Skip to main content
  • 286 Accesses

Zusammenfassung

Die mathematische Morphologie stammt von der Mengentheorie ab. Für eine Vertiefung in ihre theoretischen Grundlagen benötigt der Leser ein fundiertes Wissen sowohl über Mengentheorie als auch Topologie. Wenn wir uns jedoch auf ihre Anwendung im diskreten Raum konzentrieren, sind nur einfache mathematische Begriffe, wie z. B. Vereinigungsmenge oder Schnittmenge, notwendig. Ziel des vorliegenden Kapitels ist es, diese Grundlagen vorzustellen. Außerdem werden wir sehen, daß viele Definitionen, die sich auf die Geometrie eines euklidischen Objektes beziehen, nicht auf diskrete Objekte angewendet werden können. Wie sollen wir beispielsweise die Nachbarn eines Punktes in einem Raster definieren und welches ist die beste Darstellung einer Linie auf diesem Raster? Zur Beantwortung dieser Frage ist es nötig, einige Begriffe der diskreten Geometrie einzuführen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aho, A., Hopcroft, J. & Ullman, J. (1983), Data structures and algorithms, Addison-Wesley, Reading, Mass.

    MATH  Google Scholar 

  • Alnuweiri, H. & Kumar, V. (1991), ‘Fast image labeling using local operators on mesh-connected computers’, IEEE Transactions on Pattern Analysis and Machine Intelligence 13(2), 202–207.

    Article  Google Scholar 

  • Batchelor, B. (1978), ‘Using concavity trees for shape description’, Computers and Digital Techniques 2(4), 157–167.

    Article  Google Scholar 

  • Berge, C. (1962), The theory of graphs and its applications, Wiley, New York.

    MATH  Google Scholar 

  • Birkhoff, G. (1967), Lattice theory, Vol. 25 of American Mathematical Society Colloquium Publications, American Mathematical Society, Providence., RI.

    MATH  Google Scholar 

  • Bister, M., Cornelis, J. & Rosenfeld, A. (1990), ‘A critical view of pyramid segmentation algorithms’, Pattern Recognition Letters 11, 605–617.

    Article  MATH  Google Scholar 

  • Borgefors, G. (1984), ‘Distance transformations in arbitrary dimensions’, Computer Vision, Graphics, and Image Processing 27, 321–345.

    Article  Google Scholar 

  • Borgefors, G. (1986), ‘Distance transformations in digital images’, Computer Vision, Graphics, and Image Processing 34, 344–371.

    Article  Google Scholar 

  • Bresenham, J. (1965), ‘Algorithm for computer control of digital plotter’, IBM System Journal 4, 25–30.

    Article  Google Scholar 

  • Chassery, J.-M. & Montanvert, A. (1991), Géométrie discrète en analyse d’images, Hermès, Paris.

    MATH  Google Scholar 

  • Danielsson, P.-E. (1980), ‘Euclidean distance mapping’, Computer Graphics and Image Processing 14, 227–248.

    Article  Google Scholar 

  • Foley, J., van Dam, A., Feiner, S. & Hughes, J. (1990), Computer graphies — Principles and Practice—, 2nd edn, Addison-Wesley.

    Google Scholar 

  • Golay, M. (1969), ‘Hexagonal parallel pattern transformation’, IEEE Transactions on Computers 18(8), 733–740.

    Article  Google Scholar 

  • Gondran, M. & Minoux, M. (1995), Graphes et algorithmes, 3rd edn, Eyrolles, Paris.

    Google Scholar 

  • Heijmans, H. (1993), ‘A note on the umbra transform in gray-scale morphology’, Pattern Recognition Letters 14, 877–881.

    Article  MATH  Google Scholar 

  • Kim, C. & Rosenfeld, A. (1982a), ‘Convex digital solids’, IEEE Transactions on Pattern Analysis and Machine Intelligence 4(6), 612–618.

    Article  MATH  Google Scholar 

  • Kim, C. & Rosenfeld, A. (1982b), ‘Digital straight lines and convexity of digital regions’, IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 149–153.

    Article  Google Scholar 

  • Kim, C. & Sklansky, J. (1982), ‘Digital and cellular convexity’, Pattern Recognition 15, 359–367.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, S. (1978), The impossible skew quadrilateral, in D. Brisson, ed., ‘Proceedings of the 1978 A.A.A.S. Symposium on hypergraphics: visualizing complex relationships in art and science’, Westview Press, Boulder, Colorado.

    Google Scholar 

  • Maragos, P. & Ziff, R. (1990), ‘Threshold superposition in morphological image analysis systems’, IEEE Transactions on Pattern Analysis and Machine Intelligence 12(5), 498–504.

    Article  Google Scholar 

  • Matheron, G. (1975), Random sets and integral geometry, Wiley.

    MATH  Google Scholar 

  • Melter, R. (1991), ‘A survey of digital metrics’, Contemporary Mathematics 119, 95–106.

    MathSciNet  Google Scholar 

  • Meyer, F. (1992), ‘Mathematical morphology: from 2D to 3D’, Journal of Microscopy 165, Pt 1, 5–28.

    Article  Google Scholar 

  • Ragnemalm, I. (1990), Contour processing distance transforms, World Scientific, pp. 204–211.

    Google Scholar 

  • Rosenfeld, A. & Kak, A. (1982), Digital Picture Processing, 2nd edn, Academic Press.

    Google Scholar 

  • Rosenfeld, A. & Pfaltz, J. (1966), ‘Sequential operations in digital picture processing’, J. Assoc. Comp. Mach. 13(4), 471–494.

    MATH  Google Scholar 

  • Rosenfeld, A. & Pfaltz, J. (1968), ‘Distance functions on digital pictures’, Pattern Recognition 1, 33–61.

    Article  MathSciNet  Google Scholar 

  • Serra, J. (1982), Image analysis and mathematical morphology, Academic Press, London.

    MATH  Google Scholar 

  • Serra, J. (1988), Measurements on numerical functions, in J. Serra, ed., ‘Image analysis and mathematical morphology. Volume 2: theoretical advances’, Academic Press, chapter 14, pp. 297–315.

    Google Scholar 

  • Serra, J. & Laÿ, B. (1985), ‘Square to hexagonal lattices conversion’, Signal Processing 9, 1–13.

    Article  MathSciNet  Google Scholar 

  • Shih, F. & Mitchell, O. (1989), ‘Threshold decomposition of gray-scale morphology into binary morphology’, IEEE Transactions on Pattern Analysis and Machine Intelligence 11(1), 31–42.

    Article  MATH  Google Scholar 

  • Soille, P. (1991), ‘Spatial distributions from contour lines: an efficient methodology based on distance transformations’, Journal of Visual Communication and Image Representation 2(2), 138–150.

    Article  Google Scholar 

  • Soille, P. & Rivest, J.-F. (1993), Dimensionality of morphological operators and cluster analysis, in E. Dougherty, P. Gader & J. Serra, eds, ‘Image algebra and morphological image processing IV’, Vol. SPIE-2030, pp. 43–53.

    Google Scholar 

  • Sternberg, S. (1986), ‘Grayscale morphology’, Computer Graphics and Image Processing 35, 333–355.

    Article  Google Scholar 

  • Verwer, B. (1991), Distance transforms: metrics, algorithms and applications, PhD thesis, Technische Universiteit Delft.

    Google Scholar 

  • Vincent, L. (1991), Exact Euclidean distance function by chain propagations, in ‘Proc. IEEE Computer Vision and Pattern Recognition’, pp. 520–525.

    Google Scholar 

  • Wendt, P., Coyle, E. & Gallagher, N. (1986), ‘Stack filters’, IEEE Transactions on Acoustics, Speech and Signal Processing 34(4), 898–911.

    Article  Google Scholar 

  • Wüthrich, C. & Stucki, P. (1991), ‘An algorithmic comparison between square and hexagonal based grids’, Computer Vision, Graphics, and Image Processing: Graphical Models and Image Processing 53(4), 324–339.

    Google Scholar 

  • Zadeh, L. (1965), ‘Fuzzy sets’, Information and Control 8, 338–353.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soille, P. (1998). Grundlagen. In: Morphologische Bildverarbeitung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72190-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72190-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72191-5

  • Online ISBN: 978-3-642-72190-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics