Skip to main content

Neurotransmitterveränderungen bei der Alzheimer Demenz

  • Conference paper
Alzheimer Demenz

Zusammenfassung

Die Charakterisierung von Neurotransmitterveränderungen bei der Alzheimer Demenz (AD) bekam einen besonderen Impuls durch die erfolgreiche pharmakologische Substitution dopaminerger Neurone mit L-DOPA bei Parkinson-Patienten seit Anfang der sechziger Jahre (Birkmayer u. Hornykiewicz 1961). Die Entdeckung des ausgeprägten cholinergen Defizits und die „cholinerge Hypothese“ haben in den letzten Jahren zur erfolgreichen Neurotransmittersubstitution mit Cholinesteraseinhibitoren bei Patienten mit AD geführt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Araujo DM, Lapchak PA, Robitaille Y, Gauthier S, Quirion R (1988) Differential alteration of various cholinergic markers in cortical and subcortical regions of human brain in Alzheimer’s disease. J Neurochem 50: 1914–1923

    Article  PubMed  CAS  Google Scholar 

  • Arendt T, Bigl V, Tennstedt A, Arendt A (1984) Correlation between cortical plaque count and neuronal loss in the nucleus basalis in Alzheimer’s disease. Neurosci Lett 48: 81–85

    Article  PubMed  CAS  Google Scholar 

  • Arendt T, Bigl V, Tennstedt A, Arendt A (1985) Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s disease. Neuroscience 14: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Atack JR, Perry EK, Bonham JR, Perry RH, Tomlinson BE, Blessed G, Fairbairn A (1983) Molecular forms of acetylcholinesterase in senile dementia of Alzheimer type: selective loss of the intermediate (10S) form. Neurosci Lett 40: 199–204

    Article  PubMed  CAS  Google Scholar 

  • Aubert I, Araujo DM, Cecyre D, Robitaille Y, Gauthier S, Quirion R (1992) Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases. J Neurochem 58: 529–541

    Article  PubMed  CAS  Google Scholar 

  • Avery EE, Baker LD, Asthana S (1997) Potential role of muscarinic agonists in Alzheimer’s disease. Drugs Aging 11: 450–459

    Article  PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408–414

    Article  PubMed  CAS  Google Scholar 

  • Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 31: 119–130

    Article  PubMed  CAS  Google Scholar 

  • Bennett GW, Ballard TM, Watson CD, Fone KC (1997) Effect of neuropeptides on cognitive function. Exp Gerontol 32: 451–469

    Article  PubMed  CAS  Google Scholar 

  • Birkmayer W, Hornykiewicz O (1961) Der L-Dioxyphenylalanin (L-DOPA)-Effekt bei der Parkinson-Akinesie. Wien Klin Wochenschr 73: 787–788

    PubMed  CAS  Google Scholar 

  • Blin J, Baron JC, Dubois B et al. (1993) Loss of brain 5-HT2 receptors in Alzheimer’s disease. In vivo assessment with positron emission tomography and [18F]setoperone. Brain 116: 497–510

    Article  PubMed  Google Scholar 

  • Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31–39

    Article  PubMed  CAS  Google Scholar 

  • Bowen DM, White P, Spillane JA, Goodhardt MJ, Curzon G, Iwangoff P, Meier-Rüge W., Davison AN(1979) Accelerated ageing or selective neuronal loss as an important cause of dementia? Lancet 1: 11–14

    PubMed  CAS  Google Scholar 

  • Bowser R, Kordower JH, Mufson EJ (1997) A confocal microscopic analysis of galaninergic hyperinnervation of cholinergic basal forebrain neurons in Alzheimer’s disease. Brain Pathol 7: 723–730

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16: 271–278

    Article  PubMed  CAS  Google Scholar 

  • Buxbaum JD, Oishi M, Chen HI, Pinkas KR, Jaffe EA, Gandy SE, Greengard P (1992) Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor. Proc Natl Acad Sei USA 89: 10075–10078

    Article  CAS  Google Scholar 

  • Crawley JN (1996) Minireview. Galanin-acetylcholine interactions: relevance to memory and Alzheimer’s disease. Life Sei 58: 2185–2199

    Article  CAS  Google Scholar 

  • Cross AJ, Crow TJ, Ferrier IN, Johnson JA, Bloom SR, Corsellis JA (1984) Serotonin receptor changes in dementia of the Alzheimer type. J Neurochem 43: 1574–1581

    Article  PubMed  CAS  Google Scholar 

  • Danysz W, Archer T (1994) Glutamate, learning and dementia - selection of evidence. Amino Acids 7: 147–163

    Article  CAS  Google Scholar 

  • Darvesh S, Grantham DL, Hopkins DA (1998) Distribution of butyrylcholinesterase in the human amygdala and hippocampal formation. J Comp Neurol 393: 374–390

    Article  PubMed  CAS  Google Scholar 

  • Davies P (1979) Neurotransmitter-related enzymes in senile dementia of the Alzheimer type. Brain Res 171: 319–327

    Article  PubMed  CAS  Google Scholar 

  • Davies P, Maloney AJF (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2: 1403

    Article  PubMed  CAS  Google Scholar 

  • De Boni U, McLachlan DRC (1985) Controlled induetion of paired helical filaments of the Alzheimer type in cultured human neurons, by glutamate and aspartate. J Neurol Sei 68: 105–118

    Article  Google Scholar 

  • Domino EF (1998) Tobacco smoking and nicotine neuropsychopharmacology: some future research directions. Neuropsychopharmacology 18: 456–468

    Article  PubMed  CAS  Google Scholar 

  • Ehlert FJ, Roeske WR, Yamamura HI (1994) Muscarinic receptors and novel strategies for the treatment of age-related brain disorders. Life Sei 55: 2135–2145

    Article  CAS  Google Scholar 

  • Esclaire F, Lesort M, Blanchard C, Hugon J (1997) Glutamate toxicity enhances tau gene expression in neuronal cultures. J Neurosci Res 49: 309–318

    Article  PubMed  CAS  Google Scholar 

  • Etienne P, Robitaille Y, Wood P, Gauthier S, Nair NP, Quirion R (1986) Nucleus basalis neuronal loss, neuritic plaques and choline acetyltransferase activity in advanced Alzheimer’s disease. Neuroscience 19: 1279–1291

    Article  PubMed  CAS  Google Scholar 

  • Farlow MR, Evans RM (1998) Pharmacologic treatment of Cognition in Alzheimer’s dementia. Neurology 51, Suppl. 1: S36–S44

    PubMed  CAS  Google Scholar 

  • Flynn DD, Ferrari-DiLeo G, Mash DC, Levey AI (1995) Differential regulation of molecular subtypes of muscarinic receptors in Alzheimer’s disease. J Neurochem 64: 1888–1891

    Article  PubMed  CAS  Google Scholar 

  • Francis PT (1996) Pyramidal neurone modulation: a therapeutic target for Alzheimer’s disease. Neurodegeneration 5: 461—465

    Article  Google Scholar 

  • Francis PT, Cross AJ, Bowen DM (1994) Neurotransmitters and Neuropeptides. In: Terry RD, Katzman R, Bick KL (eds) Alzheimer Disease. Raven, New York, pp 247–261

    Google Scholar 

  • Francis PT, Sims NR, Procter AW, Bowen DM (1993) Cortical pyramidal neurone loss may cause glutamatergic hypoactivity and cognitive impairment in Alzheimer’s disease: investigative and therapeutic perspectives. J Neurochem 50: 1589–1604

    Article  Google Scholar 

  • Gabriel SM, Davidson M, Haroutunian V, Powchik P, Bierer LM, Purohit DP, Perl DP, Davis KL (1996) Neuropeptide deficits in schizophrenia vs. Alzheimer’s disease cerebral cortex. Biol Psychiatry 39: 82–91

    Article  PubMed  CAS  Google Scholar 

  • Giacobini E (1990) Cholinergic receptors in human brain: effects of aging and Alzheimer disease. J Neurosci Res 27: 548–560

    Article  PubMed  CAS  Google Scholar 

  • Giulian D, Haverkamp LJ, Li J, Karshin W, Yu J, Tom D, Li X, Kirkpatrick JB (1995) Senile plaques stimulate microglia to release a neurotoxin found in Alzheimer brain. Neurochem Int 27: 119–137

    Article  PubMed  CAS  Google Scholar 

  • Gozes I, Bachar M, Bardea A, Davidson A, Rubinraut S, Fridkin M, Giladi E (1997) Protection against developmental retardation in apolipoprotein E-deficient mice by a fatty neuropeptide: implications for early treatment of Alzheimer’s disease. J Neurobiol 33: 329–342

    Article  PubMed  CAS  Google Scholar 

  • Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383: 713–716

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre JT, Maragos WF (1993) Neurotransmitter receptors in Alzheimer disease. Cerebrovasc Brain Metab Rev 5: 61–94

    PubMed  CAS  Google Scholar 

  • Greenamyre JT, Maragos WF, Albin RL, Penney JB, Young AB (1988) Glutamate transmission and toxicity in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 12: 421–430

    Article  PubMed  CAS  Google Scholar 

  • Gsell W, Strein I, Riederer P (1996) The neurochemistry of Alzheimer type, vascular type and mixed type dementias compared. J Neural Transm Suppl 47: 73–101

    PubMed  CAS  Google Scholar 

  • Gulya K, Budai D, Kasa P (1989) Muscarinic autoreceptors are differentially affected by selective muscarinic antagonists in rat hippocampus. Neurochem Int 15, No.2: 153–156

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Adolfsson R, Alafuzoff I et al. (1985) Transmitter deficits in Alzheimer’s disease. Neurochem Int 7:545–563

    Article  PubMed  CAS  Google Scholar 

  • Houser CR, Crawford GD, Barber RP, Salvaterra PM, Vaughn JE (1983) Organization and morphological characteristics of cholinergic neurons: an immunocytochemical study with a monoclonal antibody to choline acetyltransferase. Brain Res 266: 97–119

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S (1996) Oxidative metabolism deficiencies in brains of patients with Alzheimer’s disease. Acta Neurol Scand Suppl 165: 18–24

    PubMed  CAS  Google Scholar 

  • Iyo M, Namba H, Fukushi K, Shinotoh H, Nagatsuka S, Suhara T, Sudo Y, Suzuki K, Irie T (1997) Measurement of acetylcholinesterase by positron emission tomography in the brains of healthy controls and patients with Alzheimer’s disease. Lancet 349: 1805–1809

    Article  PubMed  CAS  Google Scholar 

  • Jolles J (1986) Neuropeptides and cognitive disorders. Prog Brain Res 65: 177–192

    Article  PubMed  CAS  Google Scholar 

  • Jung YW, Frey KA, Mulholland GK et al. (1996) Vesamicol receptor mapping of brain cholinergic neurons with radioiodine-labeled positional isomers of benzovesamicol. J Med Chem 39: 3331–3342

    Article  PubMed  CAS  Google Scholar 

  • Kar S, Issa AM, Seto D, Auld DS, Collier B, Quirion R (1998) Amyloid ß-peptide inhibits high-affmity choline uptake and acetylcholine release in rat hippocampal slices. J Neurochem 70: 2179–2187

    Article  PubMed  CAS  Google Scholar 

  • Kar S, Seto D, Gaudreau P, Quirion R (1996) ß-Amyloid-related peptides inhibit potassium-evoked acetylcholine release from rat hippocampal slices. J Neurosci 16: 1034–1040

    PubMed  CAS  Google Scholar 

  • Kask K, Berthold M, Bartfai T (1997) Galanin receptors: involvement in feeding, pain, depression and Alzheimer’s disease. Life Sei 60: 1523–1533

    Article  CAS  Google Scholar 

  • Keller EA, Borghese CM, Carrer HF, Ramirez OA (1992) The learning capacity of high or low Performance rats is related to the hippocampus NMDA receptors. Brain Res 576: 162–164

    Article  PubMed  CAS  Google Scholar 

  • Kimura I (1998) Calcium-dependent desensitizing function of the postsynaptic neuronal-type nicotinic acetylcholine receptors at the neuromuscular junetion. Pharmacol Ther 77: 183–202

    Article  PubMed  CAS  Google Scholar 

  • Klegeris A, McGeer PL (1997) ß-Amyloid protein enhances macrophage produetion of oxygen free radicals and glutamate. J Neurosci Res 49: 229–235

    Article  PubMed  CAS  Google Scholar 

  • Knopman DS, Morris JC (1997) An update on primary drug therapies for Alzheimer disease. Arch Neurol 54: 1406–1409

    PubMed  CAS  Google Scholar 

  • Kornhuber J, Bormann J, Hübers M, Rusche K, Riederer P(1991) Effects of the 1-amino-adamantanes at the MK-801-binding site of the NMDA-receptor-gated ion Channel: a human postmortem brain study. Eur J Pharmacol Mol Pharmacol Sect 206: 297–300

    Article  CAS  Google Scholar 

  • Kornhuber J, Bormann J, Retz W, Hübers M, Riederer P(1989a) Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur J Pharmacol 166: 589–590

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Mack-Burkhardt F, Konradi C, Fritze J, Riederer P (1989b) Effect of antemortem and postmortem factors on [3H]MK-801 binding in the human brain: transient elevation during early childhood. Life Sei 45: 745–749

    Article  CAS  Google Scholar 

  • Kornhuber J, Mack-Burkhardt F, Riederer P (1989c) Regional distribution of [3H]MK-801 binding sites in the human brain. Brain Res 489: 397–399

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Weller M (1996) Neue therapeutische Möglichkeiten mit niederaffinen NMDA-Rezeptorantagonisten. Nervenarzt 67: 77–82

    PubMed  CAS  Google Scholar 

  • Kornhuber J, Weller M (1997) Psychotogenicity and N-methyl-D-aspartate receptor antagonism: implications for neuroprotective pharmacotherapy. Biol Psychiatry 41: 135–144

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Weller M, Schoppmeyer K, Riederer P (1994) Amantadine and memantine are NMDA receptor antagonists with neuroprotective properties. J Neural Transm Suppl 43: 91–104

    PubMed  CAS  Google Scholar 

  • Kornhuber J, Wiltfang J (1998) The role of glutamate in dementia. J Neural Transm Suppl 53: 277–287

    PubMed  CAS  Google Scholar 

  • Kühl DE, Minoshima S, Fessler JA, Frey KA, Foster NL, Ficaro EP, Wieland DM, Koeppe RA (1996) In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol 40: 399–410

    Google Scholar 

  • Ladner CJ, Celesia GG, Magnuson DJ, Lee JM (1995) Regional alterations in Mj muscarinic receptor-G protein coupling in Alzheimer’s disease. J Neuropathol Exp Neurol 54: 783–789

    Article  PubMed  CAS  Google Scholar 

  • Lawlor BA, Davis KL (1992) Does modulation of glutamatergic function represent a viable therapeutic strategy in Alzheimer’s disease?Biol Psychiatry 31: 337–350

    Article  PubMed  CAS  Google Scholar 

  • Lawrence AD, Sahakian BJ (1995) Alzheimer disease, attention, and the cholinergic system. Alzheimer Dis Assoc Disord 9 Suppl 2: 43–49

    PubMed  Google Scholar 

  • Lawrence AD, Sahakian BJ (1998) The cognitive psychopharmacology of Alzheimer’s disease: focus on cholinergic systems. Neurochem Res 23: 787–794

    Article  PubMed  CAS  Google Scholar 

  • Levey AI (1996) Muscarinic acetylcholine receptor expression in memory circuits: implications for treatment of Alzheimer disease. Proc Natl Acad Sei USA 93: 13541–13546

    Article  CAS  Google Scholar 

  • Li S, Mallory M, Alford M, Tanaka S, Masliah E (1997) Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol 56: 901–911

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom J (1997) Nicotinic acetylcholine receptors in health and disease. Mol Neurobiol 15: 193–222

    Article  PubMed  CAS  Google Scholar 

  • Marczynski TJ (1998) GABAergic deafferentation hypothesis of brain aging and Alzheimer’s disease revisited. Brain Res Bull 45: 341–379

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Alford M, DeTeresa R, Mallory M, Hansen L (1996) Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 40: 759–766

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Barger SW, Cheng B, Lieberburg I, Smith Swintosky VL, Rydel RE (1993) ß-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease. Trends Neurosci 16: 409–414

    Article  PubMed  CAS  Google Scholar 

  • McGehee DS, Heath MJ, Gelber S, Devay P, Role LW (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269: 1692–1696

    Article  PubMed  CAS  Google Scholar 

  • Meguro K, Yamaguchi S, Itoh M, Fujiwara T, Yamadori A (1997) Striatal dopamine metabolism correlated with frontotemporal glucose utilization in Alzheimer’s disease: a double-tracer PET study. Neurology 49: 941–945

    PubMed  CAS  Google Scholar 

  • Mesulam MM (1996) The systems-level Organization of cholinergic innervation in the human cerebral cortex and its alterations in Alzheimer’s disease. Prog Brain Res 109: 285–297

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM, Geula C (1988) Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol 275: 216–240

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM, Geula C (1992) Overlap between acetylcholinesterase-rich and choline acetyltransferasepositive (cholinergic) axons in human cerebral cortex. Brain Res 577: 112–120

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM, Geula C (1994) Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. Ann Neurol 36: 722–727

    Article  PubMed  CAS  Google Scholar 

  • Misztal M, Frankiewicz T, Parsons CG, Danysz W (1996a) Learning deficits induced by chronic intraventricular infusion of quinolinic acid - protection by MK-801 and memantine. Eur J Pharmacol 296: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Misztal M, Skangiel-Kramska J, Niewiadomsica G, Danysz W (1996b) Subchronic intraventricular infusion of quinolinic acid produces working memory impairment - a model of progressive excitotoxicity. Neuropharmacology 35: 449–458

    Article  PubMed  CAS  Google Scholar 

  • Mizukami K, Ikonomovic MD, Grayson DR et al. (1997) Immunohistochemical study of GABAÄ receptor ß2/3 subunits in the hippocampal formation of aged brains with Alzheimer-related neuropathologic changes. Exp Neurol 147: 333–345

    Article  PubMed  CAS  Google Scholar 

  • Müller WE, Mutschier E, Riederer P (1995) Noncompetitive NMDA receptor antagonist with fast openchannel blocking kinetics and strong voltage-dependency as potential therapeutic agents for Alzheimer’s dementia. Pharmacopsychiatry 28: 113–124

    Article  PubMed  Google Scholar 

  • Newhouse PA, Potter A, Levin ED (1997) Nicotinic system involvement in Alzheimer’s and Parkinson’s diseases. Implications for therapeutics. Drugs Aging 11: 206–228

    Article  CAS  Google Scholar 

  • Nitsch RM, Slack BE, Wurtman RJ, Growdon JH (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258: 304–307

    Article  PubMed  CAS  Google Scholar 

  • Nitsch RM, Wurtman RJ, Growdon JH (1996) Regulation of APP processing. Potential for the therapeutical reduetion of brain amyloid bürden. Ann NY Acad Sei 777: 175–182

    Article  CAS  Google Scholar 

  • Nordberg A, Hartvig P, Lilja A et al. (1990) Decreased uptake and binding of HC-nicotine in the brain of Alzheimer patients as visualized by positron emission tomography. J Neural Transm Park Dis Dement Sect 2: 215–224

    Article  PubMed  CAS  Google Scholar 

  • Nordberg A, Nilsson-Häkansson L, Adem A, Hardy J, Alafuzoff I, Lai Z, Herrera-Marschitz M, Winblad B(1989) The role of nicotinic receptors in the pathophysiology of Alzheimer’s disease. Prog Brain Res 79: 353–362

    Article  PubMed  CAS  Google Scholar 

  • Olney JW (1978) Neurotoxicity of excitatory amino acids. In: McGeer EG, Olney JW, McGeer PL (eds) Kainic acid as a tool in neurobiology. Raven Press, New York, pp 95–121

    Google Scholar 

  • Palmer AM, Francis PT, Benton JS, Sims NR, Mann DM, Neary D, Snowden JS, Bowen DM (1987) Presynaptic serotonergic dysfunetion in patients with Alzheimer’s disease. J Neurochem 48: 8–15

    Article  PubMed  CAS  Google Scholar 

  • Patel N, Spangler EL, Greig NH, Yu QS, Ingram DK, Meyer RC (1998) Phenserine, a novel acetylcholinesterase inhibitor, attenuates impaired learning of rats in a 14-unit T-maze induced by blockade of the Nmethyl-D-aspartate receptor. Neuro Report 9: 171–176

    CAS  Google Scholar 

  • Pearson RC, Gatter KC, Powell TP (1983) Retrograde cell degeneration in the basal nucleus in monkey and man. Brain Res 261: 321–326

    Article  PubMed  CAS  Google Scholar 

  • Pedersen WA, Kloczewiak MA, Blusztajn JK (1996) Amyloid ß-protein reduces acetylcholine synthesis in a cell line derived from cholinergic neurons of the basal forebrain. Proc Natl Acad Sei USA 93: 8068–8071

    Article  CAS  Google Scholar 

  • Perry EK (1987) Cortical neurotransmitter chemistry in Alzheimer’s disease. In: Meitzer HY (ed) Psychopharmacology: The third generation of progress. Raven Press, New York, pp 887–895

    Google Scholar 

  • Perry EK, Gibson PH, Blessed G, Perry RH, Tomlinson BE (1977) Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J Neurol Sei 34: 247–265

    Article  CAS  Google Scholar 

  • Perry EK, Morris CM, Court JA et al. (1995) Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: possible index of early neuropathology. Neuroscience 64: 385–395

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Smith CJ, Court JA, Perry RH (1990) Cholinergic nicotinic and muscarinic receptors in dementia of Alzheimer, Parkinson and Lewy body types. J Neural Transm Park Dis Dement Sect 2: 149–158

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J 2: 1457–1459

    Article  PubMed  CAS  Google Scholar 

  • Plotkin DA, Jarvik LF (1986) Cholinergic dysfunetion in Alzheimer disease: cause or effect? Prog Brain Res 65: 91–103

    Article  PubMed  CAS  Google Scholar 

  • Poirier J, Delisle MC, Quirion R et al. S (1995) Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc Natl Acad Sei USA 92: 12260–12264

    Article  CAS  Google Scholar 

  • Quirion R, Richard J, Dam TV (1985) Evidence for the existence of Serotonin type-2 receptors on cholinergic terminals in rat cortex. Brain Res 333: 345–349

    Article  PubMed  CAS  Google Scholar 

  • Rinne JO, Sahlberg N, Ruottinen H, Nägren K, Lehikoinen P(1998) Striatal uptake of the dopamine reuptake ligand [nC] ß-CFT is reduced in Alzheimer’s disease assessed by positron emission tomography. Neurology 50: 152–156

    PubMed  CAS  Google Scholar 

  • Rossor MN, Garrett NJ, Johnson AL, Mountjoy CQ, Roth M, Iversen LL (1982) A post-mortem study of the cholinergic and GABA systems in senile dementia. Brain 105: 313–330

    Article  PubMed  CAS  Google Scholar 

  • Sadot E, Gurwitz D, Barg J, Behar L, Ginzburg I, Fisher A (1996) Activation of ni! muscarinic acetylcholine receptor regulates % phosphorylation in transfected PCO cells. J Neurochem 66: 877–880

    Article  PubMed  CAS  Google Scholar 

  • Salomon AR, Marcinowski KJ, Friedland RP, Zagorski MG (1996) Nicotine inhibits amyloid formation by the beta-peptide. Biochemistry 35: 13568–13578

    Article  PubMed  CAS  Google Scholar 

  • Saper CB (1990) Cholinergic system. In: Paxinos G (ed) The Human Nervous System. Academic Press, New York, pp 1095–1113

    Google Scholar 

  • Sargent PB (1993) The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci 16: 403–443

    Article  PubMed  CAS  Google Scholar 

  • Sugita S, Uchimura N, Jiang ZG, North RA (1991) Distinct muscarinic receptors inhibit release of y-aminobutyric acid and excitatory amino acids in mammalian brain. Proc Natl Acad Sei USA 88:2608–2611

    Article  CAS  Google Scholar 

  • Sunderland T, Molchan SE, Little JT, Bahro M, Putnam KT, Weingartner H (1997) Pharmacologic challenges in Alzheimer disease and normal controls: cognitive modeling in humans. Alzheimer Dis Assoc Disord 11 Suppl 4: S23–S26

    PubMed  CAS  Google Scholar 

  • Sweet RA, Pollock BG, Mulsant BH, Rosen J, Lo KH, Yao JK, Henteleff RA, Mazumdar S (1997) Association of plasma homovanillic acid with behavioral symptoms in patients diagnosed with dementia: a preliminary report. Biol Psychiatry 42: 1016–1023

    Article  PubMed  CAS  Google Scholar 

  • Taylor P (1998) Development of acetylcholinesterase inhibitors in the therapy of Alzheimer’s disease. Neurology 51: S30–S35

    PubMed  CAS  Google Scholar 

  • Teitelbaum JS, Zatorre RJ, Carpenter S, Gendron D, Evans AC, Gjedde A, Cashman NR (1990) Neurologie sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. N Engl J Med 322: 1781–1787

    Article  PubMed  CAS  Google Scholar 

  • Tejani-Butt SM, Yang J, Pawlyk AC (1995) Altered Serotonin transporter sites in Alzheimer’s disease raphe and hippocampus. Neuro Report 6: 1207–1210

    CAS  Google Scholar 

  • Tymianski M, Charlton MP, Carlen PL, Tator CH (1993) Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci 13: 2085–2104

    PubMed  CAS  Google Scholar 

  • Valenti G (1996) Neuropeptide changes in dementia: pathogenetic implications and diagnostic value. Gerontology 42: 241–256

    Article  PubMed  CAS  Google Scholar 

  • Vogels OJ, Broere CA, ter LH, ten DH, Nieuwenhuys R, Schulte BP (1990) Cell loss and shrinkage in the nucleus basalis Meynert complex in Alzheimer’s disease. Neurobiol Aging 11: 3–13

    Article  PubMed  CAS  Google Scholar 

  • Warpman U, Nordberg A (1995) Epibatidine and ABT 418 reveal selective losses of a4ß2 nicotinic receptors in Alzheimer brains. Neuro Report 6: 2419–2423

    CAS  Google Scholar 

  • Weiner MF, Speciale SG, Risser RC, Kramer GL, Petty F (1996) Cerebrospinal fluid and plasma gammaaminobutyric acid in Alzheimer’s disease. Biol Psychiatry 40: 933–934

    Article  PubMed  CAS  Google Scholar 

  • Weinstein D, Magnuson D, Lee J (1996) Altered G-protein coupling of a frontal cortical low affinity [3H]8-hydroxy-N,N-dipropyl-2-aminotetralin serotonergic binding site in Alzheimer’s disease. Behav Brain Res 73: 325–329

    Article  PubMed  CAS  Google Scholar 

  • Wenk GL, Danysz W, Mobley SL (1995) MK-801, memantine and amantadine show neuroprotective activity in the nucleus basalis magnocellularis. Eur J Pharmacol 293: 267–270

    Article  PubMed  CAS  Google Scholar 

  • Wenk GL, Zajaczkowski W, Danysz W (1997) Neuroprotection of acetylcholinergic basal forebrain neurons by memantine and neurokinin B. Behav Brain Res 83: 129–133

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Au KS (1986) Cholinergic receptors in aging and Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 10: 665–676

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Price DL, Clark AW, Coyle JT, De Long MR (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10: 122–126

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, De Long MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215: 1237–1239

    Article  PubMed  CAS  Google Scholar 

  • Wu CK, Mesulam MM, Geula C (1997) Age-related loss of calbindin from human basal forebrain cholinergic neurons. Neuro Report 8: 2209–2213

    CAS  Google Scholar 

  • Younkin SG, Goodridge B, Katz J, Lockett G, Nafziger D, Usiak MF, Younkin LH (1986) Molecular forms of acetylcholinesterases in Alzheimer’s disease. Fed Proc 45: 2982–2988

    PubMed  CAS  Google Scholar 

  • Zaczek R, Chorvat RJ, Saye JA et al. (1998) Two new potent neurotransmitter release enhancers, 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone and 10,10-bis(2-fluoro-4-pyridinylmethyl)-9(10H)-anthracenone: comparison to linopirdine. J Pharmacol Exp Ther 285: 724–730

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kornhuber, J., Gundacker, I., Maler, M., Otto, M., Wiltfang, J. (1999). Neurotransmitterveränderungen bei der Alzheimer Demenz. In: Förstl, H., Bickel, H., Kurz, A. (eds) Alzheimer Demenz. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60228-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60228-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64313-2

  • Online ISBN: 978-3-642-60228-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics