Skip to main content

Holocene Climate Variability on Centennial-to-Millennial Time Scales: 2. Internal and Forced Oscillations as Possible Causes

  • Chapter
Climate Development and History of the North Atlantic Realm

Abstract

The climate of Western and Northern Europe is closely linked to the meridional circulation of the Atlantic Ocean, and climate variability on centennial-to-millennial time scales in this realm may well be caused by fluctuations in the associated heat transport. The sensitivity of the meridional circulation is determined by a number of feedbacks in the climate system, which can also interact to sustain internal oscillations. Another source of climate variability is (quasi-) periodic external forcing of the climate system, which gives rise to forced oscillations. A climate model is used to generate internal oscillations of one sort (i.e. deep-decoupling oscillations) with periods ranging approximately from 1600–2000 years. During all phases of these oscillations, there is active deep water formation and export from the North Atlantic to the Southern Ocean, and the maximum of the meridional overturning does never drop below 6 x 106 m3 s-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barber DC, Dyke A, Hillaire-Marcel C, Jennings AE, Andrews JT, Kerwin MW, Bilodeau G, McNeely R, Southon J, Morehead MD, Gagnon J-M (1999) Forcing of the cold event of 8,200 years ago by catastrophich drainage of Laurentide lakes. Nature 400:344–348

    Article  Google Scholar 

  • Berger AL (1992) Astronomical theory of paleoclimates and the last glacial-interglacial cycle. Quat Sci Rev 11:571–581

    Article  Google Scholar 

  • Bond G, Showers W, Cheseby M, Lotti R, Almasi P, deMenocal P, Priore P, Cullen H, Hajdas I, Bonani G (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1257–1266

    Article  Google Scholar 

  • Croll J (1875) Climate and time in their geological relations: A theory of secular changes of the Earth’s climate. Daldy, Isbister & CO., London, pp 1–517

    Google Scholar 

  • Dietrich G (1950) Kontinentale Einflüsse auf Temperatur und Salzgehalt des Ozeanwassers. Dt hydrograph Z 3:33–39

    Article  Google Scholar 

  • Farrow DE, Stevens DP (1995) A new tracer advection scheme for Bryan and Cox type ocean general circulation models. J Phys Oceanogr 25:1731–1741

    Article  Google Scholar 

  • Graves CE, Lee W-H, North GR (1993) New parametrizations and sensitivities for simple climate models. J Geophys Res 98 (D3):5025–5036

    Article  Google Scholar 

  • Grootes PM, Stuiver M (1997) Oxygen 18/16 variability in Greenland snow and ice with 10-3- to 105-year time resolution. J Geophys Res 102 (C12):26455–26470

    Article  Google Scholar 

  • Hartmann DL (1994) Global Physical Climatology. Academic Press, San Diego, pp x + 411

    Google Scholar 

  • Harvey LDD (1988) Development of a sea ice model for use in zonally averaged energy balance climate models. J Clim 1:1221–1238

    Article  Google Scholar 

  • Harvey LDD (1992) A two-dimensional model for long-term climate simulations: Stability and coupling to atmospheric and sea ice models. J Geophys Res 97 (C6):9435–9453

    Article  Google Scholar 

  • Hoyt DV, Schatten KH (1997) The role of the sun in climate change. Oxford University Press, New York, pp viii + 279

    Google Scholar 

  • Huang RX (1993) Real freshwater flux as a natural boundary condition for the salinity balance and thermohaline circulation forced by evaporation and precipitation. J Phys Oceanogr 23:2428–2447

    Article  Google Scholar 

  • Huang RX (1999) Mixing and energetics of the oceanic thermohaline circulation. J Phys Oceanogr 29:727–746

    Article  Google Scholar 

  • Jayne SR, Marotzke J (1999) A destabilizing thermohaline circulation-atmosphere-sea ice feedback. J Clim 12:642–651

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White Woolen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Leetmaa A, Reynolds R, Jenne R (1996) The NCEP/NCAR reanalysis project. BullAm Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Keeling CD, Whorf TP (2000) The 1,800-year oceanic tidal cycle: A possible cause ofrapid climate change. Proc Natl Acad Sci USA 97: 3814–3819

    Article  Google Scholar 

  • Large WG, Danabasoglu G, Doney SC, McWilliams JC (1997) Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J Phys Oceanogr 27:2418–2447

    Article  Google Scholar 

  • Lohmann G, Gerdes R (1998) Sea ice effects on the sensitivity of the thermohaline circulation. J Clim 11:2789–2803

    Article  Google Scholar 

  • Lowe JJ, Walker MJC (1997) Reconstructing quaternary environments. Addison Wesley Longman, Harlow, Essex, pp xxii + 446

    Google Scholar 

  • Marotzke J (1996) Analysis of thermohaline feedbacks. In: Anderson DLT, Willebrand J (eds) Decadal Climate Variability: Dynamics and Predictability. NATO Advanced Science Institutes Series I: Global Environmental Change 44. Springer-Verlag, Berlin, Heidelberg, New York, pp 333–378

    Google Scholar 

  • Mellor GL (1991) An equation of state for numerical models of oceans and estuaries. J Atmos Oceanic Technol 8:609–611

    Article  Google Scholar 

  • Mikolajewicz U (1996) A meltwater induced collapse of the ‘conveyor belt’ thermohaline circulation and its influence on the distribution of Δ14C and δ18O in the oceans. Report 189, Max-Planck-Institut für Meteorologie, Hamburg, pp 1–25

    Google Scholar 

  • Mikolajewicz U, Maier-Reimer E (1990) Internal secular variability in an ocean general circulation model. Clim Dyn 4:145–156

    Article  Google Scholar 

  • Model F (1950) Warmwasserheizung Europas. Ber Dt Wetterdienst US-Zone 12

    Google Scholar 

  • Munk W, Wunsch C (1998) Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res I 45:1977–2010

    Article  Google Scholar 

  • Nakamura M, Stone PH, Marotzke J (1994) Destabilization of the thermohaline circulation by atmospheric eddy transports. J Clim 7:1870–1882

    Article  Google Scholar 

  • Paul A, Berger WH (1999) Climate cycles and climate transitions as a response to astronomical and CO2 forcings. In: Harff J, Lemke W, Stattegger K (eds) Computerized Modeling of Sedimentary Systems. Springer-Verlag, Berlin, Heidelberg, pp 223–245

    Chapter  Google Scholar 

  • Rahmstorf S (1996) A fast and complete convection scheme for ocean models. In: Pacanowski RC (ed) MOM 2. Documentation, User’s Guide and Reference Manual. Technical Report 3.2, Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, pp 1–329

    Google Scholar 

  • Sarachik ES, Winton M, Yin FL (1996) Mechanisms for decadal-to-centennial climate variability. In: Anderson DLT, Willebrand J (eds) Decadal Climate Variability: Dynamics and Predictability. NATO Advanced Science Institutes Series I: Global Environmental Change 44. Springer-Verlag, Berlin, Heidelberg, New York, pp 157–210

    Google Scholar 

  • Sarnthein M, Stattegger K, Dreger D, Erlenkeuser H, Grootes P, Haupt B, Jung S, Kiefer T, Kuhnt W, Pflaumann U, Schäfer-Neth C, Schulz H, Schulz M, Seidov D, Simstich J, van Kreveld S, Vogelsang E, Völker A, Weinelt M (2001) Fundamental modes and abrupt changes in North Atlantic circulation and climate over the last 60 ky — Concepts, reconstructions and numerical modeling. In: Schäfer P, Ritzrau W, Schlüter M, Thiede J (eds) The Northern North Atlantic: A changing environment. Springer-Verlag, Berlin, pp 365–410

    Chapter  Google Scholar 

  • Schäfer-Neth C, Paul A (2001) Circulation of the glacial Atlantic: A synthesis of global and regional modeling. In: Schäfer P, Ritzrau W, Schlüter M, Thiede J (eds) The Northern North Atlantic: A changing environment. Springer-Verlag, Berlin, pp 441–462

    Chapter  Google Scholar 

  • Sjöberg B, Stigebrandt A (1992) Computations of the geographical distribution of the energy flux to mixing processes via internal tides and the associated vertical circulation in the ocean. Deep-Sea Res 39:269–291

    Article  Google Scholar 

  • Stocker TF, Wright DG (1996) Rapid changes in ocean circulation and atmospheric radiocarbon. Paleoceanography 11:773–795

    Article  Google Scholar 

  • Toggweiler JR, Samuels B (1995) Effect of Drake Passage on the global thermohaline circulation. DeepSea Res 42:477–500

    Article  Google Scholar 

  • van Geel B, Raspopov OM, Renssen H, van der Plicht J, Dergachev VA, Meijer HAJ (1999) The role of solar forcing upon climate change. Quat Sci Rev 18:331–338

    Article  Google Scholar 

  • Warren BA (1981) Deep circulation of the world ocean. In: Warren BA, Wunsch C (eds) Evolution of Physical Oceanography. Scientif1c surveys in honor of Henry Stommel. MIT Press, Cambridge, Massachusetts, pp 6–41

    Google Scholar 

  • Weaver AJ, Bitz CM, Fanning A, Holland AM (1999) Thermohaline circulation: High-latitude phenomena and the difference between the Pacific and Atlantic. Ann Rev Earth Planet Sci 27:231–281

    Article  Google Scholar 

  • Welander P (1986) Thermohaline effects in the ocean circulation and related simple models. In: Anderson DLT, Willebrand J (eds) Large-Scale Transport Processes in Oceans and Atmospheres. NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences 190. D Reidel Pub Co, Norwell, Massachusetts, pp 163–200

    Chapter  Google Scholar 

  • Willebrand J (1993) Forcing the ocean with heat and freshwater fluxes. In: Raschke E, Jacob D (eds) Energy and Water Cycles in the Climate System. NATO Advanced Science Institutes Series I: Global Environmental Change 5. Springer-Verlag, Berlin, New York, pp 215–233

    Chapter  Google Scholar 

  • Winton M (1997) The effect of cold climate upon North Atlantic Deep Water formation in a simple ocean-atmosphere model. J Clim 10:37–51

    Article  Google Scholar 

  • Wunsch C (1998) The work done by the wind on the oceanic general circulation. J Phys Oceanogr 28:2332–2340

    Article  Google Scholar 

  • Wunsch C (2000) On sharp spectral lines in the climate record and the millennial peak. Paleoceanography 15:417–424

    Article  Google Scholar 

  • Wright DG, Vreugdenhil CB, Hughes TMC (1995) Vorticity dynamics and zonally averaged ocean circulation models. J Phys Oceanogr 25:2141–2154

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paul, A., Schulz, M. (2002). Holocene Climate Variability on Centennial-to-Millennial Time Scales: 2. Internal and Forced Oscillations as Possible Causes. In: Wefer, G., Berger, W.H., Behre, KE., Jansen, E. (eds) Climate Development and History of the North Atlantic Realm. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04965-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04965-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07744-9

  • Online ISBN: 978-3-662-04965-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics