Skip to main content

Pathophysiologische Grundlagen

  • Chapter
Organische psychische Störungen
  • 70 Accesses

Zusammenfassung

In diesem Kapitel werden die pathophysiologischen Grundlagen der den organischen Psychosyndromen zu Grunde liegenden Erkrankungen, Schädigungen oder Funktionsstörungen dargestellt. Dabei wird besonders auf die neuropathologischen und die biochemischen Veränderungen eingegangen. Der genaue Zusammenhang zwischen der neuropathologisch nachweisbaren Schädigung und der Ausbildung einer organisch bedingten psychischen Störung (OPS) ist häufig noch unklar, da die Schädigungen auf sehr verschiedenden Ebenen erfolgen bzw. erkennbar werden (Abb.2.1). Ähnliches gilt für die biochemischen Veränderungen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ader R, Madden K, Felten DL, Bellinger DL, Schiffer RB (1996) Psychoneuroimmunology: Interactions between the brain and the immune system.In:Fogel BS, Schiffer RB, Rao SM (Hrsg) Neuropsychiatry. Williams & Wilkins, Baltimore, S 193–221

    Google Scholar 

  2. Aguzzi A, Klein MA, Montrasio F, Pekarik V, Brandner S, Furukawa H, Kaser P, Rockl C, Glatzel M (2000) Prions: pathogenesis and reverse genetics. Ann NY Acad Sci 920:140–157

    PubMed  CAS  Google Scholar 

  3. Akiyama H, Arai T, Kondo H, Tanno E, Haga C, Ikeda K (2000) Cell mediators of inflammation in the Alzheimer disease brain. Alzheimer Dis Assoc Disord 14 Suppl 1:S 47–53

    Google Scholar 

  4. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. TINS 13:266–271

    PubMed  CAS  Google Scholar 

  5. Anderson SW, Damasio H, Tranel D (1990) Neuropsychological impairments associated with lesions caused by tumor or stroke. Arch Neurol 47:397–405

    PubMed  CAS  Google Scholar 

  6. Araujo DM, Lapchak PA, Robitaille Y, Gauthier S, Quirion R (1988) Differential alteration of various cholinergic markers in cortical and subcortical regions of human brain in Alzheimer’s disease. J Neurochem 50:1914–1923

    PubMed  CAS  Google Scholar 

  7. Ashe J, Rosen SA, McArthur JC, Davis LE (1993) Bacterial, fungal, and parasitic causes of dementia. In: Whitehouse PJ (Hrsg) Dementia. Davis, Philadelphia, 5276–306

    Google Scholar 

  8. Bähr M, Bonhoeffer F (1994) Perspectives on axonal regeneration in the mammalian CNS. TINS 17:473–479

    PubMed  Google Scholar 

  9. Ballenger JC, Post RM (1978) Kindling as a model for alcohol withdrawal syndromes. Br J Psychiatry 133:1–14

    PubMed  CAS  Google Scholar 

  10. Banasiaka KJ, Xiab Y, Haddadbc GG (2000) Mechanisms underlying hypoxia-induced neuronal apoptosis. Prog Neurobiol 62:215–249

    Google Scholar 

  11. Barkhof F, Frequin STFM, Hommes OR, Lamers K, Scheltens P, van Geel WJA, Valk J (1992) A correlative triad of gadolinium-DPTA MRI, EDSS, and CSF-MBP in relapsing multiple sclerosis patients treated with high-dose intravenous methylprednisolone. Neurology 42:63–67

    PubMed  CAS  Google Scholar 

  12. Barker EL, Blakely RD (1995) Norepinephrine and serotonin transporters: molecular target of antidepressant drugs. In: Bloom FE, Kupfer DJ (Hrsg) Psychopharmacology. The4thgeneration of progress. Raven Press, New York, S 321–333

    Google Scholar 

  13. Baumgartner A, Campos-Barros A (1993) Schilddrüsenhormone and depressive Erkrankungen - Kritische Übersicht and Perspektiven. Teil II: Schilddrüsenhormone and ZNS-Ergebnisse der Grundlagenforschung. Nervenarzt 64:11–20

    Google Scholar 

  14. Bayer TA, Wirths O, Majtenyi K, Hartmann T, Multhaup G, Beyreuther K, Czech C (2001) Key factors in Alzheimer’s disease: beta-amyloid precursor protein processing, metabolism and intraneuronal transport. Brain Pathol 11:1–11

    PubMed  CAS  Google Scholar 

  15. Beaman BL, Beaman L, Kjelstrom JA, Ogata SA (1994) Bacteria and neurodegeneration. In: Caine DB (Hrsg) Neurodegenerative diseases. Saunders, Philadelphia, S 319–338

    Google Scholar 

  16. Becher B, Prat A, Antel JP (2000) Brain-immune connection: immuno-regulatory properties of CNS-resident cells. Glia 29:293–304

    PubMed  CAS  Google Scholar 

  17. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. J Neurol Sci 20:415–455

    PubMed  CAS  Google Scholar 

  18. Beyreuther K (1997) Molekularbiologie der Alzheimer-Demenz. In: Förstl H (Hrsg) Lehrbuch der Gerontopsychiatrie. Enke, Stuttgart, S31–43

    Google Scholar 

  19. Blessed G, Tomlinson BE, Roth M (1968) The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br J Psychiatry 114:797–811

    PubMed  CAS  Google Scholar 

  20. Bleuer E (1916) Lehrbuch der Psychiatrie, 1. Aufl. Springer, Berlin

    Google Scholar 

  21. Bleuler M (1954) Das endokrine Psychosyndrom. Thieme, Stuttgart

    Google Scholar 

  22. Bowlby J (1961) Processes of mourning. Int J Psychoanalysis 42:317–340

    CAS  Google Scholar 

  23. Bowen DM, Davidson AN (1986) Biochemical studies of nerve cells and energy metabolism in Alzheimer’s disease. Brit Med Bull 42:75–80

    PubMed  CAS  Google Scholar 

  24. Braak H, Braak E (1994) Pathology of Alzheimer’s disease. In: Calne DB (Hrsg) Neurodegenerative diseases. Saunders, Philadelphia, S 585–613

    Google Scholar 

  25. Caine DB, Zigmond MJ (1991) Compensatory mechanisms in degenerative neurologic diseases. Arch Neurol 48:361–363

    Google Scholar 

  26. Charney DS, Nagy LM, Bremer JD, Goddard AW, Yehuda R, Southwich SM (1996) Neurobiological mechanisms of human anxiety. In: Fogel BS, Schiffer RB, Rao SM (Hrsg) Neuropsychiatry. Williams & Wilkins, Baltimore, S 257–278

    Google Scholar 

  27. Choi DW (1995) Calcium: still center-stage in hypoxic-ischemic neuronal death. TINS 18:58–60

    PubMed  CAS  Google Scholar 

  28. Cohen BM, Renshaw PF, Stoll AL, Wurtman RJ, Yurgelun-Todd D, Babb SM (1995) Decreased brain choline uptake in older adults. An in vivo proton magnetic resonance spectroscopy study. JAMA 274:902–907

    PubMed  CAS  Google Scholar 

  29. Cohen G, Werner R (1994) Free radicals, oxidative stress, and neurodegeneration. In: Calne DB (Hrsg) Neurodegenerative diseases. Saunders, Philadelphia, S 139161

    Google Scholar 

  30. Cotman CW, Kahle JS, Miller SE, Ulas J, Bridges RJ (1995) Excitatory amino acid neurotransmission. In: Bloom FE, Kupfer DJ (Hrsg) Psychopharmacology. The 4th generation of progress. Raven Press, New York, S 75–85

    Google Scholar 

  31. Cutting J (1992) The role of right hemisphere dysfunction in psychiatric disorders. Br J Psychiatry 160:583–588

    PubMed  CAS  Google Scholar 

  32. Chua P, Chiu E (2000) Huntington’s disease. In: O’Brien J, Ames D, Burns A (Hrsg) Dementia, 2ndedn. Arnold, London, S 827–843

    Google Scholar 

  33. Davies KJA (1988) Protein oxidation, protein cross-linking, and proteolysis in the formation of lipofuscin: rationale and methods for the measurements of protein degradation. In: Zs.-Nagy I (Hrsg) Lipofuscin - 1987. State of the art. Elsevier, Amsterdam, S 109–133

    Google Scholar 

  34. DeKosky ST, Harbaugh RE, Schmitt FA, Bakay RAE, Chui HC, Knopman DS, Reeder TM, Shetter AG, Senter HJ, Markesberry WR, Intraventricular Bethanecol Study Group (1992) Cortical biopsy in Alzheimer’s disease: diagnostic accuracy and neurochemical, neuropathological, and cognitive correlations. Ann Neurol 32:625–632

    Google Scholar 

  35. Delacourte A (1990) General and dramatic glial reaction in Alzheimer brains. Neurology 40:33–37

    PubMed  CAS  Google Scholar 

  36. DeMoranville BM, Jackson IMD (1996) Psychoendocrinology. In: Fogel BS, Schiffer RB, Rao SM (Hrsg) Neuropsychiatry. Williams & Wilkins, Baltimore, S 173–194

    Google Scholar 

  37. Desmond DW, Erkinjuntti T, Sano M, Cummings JL, Bowler JV, Pasquier F, Moroney JT, Ferris SH, Stern Y, Sachdev PS, Hachinski VC (1999) The cognitive syndrome of vascular dementia: implications for clinical trials. Alzheimer Dis Assoc Disord 13 Suppl 3:521–29

    Google Scholar 

  38. DiMauro S, Moraes CT (1993) Mitochondrial encephalomyopathies. Arch Neurol 50:1197–1208

    PubMed  CAS  Google Scholar 

  39. Dittmann J, Schüttler R (1992) Bewältigungs-and Kompensationsstrategien bei Patienten mit Enzephalomyelitis disseminata (MS) and bei Patienten mit schizophrenen Psychosen. Rehabilitation 31:98–103

    PubMed  CAS  Google Scholar 

  40. Donaldson LF, Hanley MR, Villablanca AC (1997) Inducible receptors. Trends Pharmacol Sci 18:171–181

    PubMed  CAS  Google Scholar 

  41. Doble A (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 81:163–221

    PubMed  CAS  Google Scholar 

  42. Drago J, Kilpatrick TJ, Koblar SA, Talman PS (1994) Growth factors: potential therapeutic applications in neurology. J Neurol, Neurosurg, Psychiatry 57:14451450

    Google Scholar 

  43. Driessen M, Wetterling T, Wedel T, Preuss R (1995) Secondary hyperparathyroidism and depression in chronic renal failure. Nephron 70:334–339

    PubMed  CAS  Google Scholar 

  44. Dunnett SB, Everitt BJ, Robbins TW (1991) The basal forebrain-cortical cholinergic system: interpreting the functional consequences of excitotoxic lesions. TINS 14:494–501

    PubMed  CAS  Google Scholar 

  45. Fawcett JW (1997) Astrocytic and neuronal factors affecting axon regeneration in the damaged central nervous system. Cell Tissue Res 290:371–377

    PubMed  CAS  Google Scholar 

  46. Feldmann E, Plum F (1993) Metabolic dementia. In: Whitehouse PJ (Hrsg) Dementia. Davis, Philadelphia, S 307–336

    Google Scholar 

  47. Felgenhauer K, Liappis N, Nekic M (1982) Low molecular solutes and the blood cerebrospinal fluid barrier. Klin Wochenschr 60:1385–1392

    PubMed  CAS  Google Scholar 

  48. Fern R, Ransom BR, Stys PK, Waxman SG (1993) Pharmacological protection of CNS white matter during anoxia: actions of phenytoin, carbamazepine and diazepam. J Pharmacol Exp Ther 266:1549–1555

    PubMed  CAS  Google Scholar 

  49. Fern R, Davis P, Waxman SG, Ransom BR (1998) Axon conduction and survival in CNS white matter during energy deprivation: a developmental study. J Neurophysiol 79:95–105

    PubMed  CAS  Google Scholar 

  50. Findley L, Barth JT, Powers DC, Wilhoit SC, Boyd DG, Scratt PM (1986) Cognitive impairment in patients with obstructive sleep apnea and associated hypoxemia. Chest 90:686–690

    PubMed  CAS  Google Scholar 

  51. Fishman RA (1982) Brain edema. In: Siegel GJ, Albers RW, Agranoff BW, Katzman R (Hrsg) Basic neurochemistry, 3rd edn. Little, Brown and Company, Boston, 5681–689

    Google Scholar 

  52. Fix AJ, Golden CJ, Daughton D, Kass I, Bell CW (1982) Neuropsychological deficits among patients with chronic obstructive pulmonary disease. Int J Neurosci 16:99–105

    PubMed  CAS  Google Scholar 

  53. Foster NL, van der Speck AFL, Aldrich MS, Berent S, Hichwa RH, Sackellares JC, Gilman S, Agranoff BW (1987) The effect of diazepam sedation on cerebral glucose metabolism in Alzheimer’s disease as measured using positron emission tomography. J Cereb Blood Flow Metab 7:415–420

    PubMed  CAS  Google Scholar 

  54. Frackowiak RSJ, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using150 and positron emission tomography: Theory, procedure, and normal values. JCAT 4:727–736

    CAS  Google Scholar 

  55. Friedland RP, Jagust WJ, Huesman RH, Koss E, Knittel B, Mathis CA, Ober BA, Mazoyer BM, Budinger TF (1989) Regional cerebral glucose transport and utilization in Alzheimer’s disease. Neurology 39:1427–1433

    PubMed  CAS  Google Scholar 

  56. Frölich L (1997) Neurochemie-Glukosestoffwechsel-freie Sauerstoffradikale-Apolipoprotein E. In: Weis S, Weber G (Hrsg) Handbuch Morbus Alzheimer. Beltz PsychologieVerlagsUnion, Weinheim, S 411–434

    Google Scholar 

  57. Gajdusek DC (1985) Hypothesis: Interference with axonal transport of neurofilament as a common pathogenic mechanism in certain diseases of the central nervous system. N Engl J Med 312:714–719

    PubMed  CAS  Google Scholar 

  58. Gibson GA, Duffy TE (1981) Impaired synthesis of acetyl-choline by mild hypoxia and nitrous oxide. J Neurochem 36:28–37

    PubMed  CAS  Google Scholar 

  59. Gibson GA, Pulsinelli W, Blass JP, Duffy TE (1981) Brain dysfunction in mild to moderate hypoxia. JAMA 70:1247–1254

    CAS  Google Scholar 

  60. Gilman AG (1995) Nobel lecture: G proteins and regulation of adenylyl cyclase. Biosci Rep 15:65–97

    PubMed  CAS  Google Scholar 

  61. Goldberg JF, Harrow M (1994) Kindling in bipolar disorders: a longitudinal follow-up study. Biol Psychiatry 35:70–72

    PubMed  CAS  Google Scholar 

  62. Goldman MB (1992) Neuropsychiatric features of endocrine disorders. In: Yudofsky SC, Hales RE (Hrsg) Textbook of Neuropsychiatry. American Psychiatric Press, Washington, S 519–540

    Google Scholar 

  63. Gottfries CG, Blennow, Karlsson I, Wallin A (1994) The neurochemistry of vascular dementia. Dementia 5:163–167

    PubMed  CAS  Google Scholar 

  64. Grafman J, Salazar A, Weingartner H, Vance S, Amin D (1986) The relationship of brain-tissue loss volume and lesion location to cognitive deficit. J Neurosci 6:301307

    Google Scholar 

  65. Grafstein B (1995) Axonal transport: function and mechanisms. In: Waxman SG, Kocsis JD, Stys PK (Hrsg) The axon: structure, function and pathophysiology. Oxford University Press, Oxford, S 185–199

    Google Scholar 

  66. Grant I, Prignato GP, Heaton RK, McSweeny AJ, Wright EC, Adams KM (1987) Progressive neuropsychologic impairment and hypoxemia: relationship in chronic obstructive pulmonary disease. Arch Gen Psychiatry 44:999–1006

    PubMed  CAS  Google Scholar 

  67. Gray F, Adle-Biassette H, Brion F, Ereau T, le Maner I, Levy V, Corcket G (2000) Neuronal apoptosis in human immunodeficiency virus infection. J Neurovirol 6 Suppl 1:538–43

    Google Scholar 

  68. Greenberg GD, Watson RK, Deptula D (1987) Neuropsychological dysfunction in sleep apnea. Sleep 10:254–262

    PubMed  CAS  Google Scholar 

  69. Greenamyre JT, Shoulson I (1994) Huntington’s disease. In: Caine DB (Hrsg) Neurodegenerative diseases. Saunders, Philadelphia, S 685–704

    Google Scholar 

  70. Gsell W, Strein I, Riederer P (1996) The neurochemistry of Alzheimer type, vascular type and mixed type dementias compared. J Neural transm Suppl 47:73–101

    PubMed  CAS  Google Scholar 

  71. Haass G (1999) Molekulare Mechanismen der Alzheimer Erkrankung. In: Förstl H, Bickel H, Kurz A (Hrsg) Alzheimer Demenz. Springer, Berlin, S 55–66

    Google Scholar 

  72. Hadcock JR, Malbon CC (1991) Regulation of receptor expression by agonists: transcriptional and post-transcriptional controls. TINS 14:242–247

    PubMed  CAS  Google Scholar 

  73. Hadcock JR, Malbon CC (1993) Agonist regulation of gene expression of adrenergic receptors and G proteins. J Neurochem 60:1–9

    PubMed  CAS  Google Scholar 

  74. Hansen L, Salmon D, Galasko D, Masliah E, Katzman R, DeTeresa R, Thal L, Pay MM, Hofstetter R, Klauber M, Rice V, Butters N, Alford M (1990) The Lewy body variant of Alzheimer’s disease: a clinical and pathologic entity. Neurology 40:1–8

    PubMed  CAS  Google Scholar 

  75. Hardy J, Gwinn-Hardy K (1998) Genetic classification of primary neurodegenerative disease. Science 282:1075–1079

    PubMed  CAS  Google Scholar 

  76. Hartikainen P, Reinikainen KJ, Soininen H, Sirvio J, Soikkeli R, Riekkinen PJ (1992) Neurochemical markers in the cerebrospinal fluid of patients with Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis and normal controls. J Neural Transm Park Dis Dement Sect 4:53–68

    PubMed  CAS  Google Scholar 

  77. Hedera P, Whitehouse PJ (1994) Neurotransmitters in neurodegeneration. In: Caine DB (Hrsg) Neurodegenerative diseases. Saunders, Philadelphia, S97–126

    Google Scholar 

  78. Heiss W-D (1984) Messungen der regionalen Durchblutung und des regionalen Stoffwechsels im Gehirn bei Patienten mit hirnorganischem Psychosyndrom. In: Heiss W-D (Hrsg) Diagnosemethoden bei hirnorganischem Psychosyndrom. Scripta medica merck 17, S 35–64

    Google Scholar 

  79. Heizmann CW, Braun K (1992) Changes in Cat+-binding proteins in human neurodegenerative disorders. TINS 15:259–264

    PubMed  CAS  Google Scholar 

  80. Herholz K (1995) FDG PET and differential diagnosis of dementia. Alzheimer Dis Assoc Disord 9:6–16

    PubMed  CAS  Google Scholar 

  81. Hermle L, Spitzer M (2000) „Modellpsychosen“, Halluzinogen-und Stimulantienbedingte psychische Störungen. In: Förstl H (Hrsg) Klinische Neuro-Psychiatrie. Thieme, Stuttgart, S 367–386

    Google Scholar 

  82. Hille B (1994) Modulation of ion-channel function by G-protein-coupled receptors. TINS 17:531–536

    PubMed  CAS  Google Scholar 

  83. Hirsch S, Bähr M (1999) Growth promoting and inhibitory effects of glial cells in the mammalian nervous system. Adv Exp Med Biol 468:199–205

    PubMed  CAS  Google Scholar 

  84. Hodges J (2000) Pick’s disease: its relationship to progressive aphasia, semantic dementia and frontotemporal dementia. In:O’Brien J, Ames D, Burns A (Hrsg) Dementia2ndedn. Arnold, London, S 747–758

    Google Scholar 

  85. Hökfelt T, Johansson O, Holds V, Meister B, Melander T (1987) Distribution of neuropeptides with special reference to their coexistence with classical neurotransmitters. In:Meltzer HY(Hrsg) Psychopharmacology:3rdgeneration of progress. Raven Press, New York, S401–417

    Google Scholar 

  86. Hopkins SJ, Rothwell NJ (1995) Cytokines and the nervous system I: expression and recognition. TINS 18:83–88

    PubMed  CAS  Google Scholar 

  87. Horowski R, Wachtel H, Turski L, Löschmann P-A (1994) Glutamate excitotoxicity as a possible pathogenetic mechanism in chronic neurodegeneration. In: Caine DB(Hrsg) Neurodegenerative diseases. Saunders, Philadelphia, S163–175

    Google Scholar 

  88. Hoyer S (1991) Energy metabolism in cortex and hippocampus during aging, ischemia, and dementia. In:Hartmann A, Kuschinsky W, Hoyer S (Hrsg) Cerebral ischemia and dementia. Springer, Berlin, S132–148

    Google Scholar 

  89. Ince P, Perry R, Perry E (2000) Pathology of dementia with Lewy bodies. In:O’Brien J, Ames D, Burns A(Hrsg) Dementia, 2ndedn. Arnold, London, S699–717

    Google Scholar 

  90. Iqbal K, Zaidi T, Wen GY, Grundke-Iqbal I, Merz PA, Shaikh SS, Wisniewski HM (1986) Defective brain microtubule assembly in Alzheimer’s disease. Lancet iüª:421–426

    Google Scholar 

  91. Iqbal K, Grundke-Iqbal I (1994) Neurofibrillary tangles.In: Caine DB (Hrsg) Neurodegenerative diseases. Saunders, Philadelphia, S71–82

    Google Scholar 

  92. Iversen S, Kupfermann I, Kandel ER (2000) Emotional states and feelings. In:Kandel ER, Schwartz JH, Jessell TM (Hrsg) Principles of neural science, 4` edn. McGraw-Hill, New York, S 982–997

    Google Scholar 

  93. Iyo M, Namba H, Fukushi K, Shinotoh H, Nagatsuka S, Suhara T, Sudo Y, Suzuki K, Irie T (1997) Measurement of acetylcholinesterase by positron emission tomography in the brains of healthy controls and patients with Alzheimer’s disease. Lancet 349 (9068):1805–1809

    PubMed  CAS  Google Scholar 

  94. Jellinger K (1989) Morphologie des alternden Gehirnes und der (Prä)senilen Demenz. In: Platt D (Hrsg) Handbuch der Gerontologie, Vol 5. Fischer, Stuttgart, S 3–56

    Google Scholar 

  95. Jessell TM, Sanes JR (2000) The generation and survival of nerve cells. In: Kandel ER, Schwartz JH, Jessell TM (Hrsg) Principles of neural science. 4th ed.. McGraw-Hill, New York, S 1041–1062

    Google Scholar 

  96. Kandel ER (2000) Disorders of thought and volitions: Schizophrenia. In: Kandel ER, Schwartz JH, Jessell TM (Hrsg) Principles of neural science, 4thedn. McGraw-Hill, New York, S 1188–1208

    Google Scholar 

  97. Kandel ER (2000) Disorders of mood: Depression, mania, and anxiety disorders. In:Kandel ER, Schwartz JH, Jessell TM(Hrsg) Principles of neural science, 4th edn. McGraw-Hill, New York, S 1209–1226

    Google Scholar 

  98. Kandel ER (2000) Cellular mechanisms of learning and the biological basis of individuality. In:Kandel ER, Schwartz JH, Jessell TM(Hrsg) Principles of neural science, 4thedn. McGraw-Hill, New York, S1247–1279

    Google Scholar 

  99. Kandel ER, Siegelbaum SA (2000) Overview of synaptic transmission. In: Kandel ER, Schwartz JH, Jessell TM(Hrsg) Principles of neural science, 4thedn. McGraw-Hill, New York, S 175–186

    Google Scholar 

  100. Kandel ER, Siegelbaum SA (2000) Synaptic integration. In: Kandel ER, Schwartz JH, Jessell TM(Hrsg) Principles of neural science, 4thedn. McGraw-Hill, New York, S207–228

    Google Scholar 

  101. Kandel ER, Siegelbaum SA (2000) Transmitter release. In: Kandel ER, Schwartz JH, Jessell TM(Hrsg) Principles of neural science, 4thedn. McGraw-Hill, New York, S 253–279

    Google Scholar 

  102. Kebabian JW (1994) Neurotransmitter receptors in neurodegeneration. In: Caine DB (Hrsg) Neurodegenerative diseases. Saunders, Philadelphia, S 119–126

    Google Scholar 

  103. Koester J (2000) Membrane potential. In: Kandel ER, Schwartz JH, Jessell TM (Hrsg) Principles of neural science, 4thedn. McGraw-Hill, New York, S124–139

    Google Scholar 

  104. Koester J, Siegelbaum SA (2000) Propagated signaling: The action potential. In: Kandel ER, Schwartz JH, Jessell TM (Hrsg) Principles of neural science, 4thedn. McGraw-Hill, New York, S150–170

    Google Scholar 

  105. Kornhuber J, Weller M (1997) Psychogenity and N-methyl-D-aspartate receptor antagonism: implications with neuroprotective properties. J Neural Transm Suppl 43:91–104

    Google Scholar 

  106. Korwall NW, Kosik KS (1987) Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer’s disease. Ann Neurol 22:639–643

    Google Scholar 

  107. Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau is a major antigenic component of paired helical filaments in Alzheimer’s disease. Proc Natl Acad Sci USA 83:4044–4048

    PubMed  CAS  Google Scholar 

  108. Krieglstein J (1990) Hirnleistungsstörungen. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  109. Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL, Frey KA, Kilbourn MR (1999) In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 52:691–699

    PubMed  CAS  Google Scholar 

  110. Kupfermann I (1991) Hypothalamus and limbic system: peptidergic neurons, homeostasis, and emotional behavior. In: Kandel ER, Schwartz JH, Jessell TM (Hrsg) Principles of neural science, 3rd edn. Elsevier, New York, S 735–749

    Google Scholar 

  111. Kuzuhara S, Mori H, Izumiyama N, Yoshimura M, Ihara Y (1988) Lewy bodies are ubiquitinated. Acta Neuropathol 75:345–353

    PubMed  CAS  Google Scholar 

  112. Lang C (1994) Demenzen: Diagnose and Differentialdiagnose. Chapman & Hall, Weinheim

    Google Scholar 

  113. Langston JW, Irwin I (1994) Organic neurotoxicants. In: Caine DB (Hrsg) Neurodegenerative diseases. Saunders, Philadelphia, S 225–240

    Google Scholar 

  114. Laterra J, Goldstein GW (2000) Ventricular organization of the cerebrospinal fluid, brain edema, and hydrozephalus. In: Kandel ER, Schwartz JH, Jessell TM (Hrsg) Principles of neural science, 4thedn. McGraw-Hill, New York, S1288–1301

    Google Scholar 

  115. Lauritzen M (1987) Cortical spreading depression as a putative migraine mechanism. TINS 10:8–13

    Google Scholar 

  116. Lesch K-P, Beckmann H (1993) Neurotransporter: Neue Aspekte zum Wirkmechanismus psychotroper Substanzen. Nervenarzt 64:75–79

    PubMed  CAS  Google Scholar 

  117. Lezak MD (1986) Psychological implications of traumatic brain damage for the patient’s family. Rehabilitation Psychology 31/4:241–250

    Google Scholar 

  118. Lindvall O, Kokaia Z, Bengzon J, Elmer E, Kokaia M (1994) Neutrophine and brain insults. TINS 17:490–496

    PubMed  CAS  Google Scholar 

  119. Magistretti PJ, Pellerin L, Martin JL (1995) Brain energy metabolism. In: Bloom FE, Kupfer DJ (Hrsg) Psychopharmacology. The 4thgeneration of progress. Raven Press, New York, S 657–670

    Google Scholar 

  120. Markowitsch HJ (1997) Neuropsychologie des Gedächtnisses. In: Förstl H (Hrsg) Lehrbuch der Gerontopsychiatrie. Enke, Stuttgart, 571–83

    Google Scholar 

  121. Martin LJ, Al-Abdulla NA, Brambrink AM, Kirsch JR, Sieber FE, Portera-Cailliau C (1998) Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis. Brain Res Bull 46:281–309

    PubMed  CAS  Google Scholar 

  122. Martin RL, Lloyd HG, Cowan AI (1994) The early event of oxygen and glucose deprivation: setting the scene for neuronal death? TINS 17:251–257

    PubMed  CAS  Google Scholar 

  123. McArthur JC, Roos RP, Johnson RT (1993) Viral dementias. In: Whitehouse PJ (Hrsg) Dementia. Davis, Philadelphia, S237–275

    Google Scholar 

  124. Mesulam MM (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28:597–613

    PubMed  CAS  Google Scholar 

  125. Moore RY, Zigmond MJ (1994) Compensatory mechanisms in central neurodegenerative diseases. In: Caine DB (Hrsg) Neurodegenerative diseases. Saunders, Philadelphia, S 355–369

    Google Scholar 

  126. Morgan JI, Curran T (1995) Proto-Oncogene.In:Bloom FE, Kupfer DJ (Hrsg) Psychopharmacology. The 4thgeneration of progress. Raven Press, New York, 5631–642

    Google Scholar 

  127. Moseley IF, Radii EW (1979) Factors influencing the development of periventricular lucencies in patients with raised intracranial pressure. Neuroradiology 17:65–69

    PubMed  CAS  Google Scholar 

  128. Nicoll RA, Malenka RC, Kauer JA (1990) Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol Rev 70:513–565

    PubMed  CAS  Google Scholar 

  129. Nieuwenhuys R (1985) Chemoarchitecture of the brain. Springer, Berlin

    Google Scholar 

  130. Nijst TQ, Wevers RA, Schoonderwaldt HC, Hommes OR, de Haan AFJ (1990) Vitamin B12 and folate concentrations in serum and cerebrospinal fluid of neurological patients with special reference to multiple sclerosis and dementia. J Neurol Neurosurg Psychiatr 53:951–954

    PubMed  CAS  Google Scholar 

  131. Nixon RA, Sihag RK (1991) Neurofilament phosphorylation: a new look at regulation and function. TINS 14:501–506

    PubMed  CAS  Google Scholar 

  132. Nixon RA (1998) The slow axonal transport of cytoskeletal proteins. Curr Opin Cell Biol 10:87–92

    PubMed  CAS  Google Scholar 

  133. Norenberg MD (1998) Astroglial dysfunction in hepatic encephalopathy. Metab Brain Dis 13:319–335

    PubMed  CAS  Google Scholar 

  134. Penney JB (1996) Neurochemical neuroanatomy. In: Fogel BS, Schiffer RB, Rao SM (Hrsg) Neuropsychiatry. Williams & Wilkins, Baltimore, S 145–171

    Google Scholar 

  135. Perry EK, Morris CM, Court JA, Cheng A, Fairbairn AF, McKeith IG, Irving D, Brown A, Perry RH (1995) Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: possible index of early neuropathology 64:385–395

    CAS  Google Scholar 

  136. Persidsky Y, Zheng J, Miller D, Gendelman HE (2000) Mononuclear phagocytes mediate blood-brain barrier comprise and neuronal injury during HIV-1-associated dementia. J Leukoc Biol 68:413–422

    PubMed  CAS  Google Scholar 

  137. Petito CK (1979) Early and late mechanism of increased vascular permeability following experimental cerebral infarction. J Neuropathol Exp Neurol 38:222–234

    PubMed  CAS  Google Scholar 

  138. Pöppel E, von Steinbüchel N (1990) Neuropsychological rehabilitation from a theoretical point of view. In: Von Steinbüchel N, von Cramon DY, Pöppel E (Hrsg) Neuropsychological rehabilitation. Springer, Berlin, S 3–19

    Google Scholar 

  139. Pohlmann-Eden B (2000) Epilepsie. In: Förstl H (Hrsg) Klinische Neuro-Psychiatrie. Thieme, Stuttgart, S 270–297

    Google Scholar 

  140. Rayport SG (1992) Cellular and molecular biology of the neuron. In: Yudofsky SC, Hales RE (Hrsg) Textbook of neuropsychiatry, 2nd edn. American Psychiatric Press, Washington, S 3–28

    Google Scholar 

  141. Reiber H (1980) The discrimination between different blood-CSF barrier dysfunctions and inflammatory reactions of the CNS by a recent evaluation graph for the protein profile of cerebrospinal fluid. J Neurol 224:89–99

    PubMed  CAS  Google Scholar 

  142. Reiber H, Felgenhauer K (1987) Protein transfer at the blood cerebrospinal fluid barrier and the quantitation of the humoral immune response within the central nervous system. Clin Chim Acta 163:319–328

    CAS  Google Scholar 

  143. Reichmann H, Riederer P (1994) Mitochondrial disturbances in neurodegeneration. In: Calne DB (Hrsg) Neurodegenerative diseases. Saunders, Philadelphia, S 195–204

    Google Scholar 

  144. Rogers RL, Meyer JS, Mortel KF, Mahurin RK, Judd BW (1986) Decreased cerebral blood flow precedes multi-infarct dementia, but follows senile dementia of Alzheimer type. Neurology 36:1–6

    PubMed  CAS  Google Scholar 

  145. Roman GC (1987) Senile dementia of the Binswanger type. JAMA 258:1782–1788

    PubMed  CAS  Google Scholar 

  146. Rothwell NJ, Hopkins SJ (1995) Cytokines and the nervous system II: Actions and mechanisms of action. TINS 18:130–136

    PubMed  CAS  Google Scholar 

  147. Sanchez C, Diaz-Nido J, Avila J (2000) Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol 61:133–168

    PubMed  CAS  Google Scholar 

  148. Sanes JR, Jessell TM (2000) The guidances of axons to their targets. In:Kandel ER, Schwartz JH, Jessell TM (Hrsg) Principles of neural science, 411hedn. McGraw-Hill, New York, S 1063–1086

    Google Scholar 

  149. Sanes JR, Jessell TM (2000) The formation and regeneration of synapses.In: Kandel ER, Schwartz JH, Jessell TM (Hrsg) Principles of neural science, 4medn. McGraw-Hill, New York, S 1087–1114

    Google Scholar 

  150. Schwartz JH (2000) Neurotransmitter. In: Kandel ER, Schwartz JH, Jessell TM (Hrsg) Principles of neural science, 4thedn. McGraw-Hill, New York, S280–297

    Google Scholar 

  151. Schwartz JH, De Camilli P (2000) Synthesis and trafficking of neuronal protein. In: Kandel ER, Schwartz JH, Jessell TM (Hrsg) Principles of neural science, 4th edn. McGraw-Hill, New York, S 88–104

    Google Scholar 

  152. Schwartz JH, Westbrook GL (2000) The cytology of neurons. In: Kandel ER, Schwartz JH, Jessell TM (Hrsg) Principles of neural science4thedn. McGraw-Hill, New York, S 67–87

    Google Scholar 

  153. Seligman MEP (1999) Erlernte Hilflosigkeit. Beltz Taschenbuch 16, Weinheim

    Google Scholar 

  154. Shinotoh H, Namba H, Yamaguchi M, Fukushi K, Nagatsuka S, Iyo M, Asahina M, Hattori T, Tanada S, Irie T (1999) Positron emission tomographic measurement of acetylcholinesterase activity reveals differential loss of ascending cholinergic systems in Parkinson’s disease and progressive supranuclear palsy. Ann Neurol 46:62–69

    PubMed  CAS  Google Scholar 

  155. Shinotoh H, Namba H, Fukushi K, Nagatsuka S, Tanaka N, Aotsuka A, Ota T, Tanada S, Irie T (2000) Progressive loss of cortical acetylcholinesterase activity in association with cognitive decline in Alzheimer’s disease: a positron emission tomography study. Ann Neurol 48:194–200

    PubMed  CAS  Google Scholar 

  156. Siegelbaum SA, Schwartz JH, Kandel ER (2000) Modulation of synaptic transmission: second messengers. In: Kandel ER, Schwartz JH, Jessell TM (Hrsg) Principles of neural science, 4thedn. McGraw-Hill, New York, S 229–252

    Google Scholar 

  157. Soares JC, Mann JJ (1997) The anatomy of mood disorders - review of structural neuroimaging studies. Biol. Psychiatry 41:86–106

    CAS  Google Scholar 

  158. Sokoloff L (1989) Circulation and energy metabolism of the brain. In: Siegel GJ, Agranoff B, Albers RW, Molinoff P (Hrsg) Basic neurochemistry, 4thedn. Raven Press, New York, S 565–590

    Google Scholar 

  159. Staub F, Kempski O, Peters J, Weigt H, von Rosen F, Baethmann A (1991) Mechanisms of glial swelling from lactacidosis and high K+levels in the extracellular compartment. In: Hartmann A, Kuschinsky W, Hoyer S (Hrsg) Cerebral ischemia and dementia. Springer, Berlin, S 149–156

    Google Scholar 

  160. Stoll G, Jander S, Schroeter M (1998) Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 56:149–171

    PubMed  CAS  Google Scholar 

  161. Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58:233–247

    PubMed  CAS  Google Scholar 

  162. Szatkowski M, Attwell D (1994) Triggering and execution of neuronal death in brain ischemia: two phases of glutamate release by different mechanisms. TINS 17:359–365

    PubMed  CAS  Google Scholar 

  163. Taylor MA, Sierles FS, Abrams R (1987) The neuropsychiatric evaluation. In: Hales RE, Yudofsky SC (Hrsg) Textbook of neuropsychiatry. American Psychiatric Press, Washington, S3–16

    Google Scholar 

  164. Theodore WH, DiChiro G, Margolin R, Fishbein D, Porter RJ, Brooks RA (1986) Barbiturates reduce human cerebral glucose metabolism. Neurology 36:60–64

    PubMed  CAS  Google Scholar 

  165. Theodore WH, Bairamian D, Newmark ME, DiChiro G, Porter RJ, Larson S, Fishbein D (1986) The effect of phenytoin on human cerebral glucose metabolism. J Cereb Blood Flow Metab 6:315–320

    PubMed  CAS  Google Scholar 

  166. Theodore WH, Bromfield E, Onorati L (1989) The effect of carbamazepine on cerebral glucose metabolism. Ann Neurol 25:516–520

    PubMed  CAS  Google Scholar 

  167. Tranel D (1992) Functional neuroanatomy: neuropsychological correlates of cortical and subcortical damage. In: Yudofsky SC, Hales RE (Hrsg) Textbook of neuropsychiatry, 2edn. American Psychiatric Press, Washington, S57–88

    Google Scholar 

  168. Ulrich J (1985) Alzheimer changes in nondemented patients younger than sixty-five: Possible early stages of Alzheimer’s disease and senile dementia of Alzheimer type. Ann Neurol 17:273–277

    Google Scholar 

  169. Ulrich J, Probst A, West M (1986) The brain diseases causing senile dementia. J Neurol 233:118–122

    PubMed  CAS  Google Scholar 

  170. Vieregge P (2000) Hirntumoren. In: Förstl H (Hrsg) Klinische Neuro-Psychiatrie. Thieme, Stuttgart, S298–310

    Google Scholar 

  171. Vinters HV (1987) Cerebral amyloid angiopathy. A critical review. Stroke 18:311–324

    PubMed  CAS  Google Scholar 

  172. Walden J (1992) Glutamat und Gaba. Bedeutung für die Ausbreitung und Begrenzung epileptischer Aktivität. Schattauer, Stuttgart

    Google Scholar 

  173. Walz W, Hertz L (1984) Intense furosemide-sensitive potassium accumulation in astrocytes in the presence of pathologically high extracellular potassium levels. J Cereb Blood Flow Metabol 4:301–304

    CAS  Google Scholar 

  174. Waxman SG, Ransom BR, Stys PK (1991) Non-synaptic mechanisms of Cat+-mediated injury in CNS white matter. TINS 14:461–467

    PubMed  CAS  Google Scholar 

  175. Weinberger DR, Gibson R, Coppola R, Jones DW, Molchan S, Sunderland T, Berman KF, Reba RC (1991) The distribution of cerebral muscarinic acetylcholine receptors in vivo in patients with dementia. Arch Neurol 48:169–176

    PubMed  CAS  Google Scholar 

  176. Westaway D, Carlson CA, Prusiner SB (1989) Unraveling prion diseases through molecular genetics. TINS 12:221–227

    PubMed  CAS  Google Scholar 

  177. Wetterling T (1987) Hyponatriämie - unterschätzte Komplikation bei psychiatrischen Patienten. Nervenarzt 58:625–631

    PubMed  CAS  Google Scholar 

  178. Wetterling T (1989) Alzheimersche Erkrankung. Überblick über den aktuellen Stand der Forschung. Fortschr Neurol Psychiatr 57:1–13

    PubMed  CAS  Google Scholar 

  179. Wetterling T (1992) Neurotransmitterveränderungen bei der Demenz vom Alzheimer Typ. Nervenheilkunde 11:239–245

    Google Scholar 

  180. Wetterling T (1992) Subkortikale arteriosklerotische Enzephalopathie - eine Krankheitsentität? Nervenheilkunde 11:289–293

    Google Scholar 

  181. Wetterling T (1994) Differentialdiagnose dementieller Abbauprozesse. Thieme, Stuttgart

    Google Scholar 

  182. Wetterling T, Kanitz R-D, Veltrup C, Driessen M (1994) Clinical predictors of alcohol withdrawal delirium. Alcohol Clin Exp Res 18:1100–1102

    PubMed  CAS  Google Scholar 

  183. Wetterling T (2000) Alkoholfolgeerkrankungen. In: Förstl H (Hrsg) Klinische Neuro-Psychiatrie. Thieme, Stuttgart, S 354–366

    Google Scholar 

  184. Wolfe LS, Gauthier S, Durham HD (1988) Dolichols and phosphorylated dolichols in the neuronal ceroid lipofuscinoses, other lysosomal storage diseases and Alzheimer disease, induction of autolysosomes in fibroblasts. In: Zs.-Nagy I (Hrsg) Lipofuscin - 1987. State of the art. Elsevier, Amsterdam, S389–411

    Google Scholar 

  185. Wurtman RJ (1992) Choline metabolism as a basis for the selective vulnerability of cholinergic neurons. TINS 15:117–122

    PubMed  CAS  Google Scholar 

  186. Yamanouchi H (1991) Loss of white matter oligodendrocytes and astrocytes in progressive subcortical vascular encephalopathy of Binswanger’s type. Acta Neu-rol Scand 83:301–305

    CAS  Google Scholar 

  187. Zenner K, Gold R, Meurers B, Reichmann H (1990) Die mitochondrialen Enzephalomyopathien Kearns-Sayre-Syndrom, MELAS und MERFF im Vergleich. Nervenarzt 61:597–603

    PubMed  CAS  Google Scholar 

  188. Zs.-Nagy I (1988) The theoretical background and cellular autoregulation of biological waste product formation. In: Zs.-Nagy I (Hrsg) Lipofuscin - 1987. State of the art. Elsevier, Amsterdam, S 23–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wetterling, T. (2002). Pathophysiologische Grundlagen. In: Organische psychische Störungen. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57532-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57532-7_2

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63288-4

  • Online ISBN: 978-3-642-57532-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics