Skip to main content

Nozizeptives System von Früh- und Neugeborenen

  • Chapter
  • First Online:
Schmerztherapie bei Kindern, Jugendlichen und jungen Erwachsenen

Zusammenfassung

Das nozizeptive System ist in den ersten Lebenswochen extremen Reifungsprozessen unterworfen, die das periphere sensible Nervensystem, die spinale Reizübertragung und die supraspinale Schmerzverarbeitung ebenso betreffen wie die segmentale und absteigende Schmerzhemmung. Dabei spielen Veränderungen der exzitatorischen und inhibitorischen Neurotransmitter eine wichtige Rolle. Schon kleine Frühgeborene sind zur Nozizeption fähig, die Inhibition ist wenig ausgebildet. Es besteht die Gefahr der Entwicklung pathologischer Schmerzzustände (Sensibilisierung). Diese gilt es durch eine adäquate Therapie zu vermeiden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Abdulkader HM, Freer Y, Garry EM, Fleetwood-Walker SM, McIntosh N (2008) Prematurity and neonatal noxious events exert lasting effects on infant pain behaviour. Early Hum Dev 84: 351–355

    Article  PubMed  Google Scholar 

  • Altman J, Bayer SA (1984) The development of the rat spinal cord. Adv Anat Embryol Cell Biol 85: 1–164

    Article  CAS  PubMed  Google Scholar 

  • Alvares D, Torsney C, Beland B, Reynolds M, Fitzgerald M (2000) Modelling the prolonged effects of neonatal pain. Prog Brain Res 129: 365–373

    Article  CAS  PubMed  Google Scholar 

  • American Academy of Pediatrics, Canadian Pediatric Society (2000) Prevention and management of pain and stress in the neonate. Pediatrics 105: 454–461

    Article  Google Scholar 

  • Anand KJS, Hickey PR (1987) Pain and its effects in the human neonate and fetus. N Engl J Med 817: 1321–1329

    Article  Google Scholar 

  • Andrews K, Fitzgerald M (1994) The cutaneous withdrawal reflex in human neonates: sensitization, receptive fields, and the effects of contralateral stimulation. Pain 56: 95–101

    Article  CAS  PubMed  Google Scholar 

  • Armstrong-James M (1975) The functional status and columnar organization of single cells responding to cutaneous stimulation in neonatal rat somatosensory cortex S1. J Physiol 246: 501–538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baccei M, Fitzgerald M (2013) Development of pain pathways and mechanism. In: McMahon SB, Koltzenburg M, Tracey I, Turk DC (eds) Wall & Melzack’s Textbook of Pain: Expert Consult. 6 ed. Philadelphia, PA: Elsevier Saunders, pp 143–155

    Google Scholar 

  • Basbaum AI, Bautista DM, Scherrer Gg, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139: 267–284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beggs S, Currie G, Salter MW, Fitzgerald M, Walker SM (2012) Priming of adult pain responses by neonatal pain experience: maintenance by central neuroimmune activity. Brain 135: 404–417

    Article  PubMed Central  PubMed  Google Scholar 

  • Besson JM, Chaouch A (1987) Peripheral and spinal mechanisms of nociception. Physiol Rev 67: 67–186

    CAS  PubMed  Google Scholar 

  • Bicknell HR, Beal JA (1984) Axonal and dendritic development of substantia gelatinosa neurons in the lumbosacral spinal cord of the rat. J Comp Neurol 226: 508–522

    Article  PubMed  Google Scholar 

  • Blass EM, Cramer CP, Fanselow MS (1993) The development of morphine-induced antinociception in neonatal rats: A comparison of forepaw, hindpaw, and tail retraction from a thermal stimulus. Pharmacol Biochem Behav 44: 643–649

    Article  CAS  PubMed  Google Scholar 

  • Catania MV, Landwehrmeyer GB, Tesca CM, Young AB, Penney JB, Standaert DG (1994) Metabotropic glutamate receptors are differentially regulated during development. Neurosci 61: 481–495

    Article  CAS  Google Scholar 

  • Commissiong JW (1983) Development of catecholaminergic nerves in the spinal cord of the rat. Brain Res 264: 197–208

    Article  CAS  PubMed  Google Scholar 

  • de Vries JI Visser GH Prechtl HF (1982) The emergence of fetal behaviour. I. Qualitative aspects. Early Hum Dev 7: 301–322

    Article  PubMed  Google Scholar 

  • Drdla-Schutting R, Benrath J, Wunderbaldinger G, Sandlund JT (2012) Erasure of a spinal memory trace of pain by a brief, high-dose opioid administration. Science 335: 235–238

    Article  CAS  PubMed  Google Scholar 

  • Ellis A, Bennett DLH (2013) Neuroinflammation and the generation of neuropathic pain. Br J Anaesth 111: 26–37

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald M (1985) The post-natal development of cutaneous afferent fibre input and receptive field organization in the rat dorsal horn. J Physiol 364: 1–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fitzgerald M (1987) Prenatal growth of fine-diameter primary afferents into the rat spinal cord: A transganglionic tracer study. J Comp Neurol 261: 98–104

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald M (1988) The development of activity evoked by fine diameter cutaneous fibres in the spinal cord of the newborn rat. Neurosci Lett 86: 161–166

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald M (1991) A physiological study of the prenatal development of cutaneous sensory inputs to dorsal horn cells in the rat. J Physiol 432: 473–482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fitzgerald M (1995) Developmental biology of inflammatory pain. Br J Anaesth 75: 177–185

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald M, Koltzenburg M (1986) The functional development of descending inhibitory pathways in the dorsolateral funiculus of the newborn rat spinal cord. Brain Res 389: 261–270

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald M, Millard C, McIntosh N (1989) Cutaneous hypersensitivity following peripheral tissue damage in newborn infants and its reversal with topical anaesthesia. Pain 39: 31–36

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald M, Butcher T, Shortland P (1994) Developmental changes in the laminar termination of a fibre cutaneous sensory afferents in the rat spinal cord dorsal horn. J Comp Neurol 348: 225–233

    Article  CAS  PubMed  Google Scholar 

  • Gaiarsa JL, McLean H, Congar P, Leinekugel X, Khazipov R, Tseeb V, Ben-Ari Y (1995a) Postnatal maturation of g-aminobutyric acid A- and B-mediated inhibition in the CA3 hippocampal region of the rat. J Neurobiol 26: 339–349

    Google Scholar 

  • Gaiarsa JL, Tseeb V, Ben-Ari Y (1995b) Postnatal development of pre-and postsynaptic GABAB-mediated inhibitions in the CA3 hippocampal region of the rat. J Neurophysiol 73: 246–255

    Google Scholar 

  • Gassner M, Ruscheweyh R, Sandkühler J (2009) Direct excitation of spinal GABAergic interneurons by noradrenaline. Pain 145: 204–210

    Article  CAS  PubMed  Google Scholar 

  • Gold MS, Gebhart GF (2010) Nociceptor sensitization in pain pathogenesis. Nat Med 16: 1248–1257

    Article  CAS  PubMed  Google Scholar 

  • Gonzales DL, Fuchs JL, Droge MH (1993) Distribution of NMDA receptor binding in developing mouse spinal cord. Neurosci Lett 151: 134–137

    Article  Google Scholar 

  • Grunau RV, Whitfield MF, Petrie J (1994) Pain sensitivity and temperament in extremely low birth weight premature toddlers and preterm and fullterm controls. Pain 58: 341–346

    Article  CAS  PubMed  Google Scholar 

  • Hathway G, Harrop E, Baccei M, Walker S, Moss A, Fitzgerald M (2006) A postnatal switch in GABAergic control of spinal cutaneous reflexes. Eur J Neurosci 23: 112–118

    Article  PubMed Central  PubMed  Google Scholar 

  • Hathway GJ, Vega-Avelaira D, Fitzgerald M (2012) A critical period in the supraspinal control of pain: Opioid-dependent changes in brainstem rostroventral medulla function in preadolescence. Pain 153: 775–783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hermann C, Hohmeister J, Demirakca S, Zohsel K, Flor H (2006) Long-term alteration of pain sensitivity in school-aged children with early pain experiences. Pain 125: 278–285

    Article  PubMed  Google Scholar 

  • Hohmeister J, Kroll A, Wollgarten-Hadamek I, Zohsel K, Demirakca S, Flor H, Hermann C (2010) Cerebral processing of pain in school-aged children with neonatal nociceptive input: an exploratory fMRI study. Pain 150: 257–267

    Article  PubMed  Google Scholar 

  • Hori Y, Kanda K (1994) Developmental alterations in NMDA receptor-mediated [Ca2+] i elevation in substantia gelatinosa neurons of neonatal rat spinal cord. Brain Res Dev Brain Res 80: 141–148

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Heinke B, Ruscheweyh B, Sandkühler J (2003) Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 299: 1237–1240

    Article  CAS  PubMed  Google Scholar 

  • Jakowec MW, Fox AJ, Martin LJ, Kalb RG (1995) Quantitative and qualitative changes in AMPA receptor expression during spinal cord development. Neuroscience 67: 893–907

    Article  CAS  PubMed  Google Scholar 

  • Jennings E, Fitzgerald M (1998) Postnatal changes in responses of rat dorsal horn cells to afferent stimulation: a fibre-induced sensitization. J Physiol (Lond) 509: 868

    Article  Google Scholar 

  • Johnston CC, Stevens BJ (1996) Experience in a neonatal intensive care unit affects pain response. Pediatrics 98: 925–930

    CAS  PubMed  Google Scholar 

  • Johnston CC, Stevens BJ, Yang F, Horton L (1995) Differential response to pain by very premature neonates. Pain 61: 471–479

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH, Merzenich MM, Killackey HP (1983) The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Ann Rev Neurosci 6: 325–356

    Article  CAS  PubMed  Google Scholar 

  • King AE, Lopez-Garcia JA (1993) Excitatory amino acid receptor-mediated neurotransmission from cutaneous afferents in rat dorsal horn in vitro. J Physiol 472: 443–457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koch S, Fitzgerald M, Hathway G (2008) Midazolam patentiates nociceptive behaviour, sensitizes cutaneous reflexes, and is devoied of sedative action in neonatal rats. Anesthesiol 108: 122–129

    Article  CAS  Google Scholar 

  • Koch SC, Fitzgerald M (2014) The selectivity of rostroventral medulla descending control of spinal sensory inputs shifts postnatally from A-fibre to C-fibre evoked activity. J Physiol 592: 1535–1344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lloyd-Thomas AR, Fitzgerald M (1996) Do fetuses feel pain? Reflex responses do not necessarily signify pain. BMJ 313: 797–798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marti E, Gibson SJ, Polak JM, Facer P, Springall DR, Van Aswegen G, Aitchison M, Koltzenburg M (1987) Ontogeny of peptide-and amine-containing neurones in motor, sensory, and autonomic regions of rat and human spinal cord, dorsal root ganglia, and rat skin. J Comp Neurol 266: 332–359

    Article  CAS  PubMed  Google Scholar 

  • Michelson HB, Lothman EW (1989) An in vivo electrophysiological study of the ontogeny of excitatory and inhibitory processes in the rat hippocampus. Brain Res Dev Brain Res 47: 113–122

    Article  CAS  PubMed  Google Scholar 

  • Nandi R, Beacham D, Middleton J, Koltzenburg M, Howard RF, Fitzgerald M (2004) The functional expression of mu opioid receptors on sensory neurons is developmentally regulated; morphine analgesia is less selective in the neonate. Pain 111: 38–50

    Article  CAS  PubMed  Google Scholar 

  • Porter FL, Grunau RE, Anand KJ (1999) Long-term effects of pain in infants. J Dev Behav Pediatr 20: 253–261

    Article  CAS  PubMed  Google Scholar 

  • Rahman W, Dashwood MR, Fitzgerald M, Aynsley-Green A, Dickenson AH (1998) Postnatal development of multiple opioid receptors in the spinal cord and development of spinal morphine analgesia. Dev Brain Res 108: 239–254

    Article  CAS  Google Scholar 

  • Rius RA, Barg J, Bem WT, Coscia CJ, Loh YP (1991) The prenatal development profile of expression of opioid peptides and receptors in the mouse brain. Dev Brain Res 58: 237–241

    Article  CAS  Google Scholar 

  • Rodella LF, Borsani E, Rezzani R, Ricci F, Buffoli B, Bianchi R (2005) AM404, an inhibitor of anandamide reuptake decreases Fos-immunoreactivity in the spinal cord of neuropathic rats after non-noxious stimulation. Eur J Pharmacol 508: 139–146

    Article  CAS  PubMed  Google Scholar 

  • Sandkühler J (2009) Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 89: 707–758

    Article  PubMed  Google Scholar 

  • Sandkühler J, Lee J (2013) How to erase memory traces of pain and fear. Trends Neurosci 36: 343–352

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmelzle-Lubiecki BM, Campbell KA, Howard RH, Franck L, Fitzgerald M (2007) Long-term consequences of early infant injury and trauma upon somatosensory processing. Eur J Pain 11: 799–809

    Google Scholar 

  • Slater R, Cantarella A, Gallela S, Worley A, Boyd S, Meek J, Fitzgerald M (2008) Cortical pain responses in human infants. J Neurosci 26: 3662–3666

    Article  Google Scholar 

  • Slater R, Worley A, Fabrizi L, Roberts S, Meek J, Boyd S, Fitzgerald M (2010a) Evoked potentials generated by noxious stimulation in the human infant brain. Eur J Pain 14: 321–326

    Google Scholar 

  • Slater R, Cornelissen L, Fabrizi L, Patten D, Yoxen J, Worley A, Boyd S, Meek J, Fitzgerald M (2010b) Oral sucrose as an analgesic drug for procedural pain in newborn infants: a randomised controlled trial. Lancet 376: 1225–1232

    Google Scholar 

  • Slater R, Fabrizi L, Worley A, Meek J, Boyd S, Fitzgerald M (2010c) Premature infants display increased noxious-evoked neuronal activity in the brain compared to healthy age-matched term-born infants. Neuroimage 52: 583–589

    Google Scholar 

  • Taddio A, Katz J, Hersich AL, Koren G (1997) Effects of neonatal circumcision on pain response during subsequent routine vaccination. Lancet 349: 599–603

    Article  CAS  PubMed  Google Scholar 

  • Thairu BK (1971) Post-natal changes in the somaesthetic evoked potentials in the albino rat. Nat New Biol 231: 30–31

    Article  CAS  PubMed  Google Scholar 

  • Thompson RJ, Gustafson KE, Hamlett KW, Spock A (1992) Psychological adjustment of children with cystic fibrosis: The role of child cognitive processes and maternal adjustment. J Pediatr Psychol 17: 741–755

    Article  PubMed  Google Scholar 

  • Vega-Avelaira D, McKelvey R, Hathway G, Fitzgerald M (2012) The emergence of adolescent onset pain hypersensitivity following neonatal nerve injury. Mol Pain 8: 30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xanthos DN, Sandkühler J (2014) Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci 15: 43–53

    Article  CAS  PubMed  Google Scholar 

  • Zhang AZ, Pasternak GW (1981) Ontogeny of opioid pharmacology and receptors: high and low affinity site differences. Eur J Pharmacol 73: 29–40

    Article  CAS  PubMed  Google Scholar 

  • Ziskind-Conhaim L (1990) NMDA receptors mediate poly-and monosynaptic potentials in motoneurons of rat embryos. J Neurosci 10: 125–135

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sandkühler, J., Benrath, J. (2015). Nozizeptives System von Früh- und Neugeborenen. In: Zernikow, B. (eds) Schmerztherapie bei Kindern, Jugendlichen und jungen Erwachsenen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45057-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45057-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45056-7

  • Online ISBN: 978-3-662-45057-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics