Skip to main content

Zusammenfassung

Beim ersten bekannt gewordenen Anästhesietodesfall am 28. Januar 1948 in Newcastle hatte der Anästhesist Dr. Magison bei Hannah Greener vorwiegend die Atmung während der Chloroformanästhesie beobachtet, bevor es zum tödlichen Zwischenfall kam. Bei der Autopsie konnte keine entsprechende Todesursache gefunden werden. 1858 hat John Snow [31] in seinem Buch Chloroform und andere Anästhetika 50 tödliche Chloroformzwischenfälle analysiert. In 4 Fällen konnte er Atemstörungen zu Beginn der Zwischenfälle feststellen, alle anderen wurden auf eine sog. Chloroformsynkope, die zum Tode führte, zurückgeführt. John Snow [31] empfahl daher, neben der Atmung auch Puls und Pupillen zu beobachten. Das Chloroformkomitee der Royal Medical and Surgical Society stellte im Jahr 1864 bei 109 Todesfällen zuerst einen irregulären, dann einen abwesenden Puls fest (kardiale Arrhythmien waren damals noch unbekannt). Levy [18] stellte im Jahr 1922 fest, daß die sog. Chloroformsynkope möglicherweise Kammerflimmern sei. Nach Meinung Atlees [3] könnte eine Anästhe-tikasensibilisierung des Myokards durch endogene Katecholamine die Ursache für die kardialen Arrhythmien sein, die in ein Kammerflimmern übergegangen sind. In seiner Inauguraldissertation zum Dr. med. univ. führte H. Cushing (1898) die Riva-Rocci-Methode mit dem Sphygmomanometer für klinische Zwecke ein [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abrams JH, Weber RE, Holmen KD (1989) Transtracheal Doppler: A new procedure for continuous cardiac output measurement. Anesthesiology 70/1: 134–138

    Article  CAS  PubMed  Google Scholar 

  2. Abrams JH, Weber RE, Holmen KD (1989) Continuous cardiac output determination using transtracheal Doppler: Initial results in humans. Anesthesiology 71/1: 11–15

    Article  CAS  PubMed  Google Scholar 

  3. Atlee JL III (1990) Perioperative cardiac dysrhythmias, 2nd edn. Year Book Med Publ, Chicago London

    Google Scholar 

  4. Balestra B, Malacrida R, Leonardi L, Suter P, Marone C (1992) Esophageal electrodes allow precise assessment of cardiac output by bio impedance. Crit Care Med 20/1: 6267

    Article  Google Scholar 

  5. Bernstein DP (1986) A new stroke volume equation for thoracic electrical bio-impedance: theory and rationale. Crit Care Med 14: 904–909

    Article  CAS  PubMed  Google Scholar 

  6. Blank SG, West JE, Müller FB, Cody RJ, Harshield GA, Pecker MS, Laragh JH, Pickering TG (1988) Wideband external pulse recording during cuff deflations: a new technique for evaluation of the arterial pressure pulse and measurement of blood pressure. Circulation 77/6: 1297–1305

    Article  CAS  PubMed  Google Scholar 

  7. Boldt J, Kling D, Thiel A, Hempelmann G (1988) Nicht-invasive versus invasive Kreislaufüberwachung. Anästhesist 37: 218–223

    CAS  Google Scholar 

  8. Cannard T, Dripps RD, Helwig J Jr et al. (1960) The electrocardiogramm during anesthesia and surgery. Anesthesiology 21: 194–202

    Article  CAS  PubMed  Google Scholar 

  9. Castor G, Klocke RK, Stoll M, Helmus J, Niedermark I (1994) Simultaneous measurement of cardiac output by thermodilution, thoracic electrical bio-impedance and Doppler ultrasound. Brit J Anaesth 72: 133–138

    Article  CAS  PubMed  Google Scholar 

  10. Cushing H (1898) Inaugural-Dissertation über „Das neue Sphygmomanometer für klinische Zwecke“. Kastner und Losse, München

    Google Scholar 

  11. Cushing H (1903) Routine determination of arterial tension in operating room and clinic. Boston Med Surgic J 148: 250–256

    Article  Google Scholar 

  12. Editorial (1992) Bioelectrical impedance and body composition. Lancet 340/26: 1511

    Google Scholar 

  13. Eichhorn JH, Cooper JB, Cullen DJ, Maier WR, Philip JH, Seemann RG (1986) Standards for patient monitoring during anesthesia at Harvard. JAMA 256: 1017–1020

    Article  CAS  PubMed  Google Scholar 

  14. Goldman L, Caldera DL et al. (1977) Multifactorial index of cardiac risk in noncardiac surgical procedure. N Engl J Med 297: 845–850

    Article  CAS  PubMed  Google Scholar 

  15. Huntsman LL, Stewart DK, Barnes SR, Franklin SB, Colocousis JS, Hessel EA (1983) Circulation 67/3: 593–601

    Article  CAS  PubMed  Google Scholar 

  16. Kemmotsu O, Ueda M, Otsuka H, Yamamura T, Winter DC, Eckerle JS (1991) Arterial tonometry for noninvasive continuous blood pressure monitoring during anesthesia. Anesthesiol 75: 333–340

    Article  CAS  Google Scholar 

  17. Kubicek WG, Karegis JN, Patterson RP et al. (1966) Development and evaluation of an impedance cardiac output system. Aerosp Med 37: 1208–1221

    CAS  PubMed  Google Scholar 

  18. Levy AG (1922) Chloroform anaesthesia. Bale Sons & Sanielson, London

    Google Scholar 

  19. List WF (1983) Abgeleitete Größen aus dem arteriellen Druck. In: Jesch F, Peter K (Hrsg) Hämodynamisches Monitoring. Springer, Berlin Heidelberg New York Tokyo, S. 15–26

    Chapter  Google Scholar 

  20. List WF, Gravenstein N (1988) Nichtinvasive Doppler-Ultraschallmessung des Herzzeitvolumens. Anästhesist 37: 609–612

    Google Scholar 

  21. List WF, Gravenstein JS, Spodick DH (eds) (1980) Systolic time intervals. Springer, Berlin Heidelberg New York

    Google Scholar 

  22. Mangano DT (1990) Perioperative cardiac morbidity. Anesthesiology 72: 153–184

    Article  CAS  PubMed  Google Scholar 

  23. Nyboer J (1950) Electrical impedance Plethysmograph. Circulation 2: 811–821

    Article  CAS  PubMed  Google Scholar 

  24. Quail AW, Traugott FM, Porges WL, White SW (1981) Thoracic resistivity for stroke volume calculation in impedance cardiography. J Appl Physiol 50: 191–195

    CAS  PubMed  Google Scholar 

  25. Penàz J (1973) Servo-Plethysmomanometer. 10th Int. Conf Med Biol Eng, Dresden, p 104

    Google Scholar 

  26. Pereira E, Prys-Roberts C, Dagnoni J, Anger C (1985) Auscultatory measurements of arterial pressure during anesthesia: a reassessment of the Korotkoff sound. Eur J Anesthesiol 2: 11–20

    CAS  Google Scholar 

  27. Pohl V, Wesseling KH, Petersen E, Bassenge E (1982) Kontinuierliche, nichtinvasive Blutdrucküberwachung durch Servomanometrie am Finger. In: Rügheimer E, Pasch T (Hrsg) Notwendiges und nützliches Messen in Anästhesie und Intensivmedizin. Springer, Berlin Heidelberg New York Tokyo, S 221–227

    Google Scholar 

  28. Preiser JC, Daper A, Parquier B, Contempré B, Vincent JL (1989) Transthoracic electrical bioimpedance versus thermodilution technique for cardiac output measurement during mechanical ventilation. Intensive Care Med 15: 221–223

    Article  CAS  PubMed  Google Scholar 

  29. Sageman WS, Amundson DE (1993) Thoracic electrical bioimpedance measurement of cardiac output in postaortocoronary bypass patients. Crit Care Med 21/8: 1139–1142

    Article  CAS  PubMed  Google Scholar 

  30. Severinghaus JW, Kelleher JF (1992) Recent developments in pulse oximetry. Anesthesiology 76: 1018–1038

    Article  CAS  PubMed  Google Scholar 

  31. Snow J (1958) Chloroform and other anesthetics. Churchill, London (Reprint)

    Google Scholar 

  32. Thomas A, Vohra A, Pollard B (1991) The effect of haematocrit on transthoracic electrical impedance and on the calculation of cardiac output by an impedance cardiograph. Intensive Care Med 17: 178–180

    Article  CAS  PubMed  Google Scholar 

  33. Tremper K (1989) Transthoracic electrical bioimpedance versus thermodilution technique for cardiac output measurement during mechanical ventilation. Intensive Care Med 15: 219–220

    Article  CAS  PubMed  Google Scholar 

  34. Vohra A, Thomas AN, Harper NJN, Pollard BJ (1991) Non-invasive measurement of cardiac output during induction of anesthesia and tracheal intubation: thiopentone and propofol compared. Br J Anaesth 67: 64–68

    Article  CAS  PubMed  Google Scholar 

  35. Weissler AM, Harris WS, Schoenfeld CD (1968) Bedside techniques for the evaluation of ventricular function in man. Circulation 37: 149

    Article  CAS  PubMed  Google Scholar 

  36. Wong DH, Mahutte CK (1990) Two-beam pulsed Doppler cardiac output measurement: reproducibility and agreement with thermodilution. Crit Care Med 18/4: 433–437

    Article  CAS  PubMed  Google Scholar 

  37. Wong DH, Tremper KK, Stemmer EA, O’Connor D, Wilbur S, Zaccari J, Reeves C, Weidoff P, Trujillo R (1990) Noninvasive cardiac output: simultaneous comparison of two different methods with thermodilution. Anesthesiology 72: 784–792

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

List, W.F., Metzler, H., Pasch, T. (1995). Nichtinvasive Herz-Kreislauf-Überwachung. In: List, W.F., Metzler, H., Pasch, T. (eds) Monitoring in Anästhesie und Intensivmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08840-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08840-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08841-8

  • Online ISBN: 978-3-662-08840-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics