393–E395

    Article  PubMed  Google Scholar 

  17. Schwab S, Aschoff A et al (1996) The value of intracrainial pressure monitoring in acute hemispheric stroke. Neurology 47:393–398

    Article  CAS  PubMed  Google Scholar 

  18. Steiner LA, Andrews PJD (2006) Monitoring the injured brain: ICP and CBF. Br J Anaesth 97:26–38

    Article  CAS  PubMed  Google Scholar 

  19. Unterberg A, Kiening K et al (1993) Long-term observations of intracranial pressure after severe head injury. The phenomenon of secondary rise of intracranial pressure. Neurosurgery 32:17

    Article  CAS  PubMed  Google Scholar 

Zu 5.4

  1. Al-Rawi PG, Ming-Yuan T et al (2010) Hypertonic saline in patients with poor-grade subarachnoid hemorrhage improves cerebral blood flow, brain tissue oxygen, and pH. Stroke 41(1):122–128

    Article  CAS  PubMed  Google Scholar 

  2. Beppu T, Kamada K et al (2002) Change of oxygen pressure in glioblastoma tissue under various conditions. J Neurooncol 58(1):47–52

    Article  PubMed  Google Scholar 

  3. Beynon C, Kiening KL et al (2012) Brain tissue oxygen monitoring and hyperoxic treatment in patients with traumatic brain injury. J Neurotrauma 29:2109–2123

    Article  PubMed  Google Scholar 

  4. Brain Trauma Foundation et al (2007) Guidelines for the Management of Severe Traumatic Brain Injury, 3rd Edition. J Neurotrauma (24):1–106

    Google Scholar 

  5. Brawanski A, Faltermeier R et al (2002) Comparison of near-infrared spectroscopy and tissue p(O2) time series in patients after severe head injury and aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 22(5):605–611

    Article  PubMed  Google Scholar 

  6. Cerejo A, Silvo PA et al (2012) Intraoperative brain oxygenation monitoring and vasospasm in aneurysmal subarachnoid hemorrhage. Neurol Res 34:181–186

    CAS  PubMed  Google Scholar 

  7. Charbel FT, Du X et al (2000) Brain tissue PO(2), PCO(2), and pH during cerebral vasospasm. Surg Neurol 54(6):432–437 (discussion 438)

    Article  CAS  PubMed  Google Scholar 

  8. Clark JC Jr. (1956) Monitor and control of blood and tissue oxygen tension. Transaction of the Society of Art internal Organs 2:41–48

    Google Scholar 

  9. Deshaies EM, Jacobsen W et al (2012) Brain tissue oxygen monitoring to assess reperfusion after intra-arterial treatment of aneurysmal subarachnoid hemorrhage-induced cerebral vasospasm: a retrospective study. Am J Neuroradiol 33:1411–1415

    Article  CAS  PubMed  Google Scholar 

  10. Dings J, Meixensberger J et al (1998) Clinical experience with 118 brain tissue oxygen partial pressure catheter probes. Neurosurgery 43(5):1082–1095

    Article  CAS  PubMed  Google Scholar 

  11. Doppenberg EM, Zauner A et al (1998) Determination of the ischemic threshold for brain oxygen tension. Acta Neurochir Suppl (Wien) 71:166–169

    CAS  Google Scholar 

  12. Hartl R, Bardt TF et al (1997) Mannitol decreases ICP but does not improve brain-tissue pO2 in severely head-injured patients with intracranial hypertension. Acta Neurochir Suppl (Wien) 70:40–42

    CAS  Google Scholar 

  13. Hoelper BM, Hofmann E et al (2003) Transluminal balloon angioplasty improves brain tissue oxygenation and metabolism in severe vasospasm after aneurysmal subarachnoid hemorrhage: case report. Neurosurgery 52(4):970–974 (discussion 974–976)

    Article  PubMed  Google Scholar 

  14. Jaeger M, Schuhmann MU et al (2006) Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med 34:1783–1788

    Article  PubMed  Google Scholar 

  15. Kett-White R, Hutchinson PJ et al (2002) Adverse cerebral events detected after subarachnoid hemorrhage using brain oxygen and microdialysis probes. Neurosurgery 50(6):1213–1221 (discussion 1221–1222)

    PubMed  Google Scholar 

  16. Kiening KL, Unterberg AW et al (1996) Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue pO2 vs. jugular vein oxygen saturation. J Neurosurg 85:751–757

    Article  CAS  PubMed  Google Scholar 

  17. Ko SB, Choi HA et al (2011) Multimodality monitoring for cerebral perfusion pressure optimization in comatose patients with intracerebral hemorrhage. Stroke 42:3087–3092

    Article  PubMed  PubMed Central  Google Scholar 

  18. Leniger-Follert E, Lübbers DW et al (1975) Regulation of local tissue pO2 of the brain cortex at different arterial O2-pressures. Pflügers Archiv 359:81–95

    Article  CAS  PubMed  Google Scholar 

  19. Longhi L, Valeriani V et al (2002) Effects of hyperoxia on brain tissue oxygen tension in cerebral focal lesions. Acta Neurochir (Suppl) 81:315–317

    CAS  Google Scholar 

  20. Maloney-Wilskey E, Gracias V et al (2009) Brain tissue oxygen and outcome after severe traumatic brain injury: A systematic review. Crit Care Med 37:2057–2063

    Article  Google Scholar 

  21. Nortje J, Coles JP et al (2008) Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: Preliminary findings. Crit Care Med 36:273–282

    Article  CAS  PubMed  Google Scholar 

  22. Oddo M, Levine JM et al (2009) Effect of mannitol and hypertonic saline on cerebral oxygenation in patients with severe traumatic brain injury and refractory intracranial hypertension. J Neurol Neurosurg Psychiatry 80(8):916–920

    Article  CAS  PubMed  Google Scholar 

  23. Raabe A, Beck J et al (2005) Relative importance of hypertension compared with hypervolemia for increasing cerebral oxygenation in patients with cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg 103:974–981

    Article  PubMed  Google Scholar 

  24. Reinprecht A, Greher M et al (2003) Prone position in subarachnoid hemorrhage patients with acute respiratory distress syndrome: effects on cerebral tissue oxygenation and intracranial pressure. Crit Care Med 31(6):1831–1838

    Article  PubMed  Google Scholar 

  25. Sakowitz O, Stover J et al (2007) Effects of mannitol bolus administration on intracranial pressure, cerebral extracellular metabolites, and tissue oxygenation in severely head-injured patients. J Trauma 62:292–298

    Article  CAS  PubMed  Google Scholar 

  26. Soehle M, Jaeger M et al (2003) Online assessment of brain tissue oxygen autoregulation in traumatic brain injury and subarachnoid hemorrhage. Neurol Res 25(4):411–417

    Article  PubMed  Google Scholar 

  27. Steiner T, Pilz J et al (2001) Multimodal monitoring in middle cerebral artery stroke. Stroke 32:2500–2506

    Article  CAS  PubMed  Google Scholar 

  28. Stiefel M, Spiotta A et al (2005) Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring. J Neurosurg 103:805–811

    Article  PubMed  Google Scholar 

  29. Tisdall MM, Tachtsidis I et al (2008) Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury. J Neurosurg 109:424–432

    Article  PubMed  Google Scholar 

  30. Tolias C, Reinert M et al (2004) Normobaric hyperoxia-induced improvement in cerebral metabolism and reduction in intracranial pressure in patients with severe head injury: a prospective historical cohort-matched study. J Neurosurg 101:435–444

    Article  PubMed  Google Scholar 

  31. Unterberg AW, Kiening KL et al (1997) Multimodal monitoring in patients with head injury: evaluation of the effects of treatment on cerebral oxygenation. J Trauma 42(5 Suppl):32–37

    Article  Google Scholar 

  32. van den Brink WA, Haitsma IA et al (1998) Brain parenchyma/pO2 catheter interface: a histopathological study in the rat. J Neurotrauma 15(10):813–824

    Article  PubMed  Google Scholar 

  33. van Santbrink H, Maas AI et al (1996) Continuous monitoring of partial pressure of brain tissue oxygen in patients with severe head injury. Neurosurgery 38(1):21–31

    Article  PubMed  Google Scholar 

  34. Zauner A, Bullock R et al (1995) Brain oxygen, CO2, pH, and temperature monitoring: evaluation in the feline brain. Neurosurgery 37(6):1168–1177

    Article  CAS  PubMed  Google Scholar 

  35. Zauner A, Doppenberg EM et al (1997) Continuous monitoring of cerebral substrate delivery and clearance: initial experience in 24 patients with severe acute brain injuries. Neurosurgery 41(5):1082–1091 (discussion 1091–1093)

    Article  CAS  PubMed  Google Scholar 

Zu 5.5

  1. Jobsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Article  CAS  PubMed  Google Scholar 

  2. Obrig H, Villringer A (2003) Beyond the visible-imaging the human brain with light. J Cereb Blood Flow Metab 23:1–18

    Article  PubMed  Google Scholar 

  3. Ohmae E, Ouchi Y, Oda M et al (2006) Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements. Neuroimage 29:697–705

    Article  PubMed  Google Scholar 

  4. Ghosh A, Elwell C, Smith M (2012) Cerebral near-infrared spectroscopy in adults: a work in progress. Anesth Analg 115():1373–1383

    Article  CAS  PubMed  Google Scholar 

  5. Nielsen HB (2014) Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery. Front Physiol 5:9

    Article  Google Scholar 

  6. Keller E, Mudra R (2007) Measurement of cerebral blood flow with near infrared spectroscopy and indocyanine green dye dilution. Curr Med Imaging Rev 3:139–150

    Article  Google Scholar 

  7. Murkin JM, Arango M (2009) Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth 103(Suppl 1):i3–13

    Article  PubMed  Google Scholar 

  8. Highton D, Elwell C, Smith M (2010) Noninvasive cerebral oximetry: Is there light at the end of the tunnel? Curr Opin Anaesthesiol 23:576–581

    Article  PubMed  Google Scholar 

  9. Kirkpatrick PJ, Smielewski P, Whitfield PC, Czosnyka M, Menon D, Pickard JD (1995) An observational study of near-infrared spectroscopy during carotid endarterectomy. J Neurosurg 82:756–763

    Article  CAS  PubMed  Google Scholar 

  10. Dunham CM, Ransom KJ, Flowers LL, Siegal JD, Kohli CM (2004) Cerebral hypoxia in severely brain-injured patients is associated with admission glasgow coma scale score, computed tomographic severity, cerebral perfusion pressure, and survival. J Trauma 56:482–489 (discussion 489–491)

    Article  PubMed  Google Scholar 

  11. Al-Rawi PG, Smielewski P, Kirkpatrick PJ (2001) Evaluation of a near-infrared spectrometer (niro 300) for the detection of intracranial oxygenation changes in the adult head. Stroke 32:2492–2500

    Article  CAS  PubMed  Google Scholar 

  12. Al-Rawi PG, Kirkpatrick PJ (2006) Tissue oxygen index: Thresholds for cerebral ischemia using near-infrared spectroscopy. Stroke 37:2720–2725

    Article  PubMed  Google Scholar 

  13. Pennekamp CW, Bots ML, Kappelle LJ, Moll FL, de Borst GJ (2009) The value of near-infrared spectroscopy measured cerebral oximetry during carotid endarterectomy in perioperative stroke prevention. A review. Eur J Vasc Endovasc Surg 38:539–545

    Article  CAS  PubMed  Google Scholar 

  14. Murkin JM, Adams SJ, Novick RJ, Quantz M, Bainbridge D, Iglesias I, Cleland A, Schaefer B, Irwin B, Fox S (2007) Monitoring brain oxygen saturation during coronary bypass surgery: A randomized, prospective study. Anesth Analg 104:51–58

    Article  PubMed  Google Scholar 

  15. Slater JP, Guarino T, Stack J, Vinod K, Bustami RT, Brown JM 3rd, Rodriguez AL, Magovern CJ, Zaubler T, Freundlich K, Parr GV (2009) Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg 87:36–44 (discussion 44–35)

    Article  PubMed  Google Scholar 

  16. Nagashima H, Okudera H, Kobayashi S, Iwashita T (1998) Monitoring of cerebral hemodynamics using near-infrared spectroscopy during local intraarterial thrombolysis: Case report. Surg Neurol 49:420–424

    Article  CAS  PubMed  Google Scholar 

  17. Damian MS, Schlosser R (2007) Bilateral near infrared spectroscopy in space-occupying middle cerebral artery stroke. Neurocrit Care 6:165–173

    Article  CAS  PubMed  Google Scholar 

  18. Yokose N, Sakatani K, Murata Y, Awano T, Igarashi T, Nakamura S, Hoshino T, Katayama Y (2010) Bedside monitoring of cerebral blood oxygenation and hemodynamics after aneurysmal subarachnoid hemorrhage by quantitative time-resolved near-infrared spectroscopy. World Neurosurg 73:508–513

    Article  PubMed  Google Scholar 

  19. Asim K, Gokhan E, Ozlem B, Ozcan Y, Deniz O, Kamil K, Murat Z, Aydın C, Selman Y (2014) Near infrared spectrophotometry (cerebral oximetry) in predicting the return of spontaneous circulation in out-of-hospital cardiac arrest. Am J Emerg Med 32:14–17

    Article  PubMed  Google Scholar 

  20. Ahn A, Nasir A, Malik H, D’Orazi F, Parnia S (2013) A pilot study examining the role of regional cerebral oxygen saturation monitoring as a marker of return of spontaneous circulation in shockable (VF/VT) and non-shockable (PEA/Asystole) causes of cardiac arrest. Resuscitation 84:1713–1716

    Article  PubMed  Google Scholar 

  21. Smielewski P, Czosnyka M, Pickard JD, Kirkpatrick P (1997) Clinical evaluation of near-infrared spectroscopy for testing cerebrovascular reactivity in patients with carotid artery disease. Stroke 28:331–338

    Article  CAS  PubMed  Google Scholar 

  22. Terborg C, Gora F, Weiller C, Rother J (2000) Reduced vasomotor reactivity in cerebral microangiopathy : A study with near-infrared spectroscopy and transcranial doppler sonography. Stroke 31:924–929

    Article  CAS  PubMed  Google Scholar 

  23. Terborg C, Birkner T, Schack B, Weiller C, Rother J (2003) Noninvasive monitoring of cerebral oxygenation during vasomotor reactivity tests by a new near-infrared spectroscopy device. Cerebrovasc Dis 16:36–41

    Article  CAS  PubMed  Google Scholar 

  24. Vernieri F, Silvestrini M, Tibuzzi F, Pasqualetti P, Altamura C, Passarelli F, Matteis M, Rossini PM (2006) Hemoglobin oxygen saturation as a marker of cerebral hemodynamics in carotid artery occlusion: An integrated transcranial doppler and near-infrared spectroscopy study. J Neurol 253:1459–1465

    Article  PubMed  Google Scholar 

  25. Zweifel C, Castellani G, Czosnyka M, Carrera E, Brady KM, Kirkpatrick PJ, Pickard JD, Smielewski P. Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage. Stroke 41: 1963–1968

    Google Scholar 

  26. Keller E, Nadler A, Imhof HG, Niederer P, Roth P, Yonekawa Y (2002) New methods for monitoring cerebral oxygenation and hemodynamics in patients with subarachnoid hemorrhage. Acta Neurochir (Suppl) 82:87–92

    CAS  Google Scholar 

  27. Keller E, Ishihara H, Nadler A, Niederer P, Seifert B, Yonekawa Y, Frei K (2002) Evaluation of brain toxicity following near infrared light exposure after indocyanine green dye injection. J Neurosci Methods 117:23–31

    Article  PubMed  Google Scholar 

  28. Roberts I, Fallon P, Kirkham FJ, Lloyd Thomas A, Cooper C, Maynard R, Elliot M, Edwards AD (1993) Estimation of cerebral blood flow with near infrared spectroscopy and indocyanine green. Lancet 342:1425

    Article  CAS  PubMed  Google Scholar 

  29. Kuebler WM, Sckell A, Habler O, Kleen M, Kuhnle GE, Welte M, Messmer K, Goetz AE (1998) Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green. J Cereb Blood Flow Metab 18:445–456

    Article  CAS  PubMed  Google Scholar 

  30. Wagner BP, Gertsch S, Amann RA, Pfenninger J (2003) Reproducibility of the blood flow index as noninvasive, bedside estimation of cerebral blood flow. Intensive Care Med 29:196–200

    Article  PubMed  Google Scholar 

  31. Terborg C, Bramer S, Harscher S, Simon M, Witte OW (2003) Bedside assessment of cerebral perfusion reductions in patients with acute ischemic stroke by near-infrared spectroscopy and indocyanine green. J Neurol Neurosurg Psychiatry 75:38–42

    Google Scholar 

  32. Terborg C, Groschel K, Petrovitch A, Ringer T, Schnaudigel S, Witte OW, Kastrup A (2009) Noninvasive assessment of cerebral perfusion and oxygenation in acute ischemic stroke by near-infrared spectroscopy. Eur Neurol 62:338–343

    Article  CAS  PubMed  Google Scholar 

  33. Keller E, Nadler A, Alkhadi H, Kollias S, Yonekawa Y, Niederer P (2003) Noninvasive measurement of regional cerebral blood flow and regional cerebral bood volume by near infrared spectroscopy and indocynaine green dye dilution. Neuroimage 20:828–839

    Article  PubMed  Google Scholar 

  34. Steinbrink J, Wabnitz H, Obrig H, Villringer A, Rinneberg H (2001) Determining changes in nir absorption using a layered model of the human head. Phys Med Biol 46:879–896

    Article  CAS  PubMed  Google Scholar 

  35. Keller E, Froehlich J, Muroi C, Sikorski C, Muser M (2011) Neuromonitoring in intensive care: A new brain tissue probe for combined monitoring of intracranial pressure (icp) cerebral blood flow (cbf) and oxygenation. Acta Neurochir (Suppl) 110:217–220

    CAS  Google Scholar 

  36. Ohmae E, Ouchi Y, Oda M, Suzuki T, Nobesawa S, Kanno T, Yoshikawa E, Futatsubashi M, Ueda Y, Okada H, Yamashita Y (2006) Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: Correlation with simultaneous positron emission tomography measurements. Neuroimage 29:697–705

    Article  PubMed  Google Scholar 

  37. Lee JK, Kibler KK, Benni PB, Easley RB, Czosnyka M, Smielewski P, Koehler RC, Shaffner DH, Brady KM (2009) Cerebrovascular reactivity measured by near-infrared spectroscopy. Stroke 40:1820–1826

    Article  PubMed  Google Scholar 

  38. Kakihana Y, Matsunaga A, Yasuda T, Imabayashi T, Kanmura Y, Tamura M (2008) Brain oxymetry in the operating room: Current status and future directions with particular regard to cytochrome oxidase. J Biomed Opt 13:033001

    Article  PubMed  CAS  Google Scholar 

  39. Harilall Y, Adam JK, Biccard BM, Reddi A (2014) The effect of optimising cerebral tissue oxygen saturation on markers of neurological injury during coronary artery bypass graft surgery. Heart Lung Circ 23:68–74

    Article  PubMed  Google Scholar 

Zu 5.6

  1. Bellander BM, Cantais E, Enblad P, Hutchinson P, Nordstrom CH, Robertson C et al (2004) Consensus meeting on microdialysis in neurointensive care. Intensive care med 30:2166–2169

    Article  PubMed  Google Scholar 

  2. Berger C, Schabitz WR, Georgiadis D, Steiner T, Aschoff A, Schwab S (2002) Effects of hypothermia on excitatory amino acids and metabolism in stroke patients: a microdialysis study. Stroke 33:519–524

    Article  CAS  PubMed  Google Scholar 

  3. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N et al (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. New Engl J Med 358:125–139

    Article  CAS  PubMed  Google Scholar 

  4. Chen HI, Stiefel MF, Oddo M, Milby AH, Maloney-Wilensky E, Frangos S et al (2011) Detection of cerebral compromise with multimodality monitoring in patients with subarachnoid hemorrhage. Neurosurgery 69:53–63 (discussion 63)

    Article  PubMed  Google Scholar 

  5. Choi HA, Ko SB, Chen H, Gilmore E, Carpenter AM, Lee D et al (2012) Acute effects of nimodipine on cerebral vasculature and brain metabolism in high grade subarachnoid hemorrhage patients. Neurocrit care 16:363–367

    Article  CAS  PubMed  Google Scholar 

  6. Chou SH, Feske SK, Atherton J, Konigsberg RG, De Jager PL, Du R et al (2012) Early elevation of serum tumor necrosis factor-alpha is associated with poor outcome in subarachnoid hemorrhage. J Invest Med 60:1054–1058

    Article  CAS  Google Scholar 

  7. Claassen J, Carhuapoma JR, Kreiter KT, Du EY, Connolly ES, Mayer SA (2002) Global cerebral edema after subarachnoid hemorrhage: Frequency, predictors, and impact on outcome. Stroke 33:1225–1232

    Article  PubMed  Google Scholar 

  8. Connolly ES Jr., Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT et al (2012) Guidelines for the management of aneurysmal subarachnoid hemorrhage: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke 43:1711–1737

    Article  PubMed  Google Scholar 

  9. Diedler J, Karpel-Massler G, Sykora M, Poli S, Sakowitz OW, Veltkamp R et al (2010) Autoregulation and brain metabolism in the perihematomal region of spontaneous intracerebral hemorrhage: An observational pilot study. J Neurol Sci 295:16–22

    Article  PubMed  Google Scholar 

  10. Dohmen C, Bosche B, Graf R, Staub F, Kracht L, Sobesky J, Neveling M, Brinker G, Heiss WD (2003) Prediction of malignant course in MCA infarction by PET and microdialysis. Stroke 34:2152–2158

    Article  PubMed  Google Scholar 

  11. Enblad P, Valtysson J, Andersson J, Lilja A, Valind S, Antoni G, Langstrom B, Hillered L, Persson L (1996) Simultaneous intracerebral microdialysis and positron emission tomography in the detection of ischemia in patients with subarachnoid hemorrhage. J Cereb Blood Flow Metab 16:637–644

    Article  CAS  PubMed  Google Scholar 

  12. Feuerstein D, Manning A, Hashemi P, Bhatia R, Fabricius M, Tolias C, Pahl C, Ervine M, Strong AJ, Boutelle MG (2010) Dynamic metabolic response to multiple spreading depolarizations in patients with acute brain injury: an online microdialysis study. J Cereb Blood Flow Metab 30:1343–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Helbok R, Schmidt MJ, Kurtz P, Hanafy KA, Fernandez L, Stuart MR, Presciutti M, Ostapkovitch ND, Conolly ES, Lee K, Badjatia N, Mayer SA, Claassen J (2010) Systemic glucose and brain energy metabolism after subarachnoid hemorrhage. Neurocrit Care 12:317–323

    Article  CAS  PubMed  Google Scholar 

  14. Helbok R, Beer R, Chemelli A, Sohm F, Broessner G, Lackner P, Sojer M, Pfausler B, Thomé C, Schmutzhard E (2011) Multimodal neuromonitoring in a patient with aneurysmal subarachnoid hemorrhage associated with aortic coarctation. Neurocrit Care 14:433–437

    Article  PubMed  Google Scholar 

  15. Helbok R, Ko SB, Schmidt JM, Kurtz P, Fernandez L, Choi HA et al (2011) Global cerebral edema and brain metabolism after subarachnoid hemorrhage. Stroke 42:1534–1539

    Article  PubMed  Google Scholar 

  16. Helbok R, Kurtz P, Schmidt MJ, Stuart MR, Fernandez L, Connolly SE et al (2012) Effects of the neurological wake-up test on clinical examination, intracranial pressure, brain metabolism and brain tissue oxygenation in severely brain-injured patients. Crit Care 16:R226

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ko SB, Choi HA, Parikh G, Helbok R, Schmidt JM, Lee K et al (2011) Multimodality monitoring for cerebral perfusion pressure optimization in comatose patients with intracerebral hemorrhage. Stroke 42:3087–3092

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kurtz P, Schmidt JM, Claassen J, Carrera E, Fernandez L, Helbok R et al (2010) Anemia is associated with metabolic distress and brain tissue hypoxia after subarachnoid hemorrhage. Neurocrit care 13:10–16

    Article  CAS  PubMed  Google Scholar 

  19. Lakshmanan R, Loo JA, Drake T, Leblanc J, Ytterberg AJ, McArthur DL et al (2010) Metabolic crisis after traumatic brain injury is associated with a novel microdialysis proteome. Neurocrit care 12:324–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marcoux J, McArthur DA, Miller C, Glenn TC, Villablanca P, Martin NA et al (2008) Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit care med 36:2871–2877

    Article  CAS  PubMed  Google Scholar 

  21. Mellergard P, Aneman O, Sjogren F, Saberg C, Hillman J (2011) Differences in cerebral extracellular response of interleukin-1beta, interleukin-6, and interleukin-10 after subarachnoid hemorrhage or severe head trauma in humans. Neurosurgery 68:12–19 (discussion 19)

    Article  PubMed  Google Scholar 

  22. Miller C, Vespa PM, McArthur DL, Hirt D, Etchepare M (2009) Frameless Stereotactic Aspiration and Thrombolysis of Deep Intracerebral Hemorrhage is associated with reduced levels of extracellular cerebral glutamate and unchanged lactate pyruvate ratios. Neurocrit Care 6:22–29

    Article  Google Scholar 

  23. Nilsson OG, Brandt L, Ungerstedt U, Saveland H (1999) Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration. Neurosurgery 45:1176–1184 (discussion 1184–1185)

    Article  CAS  PubMed  Google Scholar 

  24. Nordstrom CH (2003) Assessment of critical thresholds for cerebral perfusion pressure by performing bedside monitoring of cerebral energy metabolism. Neurosurg focus 15:E5

    Article  PubMed  Google Scholar 

  25. Nordstrom CH, Reinstrup P, Xu W, Gardenfors A, Ungerstedt U (2003) Assessment of the lower limit for cerebral perfusion pressure in severe head injuries by bedside monitoring of regional energy metabolism. Anesthesiology 98:809–814

    Article  PubMed  Google Scholar 

  26. Oddo M, Schmidt JM, Carrera E, Badjatia N, Connolly ES, Presciutti M et al (2008) Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: A microdialysis study. Crit Care Med 36:3233–3238

    Article  CAS  PubMed  Google Scholar 

  27. Oddo M, Milby A, Chen I, Frangos S, MacMurtrie E, Maloney-Wilensky E et al (2009) Hemoglobin concentration and cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage. Stroke 40:1275–1281

    Article  CAS  PubMed  Google Scholar 

  28. Parkin M, Hopwood S, Jones DA, Hashemi P, Landolt H, Fabricius M, Lauritzen M, Boutelle MG, Strong AJ (2005) Dynamic changes in brain glucose and lactate in pericontusional areas of the human cerebral cortex, monitored with rapid sampling on-line microdialysis: relationship with depolarisation-like events. J Cereb Blood Flow Metab 25:402–413

    Article  CAS  PubMed  Google Scholar 

  29. Persson L, Valtysson J, Enblad P, Warme PE, Cesarini K, Lewen A, Hillered L (1996) Neurochemical monitoring using intracerebral microdialysis in patients with subarachnoid hemorrhage. J Neurosurg 84:606–616

    Article  CAS  PubMed  Google Scholar 

  30. Proceedings of the xiii international symposium on intracranial pressure and brain monitoring, july 22-26, 2007, san francisco, california, USA (2008) Acta neurochirurgica. (Suppl)102: 1–452

    Google Scholar 

  31. Reinstrup P, Stahl N, Mellergard P, Uski T, Ungerstedt U, Nordstrom CH (2000) Intracerebral microdialysis in clinical practice: Baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery 47:701–709 (discussion 709–710)

    CAS  PubMed  Google Scholar 

  32. Roberts DJ, Jenne CN, Leger C, Kramer AH, Gallagher CN, Todd S et al (2013) Association between the cerebral inflammatory and matrix metalloproteinase responses after severe traumatic brain injury in humans. J neurotrauma 30:1727–1736

    Article  PubMed  Google Scholar 

  33. Sarrafzadeh AS, Sakowitz OW, Kiening KL, Benndorf G, Lanksch WR, Unterberg AW (2002) Bedside microdialysis: a tool to monitor cerebral metabolism in subarachnoid hemorrhage patients? Crit Care Med 30:1062–1070

    Article  PubMed  Google Scholar 

  34. Sarrafzadeh A, Haux D, Sakowitz O, Benndorf G, Herzog H, Kuechler I, Unterberg A (2003) Acute focal neurological deficits in aneurysmal subarachnoid hemorrhage: relation of clinical course, CT findings, and metabolite abnormalities monitored with bedside microdialysis. Stroke 34:1382–1388

    Article  CAS  PubMed  Google Scholar 

  35. Schiefecker AJ, Pfausler B, Beer R, Sohm F, Sabo J, Knauseder V et al (2013) Parenteral diclofenac infusion significantly decreases brain-tissue oxygen tension in patients with poor-grade aneurysmal subarachnoid hemorrhage. Crit care (London England) 17:R88

    Article  Google Scholar 

  36. Schmidt JM, Ko SB, Helbok R, Kurtz P, Stuart RM, Presciutti M et al (2011) Cerebral perfusion pressure thresholds for brain tissue hypoxia and metabolic crisis after poor-grade subarachnoid hemorrhage. Stroke 42:1351–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schulz MK, Wang LP, Tange M, Bjerre P (2000) Cerebral microdialysis monitoring: Determination of normal and ischemic cerebral metabolisms in patients with aneurysmal subarachnoid hemorrhage. J neurosurg 93:808–814

    Article  CAS  PubMed  Google Scholar 

  38. Timofeev I, Carpenter KL, Nortje J, Al-Rawi PG, O`Conell MT, Czosnyka M, Smielewski P, Pickard JD, Menon DK, Kirkpatrick PJ, Gupta AK, Hutchinson PJ (2011) Cerebral extracellular chemistry ans outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain 134:484–494

    Article  PubMed  Google Scholar 

  39. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M et al (2001) Intensive insulin therapy in critically ill patients. New Engl J Med 345:1359–1367

    Article  PubMed  Google Scholar 

  40. Wartenberg KE, Schmidt JM, Claassen J, Temes RE, Frontera JA, Ostapkovich N et al (2006) Impact of medical complications on outcome after subarachnoid hemorrhage. Crit care med 34:617–623 (quiz 624)

    Article  PubMed  Google Scholar 

  41. Zazulia AR, Videen TO, Powers WJ (2009) Transient focal increase in perihematomal glucose metabolism after acute human intracerebral hemorrhage. Stroke 40:1638–1643

    Article  CAS  PubMed  Google Scholar 

  42. Zetterling M, Hallberg L, Hillered L, Karlsson T, Enblad P, Ronne Engstrom E (2010) Brain energy metabolism in patients with spontaneous subarachnoid hemorrhage and global cerebral edema. Neurosurgery 66:1102–1110

    Article  PubMed  Google Scholar 

Zu 5.7

  1. Czosnyka M, Brady K, Reinhard M, Smielewski P, Steiner LA (2009) Monitoring of cerebrovascular autoregulation: Facts, myths, and missing links. Neurocrit care 10:373–386

    Article  PubMed  Google Scholar 

  2. Fridley J, Robertson CS, Gopinath SP (2014) Quantitative lobar cerebral blood flow for outcome prediction after traumatic brain injury. J Neurotrauma (in press)

    Google Scholar 

  3. Heiss WD (1990) Pathophysiology of stroke as determined by pet. Stroke 21:2–3

    Google Scholar 

  4. Hölscher T, Wilkening W, Draganski B, Meves SH, Eyding J, Voit H et al (2005) Transcranial ultrasound brain perfusion assesment with a contrast agent-specific imaging mode: Results of a two-center trial. Stroke 36:2283–2285

    Article  PubMed  Google Scholar 

  5. Jaeger M, Soehle M, Schuhmann MU, Winkler D, Meixensberger J (2005) Correlation of continuously monitored regional cerebral blood flow and brain tissue oxygen. Acta Neurochir 147:51–56 (discussion 56)

    Article  CAS  PubMed  Google Scholar 

  6. Keller E, Wietasch G, Ringleb P, Scholz M, Schwarz S, Stingele R et al (2000) Bedside monitoring of cerebral blood flow in patients with acute hemispheric stroke. Crit Care Med 28:511–516

    Article  CAS  PubMed  Google Scholar 

  7. Keller E, Nadler A, Alkadhi H, Kollias SS, Yonekawa Y, Niederer P (2003) Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution. NeuroImage 20:828–839

    Article  PubMed  Google Scholar 

  8. Keller E, Froehlich J, Baumann D, Böcklin C, Sikorski C, Seule M et al (2014) Detection of delayed cerebral ischemia (dci) in subarachnoid hemorrhage applying near infrared spectroscopy: Elimination od the extracerebral signal by transcutaneous and intraparenchymatous measurements in parallel. Acta Neurochir (Suppl) (in press)

    Google Scholar 

  9. Kety SS, Schmidt CF (1945) The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am J Physiol 143:53–60

    CAS  Google Scholar 

  10. Kuebler WM, Sckell A, Habler O, Kleen M, Kuhnle GEH, Welte M et al (1998) Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green. J Cereb Blood Flow Metab 18:445–456

    Article  CAS  PubMed  Google Scholar 

  11. Mascia L, Andrews PJ, McKeating EG, Souter MJ, Merrick MV, Piper IR (2000) Cerebral blood flow and metabolism in severe brain injury: The role of pressure autoregulation during cerebral perfusion pressure management. Intensive care Med 26:202–205

    Article  CAS  PubMed  Google Scholar 

  12. Obrist WD, Langfitt TW, Jaggi JL, Cruz J, Gennarelli TA (1984) Cerebral blood flow and metabolism in comatose patients with acute head injury. Relationship to intracranial hypertension. J Neurosurg 61:241–253

    Article  CAS  PubMed  Google Scholar 

  13. Ohmae E, Ouchi Y, Oda M, Suzuki T, Nobesawa S, Kanno T et al (2006) Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: Correlation with simultaneous positron emission tomography measurements. NeuroImage 29:697–705

    Article  PubMed  Google Scholar 

  14. Olesen J, Paulson OB, Lassen NA (1971) Regional cerebral blood flow in man determined by the initial slope of the clearance of intra-arterially injected 133xe. Stroke 2:519–540

    Article  CAS  PubMed  Google Scholar 

  15. Robertson CS, Narayan RK, Gokaslan ZL, Pahwa R, Grossman RG, Caram P Jr. et al (1989) Cerebral arteriovenous oxygen difference as an estimate of cerebral blood flow in comatose patients. J Neurosurg 70:222–230

    Article  CAS  PubMed  Google Scholar 

  16. Schubert GA, Thome C (2008) Cerebral blood flow changes in acute subarachnoid hemorrhage. Front Biosci 13:1594–1603

    Article  CAS  PubMed  Google Scholar 

  17. Schytz HW, Wienecke T, Jensen LT, Selb J, Boas DA, Ashina M (2009) Changes in cerebral blood flow after acetazolamide: An experimental study comparing near-infrared spectroscopy and spect. Eur J Neurol 16:461–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schytz HW, Guo S, Jensen LT, Kamar M, Nini A, Gress DR et al (2012) A new technology for detecting cerebral blood flow: A comparative study of ultrasound tagged nirs and 133xe-spect. Neurocrit Care 17:139–145

    Article  PubMed  Google Scholar 

  19. Sioutos PJ, Orozco JA, Carter LP, Weinand ME, Hamilton AJ, Williams FC (1995) Continuous regional cerebral cortical blood flow monitoring in head-injured patients. Neurosurgery 36:943–949 (discussion 949–950)

    Article  CAS  PubMed  Google Scholar 

  20. Sutherland BA, Rabie T, Buchan AM (2014) Laser doppler flowmetry to measure changes in cerebral blood flow. Methods Mol Biol 1135:237–248

    Article  PubMed  Google Scholar 

  21. Terborg C, Groschel K, Petrovitch A, Ringer T, Schnaudigel S, Witte OW et al (2009) Noninvasive assessment of cerebral perfusion and oxygenation in acute ischemic stroke by near-infrared spectroscopy. Eur Neurol 62:338–343

    Article  CAS  PubMed  Google Scholar 

  22. Vajkoczy P, Roth H, Horn P, Lucke T, Thome C, Hubner U et al (2000) Continuous monitoring of regional cerebral blood flow: Experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg 93:265–274

    Article  CAS  PubMed  Google Scholar 

  23. Wolf S, Vajkoczy P, Dengler J, Schurer L, Horn P (2012) Drift of the bowman hemedex(r) cerebral blood flow monitor between calibration cycles. Acta Neurochir (Suppl) 114:187–190

    Article  Google Scholar 

  24. Yonas H, Pindzola RP, Johnson DW (1996) Xenon/computed tomography cerebral blood flow and its use in clinical management. Neurosurg Clin North Am 7:605–616

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Buchner Prof. Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buchner, H. et al. (2015). Neurophysiologische Diagnostik. In: Schwab, S., Schellinger, P., Werner, C., Unterberg, A., Hacke, W. (eds) NeuroIntensiv. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46500-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46500-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46499-1

  • Online ISBN: 978-3-662-46500-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics