Skip to main content

Alles-oder-Nichts und Skelette

  • Chapter
Morphologische Bildverarbeitung
  • 285 Accesses

Zusammenfassung

Alles- oder Nichtstransformationen setzen SE voraus, die sich aus zwei Mengen zusammensetzen: Die erste muß in das vorliegende Objekt hineinpassen, während die zweite es verfehlen muß. Alles- oder Nichtstransformationen werden auf Binärbilder angewendet, um Nachbarschaftskonfigurationen, wie diejenigen, die isolierten Hintergrund- und Vordergrundpixeln entsprechen, zu extrahieren. Die Addition aller Pixel einer gegebenen Konfiguration zu einem Bild führt zu der Definition von Verdickungen, die Subtraktion dieser von dem Bild definiert einen Verdünnungsoperator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Arcelli, C. & Sanniti di Baja, G. (1989), ‘A one pass two-operation process to detect the skeletal pixels on the 4-distance transform’, IEEE Transactions on Pattern Analysis and Machine Intelligence 11(4), 411–414.

    Article  Google Scholar 

  • Beucher, S. (1981), Ligne de partage des eaux: comment l’expliquer en termes de transformation fonctionnelle ?, Technical Report N-699, Ecole des Mines de Paris.

    Google Scholar 

  • Beucher, S. (1990), Segmentation d’images et morphologie mathématique, PhD thesis, Ecole des Mines de Paris.

    Google Scholar 

  • Beucher, S. (1994), ‘Digital skeletons in Euclidean and geodesic spaces’, Signal Processing 38, 127–141.

    Article  MATH  Google Scholar 

  • Bloomberg, D. & Maragos, P. (1990), Generalized hit-miss operations, in P. Gader, ed., ‘Image Algebra and Morphological Image Processing’, Vol. SPIE-1350, pp. 116–128.

    Google Scholar 

  • Blum, H. (1967), A transformation for extracting new descriptors of shape, in W. Wathen-Dunn, ed., ‘Models for the Perception of Speech and Visual Form’, M.I.T. Press, Cambridge, MA, pp. 362–380.

    Google Scholar 

  • Blum, H. (1973), ‘Biological shape and visual science (part 1)’, Journal of Theoretical Biology 38, 205–287.

    Article  Google Scholar 

  • Borgefors, G., Nyström, I. & Sanniti di Baja, G. (1996), ‘Surface skeletonization of volume objects’, Lecture Notes in Computer Science 1121, 251–259.

    Google Scholar 

  • Calabi, L. & Hartnett, W. E. (1968), ‘Shape recognition, prairie fires, convex deficiencies and skeletons’, Amer. Math. Monthly 75, 335–342.

    Article  MathSciNet  MATH  Google Scholar 

  • Freeman, H. (1974), ‘Computer processing of line-drawing images’, Computing surveys 6, 57–97.

    Article  MATH  Google Scholar 

  • Goetcherian, V. (1980), ‘From binary to grey tone image processing using fuzzy logic concepts’, Pattern Recognition 12, 7–15.

    Article  Google Scholar 

  • Gray, S. (1971), ‘Local properties of binary images in two dimensions’, IEEE Transactions on Computers 20, 551–561.

    Article  MATH  Google Scholar 

  • Hilditch, C. (1969), Linear skeletons form square cupboards, in B. Mertzer & D. Michie, eds, ‘Machine Intelligence’, Vol. 4, University Press, Edinburgh, pp. 403–420.

    Google Scholar 

  • Kresch, R. & Malah, D. (1994), Multi-parameter skeleton decomposition, in J. Serra & P. Soille, eds, ‘Mathematical morphology and its applications to image processing’, Kluwer Academic Publishers, pp. 141–148.

    Chapter  Google Scholar 

  • Lantuéjoul, C. (1978), La squelettisation et son application aux mesures topologiques des mosaïques polycristallines, PhD thesis, Ecole des Mines de Paris.

    Google Scholar 

  • Lantuéjoul, C. (1980), Skeletonization in quantitative metallography, in R. Haralick & J.-C. Simon, eds, ‘Issues in Digital Image Processing’, Sijthoff & Noordhoff, Alphen aan der Rijn, pp. 107–135.

    Google Scholar 

  • Lau, L., Lee, S.-W. & Suen, C. (1992), ‘Thinning methodologies: a comprehensive survey’, IEEE Transactions on Pattern Analysis and Machine Intelligence 14(9), 869–885.

    Article  Google Scholar 

  • Lobregt, S., Verbeek, P. & Groen, F. (1980), ‘Three-dimensional skeletonization: principle and algorithm’, IEEE Transactions on Pattern Analysis and Machine Intelligence 11(1), 75–77.

    Article  Google Scholar 

  • Maragos, P. & Schafer, R. (1986), ‘Morphological skeletons representation and coding of binary images’, IEEE Transactions on Acoustics, Speech and Signal Processing 34(5), 1228–1244.

    Article  Google Scholar 

  • Matheron, G. (1988), Examples of topological properties of skeletons, in J. Serra, ed., ‘Image analysis and mathematical morphology. Volume 2: theoretical advances’, Academic Press, chapter 11, pp. 217–238.

    Google Scholar 

  • Meyer, F. (1988), Skeletons in digital spaces, in J. Serra, ed., ‘Image analysis and mathematical morphology. Volume 2: theoretical advances’, Academic Press, London, chapter 13, pp. 257–296.

    Google Scholar 

  • Meyer, F. (1989), ‘Skeletons and perceptual graphs’, Signal Processing 16, 335–363.

    Article  MathSciNet  Google Scholar 

  • Meyer, F. (1990), Digital Euclidean skeletons, in M. Kunt, ed., ‘Visual Communications and Image Processing’90’, Vol. SPIE-1360, Lausanne, pp. 251–262.

    Google Scholar 

  • Montanari, U. (1968), ‘A method for obtaining skeletons using a quasi-Euclidean distance’, J. Assoc. Comp. Mach. 15(4), 600–624.

    MathSciNet  Google Scholar 

  • Peleg, S. & Rosenfeld, A. (1981), ‘A min-max medial axis transform’, IEEE Transactions on Pattern Analysis and Machine Intelligence 3, 208–210.

    Article  Google Scholar 

  • Peyrard, R., Soille, P., Klein, J.-C. & Tuzikov, A. (1995), A dedicated hardware system for the extraction of grid patterns on stamped metal sheets, in I. Pitas, ed., ‘Proc. of 1995 IEEE Workshop on Nonlinear Signal and Image Processing’, Neos Marmaras, pp. 867–870. URL:http://poseidon.csd.auth.gr/-Workshop/papers/p_34_3.html.

    Google Scholar 

  • Schmitt, M. (1994), One pixel thick skeletons, in J. Serra & P. Soille, eds, ‘Mathematical morphology and its applications to image processing’, Kluwer Academic Publishers, pp. 257–264.

    Chapter  Google Scholar 

  • Serra, J. (1982), Image analysis and mathematical morphology, Academic Press, London.

    MATH  Google Scholar 

  • Talbot, H. & Vincent, L. (1992), Euclidean skeletons and conditional bissectors, in P. Maragos, ed., ‘Visual Communications and Image Processing’, Vol. SPIE-1818, pp. 862–876.

    Google Scholar 

  • Toet, A. (1990), ‘A hierarchical morphological image decomposition’, Pattern Recognition Letters 11, 267–274.

    Article  MATH  Google Scholar 

  • Vachier, C., Meyer, F., Gratin, C. & Talbot, H. (1994), Filtrage par décomposition morphologique: application à l’extraction de structures rectilignes, in ‘Reconnaissance des Formes et Intelligence Artificielle’, GRETSI, Paris, pp. 255–263.

    Google Scholar 

  • Vincent, L. (1991), Efficient computation of various types of skeletons, in M. Loew, ed., ‘Medical Imaging V: Image Processing’, Vol. SPIE-1445, pp. 297–311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soille, P. (1998). Alles-oder-Nichts und Skelette. In: Morphologische Bildverarbeitung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72190-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72190-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72191-5

  • Online ISBN: 978-3-642-72190-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics