Skip to main content
  • 514 Accesses

Zusammenfassung

Die besondere Funktion der Leber im Intermediärstoffwechsel erklärt sich aus ihrer anatomischen Lage. Sie bezieht während der Resorptionsphase die über den Intestinaltrakt aufgenommenen Nahrungsstoffe, Vitamine und Elektrolyte. Eine Ausnahme hiervon machen die Nahrungslipide, die über die Lymphbahnen des Intestinaltrakts gesammelt und über den Ductus thoracicus in den großen Kreislauf verteilt werden und dementsprechend in größerer Verdünnung zur Leber gelangen. Damit ist die Leber als einziges Organ daran angepasst, ein sowohl von der Quantität als auch von der Qualität her sehr variables Stoffangebot zu bewältigen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. Aarsland A, Wolfe RR (1998) Hepatic secretion of VLDL fatty acids during stimulated lipogenesis in men. J Lipid Res 39: 1280–1286

    PubMed  CAS  Google Scholar 

  2. Agellon LB, Torchia EC (2000) Intracellular transport of bile acids. Biochim Biophys Acta 1486: 198–209

    Article  PubMed  CAS  Google Scholar 

  3. Aiston S, Trinh KY, Lange AJ et al. (1999) Glucose-6-phosphatase. Overexpression lowers glucose 6-phosphate and inhibits glycogen synthesis and glycolysis in hepatocytes without affecting glucokinase translocation. Evidence against feedback inhibition of glucokinase. J Biol Chem 274: 24559–24566

    Article  PubMed  CAS  Google Scholar 

  4. Bollen M, Keppens S, Stalmans W (1998) Specific features of glycogen metabolism in the liver. Biochem J 336: 19–31

    PubMed  CAS  Google Scholar 

  5. Bramlett KS, Yao S, Bums TP (2000) Correlation of farnesoid X receptor coactivator recruitment and cholesterol 7α-hydroxylase gene repression by bile acids. Mol Gen Metab 71: 609–615

    Article  CAS  Google Scholar 

  6. Brosnan JT (2000) Glutamate, at the interface between amino acid and carbohydrate metabolism. J Nutr 130: 988S–990S

    Google Scholar 

  7. Brown MS, Goldstein JL (1997) The SREBP-pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89: 331–340

    Article  PubMed  CAS  Google Scholar 

  8. Brown MS, Ye J, Rawson RB, Goldstein JL (2000) Regulated intermembrane proteolysis: A control mechanism conserved from bacteria to humans. Cell 92: 391–398

    Article  Google Scholar 

  9. Browner MF, Fletterick RJ (1992) Phosphorylase: a biological transducer. Trends Biochem Sci 17: 66–71

    Article  PubMed  CAS  Google Scholar 

  10. Cha U, Kim HIf, Kim KS et al. (2000) Identification of transacting factors responsible for the tissue-specific expression of human glucose transporter type 2 isoform gene: cooperative role of hepatocyte nuclear factors Ia and 3b. J Biol Chem 275: 18358–18365

    Article  PubMed  CAS  Google Scholar 

  11. Cohen JC, Vega GL, Grundy SM (1999) Hepatic lipase: new insights from genetic and metabolic studies. Curr Opin Lipidol 10: 259–267

    Article  PubMed  CAS  Google Scholar 

  12. Cohen P (1999) The Croonian Lecture 1998. Identification of a protein kinase cascade of major importance in insulin signal transduction. Phil Trans R Soc Lond 354-B: 485–495

    Google Scholar 

  13. Cohen P, Alessi DR, Cross DA (1997) PDK I, one of the missing links in insulin signal transduction? FEBS Lett 410: 3–10

    Article  PubMed  CAS  Google Scholar 

  14. Connelly PW (1999) The role of hepatic lipase in lipoprotein metabolism. Clin Chim Acta 286: 243–255

    Article  PubMed  CAS  Google Scholar 

  15. Diraison F, Beylot M (1998) Role of human liver lipogenesis and reesterification in triglycerides secretion and in FFA reesterification. Am J Physiol 274: E321–E327

    PubMed  CAS  Google Scholar 

  16. Fafoumoux P, Bruhat A, Jousse C (2000) Amino acid regulation of gene expression. Biochem J 351: 1–12

    Article  Google Scholar 

  17. Fan J, Watanabe T (1998) Hepatic lipase. J Atheroscler Thromb 5: 41–45

    CAS  Google Scholar 

  18. Galassetti P, Shiota M, Zinker BA, Wasserman DH, Cherrington AD (1998) A negative arterial-portal vein glucose gradient decreases muscle glucose uptake in the conscious dog. J Physiol 275: E101–E111

    CAS  Google Scholar 

  19. Gasa R, Jensen PB, Berman HKt et al. (2000) Distinctive regulatory and metabolic properties of glycogen-targeting subunits of protein phosphatase-1 (PTG, GL, GM /RG1) expressed in hepatocytes. J Biol Chem 275: 26396–26403

    Article  PubMed  CAS  Google Scholar 

  20. Girard J, Ferre P, Foufelle F (1997) Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu Rev Nutr 17: 325–352

    Article  PubMed  CAS  Google Scholar 

  21. Gordon DA, Jamil H (2000) Progress towards understanding the role of microsomal triglyceride transfer protein in apolipoprotein-B lipoprotein assembly. Biochim Biophys Acta 1486: 72–83

    Article  PubMed  CAS  Google Scholar 

  22. Gressner AM (1995) In: Greiling H, Gressner AM (Hrsg) Lehrbuch der klinischen Chemie und Pathobiochemie. Schattauer, Stuttgart New York, S. 543–662

    Google Scholar 

  23. Iglesia N, Mukhtar M, Seoane J et al. (2000) The role of the regulatory protein of glucokinase in the glucose sensory mechanism of the hepatocyte. J Biol Chem 275: 10597–10603

    Article  PubMed  Google Scholar 

  24. Ji ZS, Dichek HL, Miranda DR, Mahley RW (1997) Heparan sulfate proteoglycans participate in hepatic lipase- and apolipoprotein E-mediated binding and uptake of plasma lipoproteins, including high density lipoproteins. J Biol Chem 272: 31285–292

    Article  PubMed  CAS  Google Scholar 

  25. Johnson LN (1992) Glycogen phosphorylase: control by phosphorylation and allosteric effectors. FASEB J 6: 2274–82

    PubMed  CAS  Google Scholar 

  26. Koopmans SJ, Mandarine L, DeFronzo RA (1998) Time course of insulin action on tissue-specific intracellular glucose metabolism in normal rats. Am J Physiol 274: E642–E650

    PubMed  CAS  Google Scholar 

  27. Krieger M (1999) Charting the fate of the «good cholesterol»: identification and characterization of the high-density lipoprotein receptor SR-B I. Annu Rev Biochem 68: 523–558

    Article  PubMed  CAS  Google Scholar 

  28. Livesey G, Wilson PDG, Dainty JR et al. (1998) Simultaneous time-varying systemic appearance of oral and hepatic glucose in adults monitored with stable isotopes. Am J Physiol 275: E717–E728

    PubMed  CAS  Google Scholar 

  29. Magnuson MA (1990) Glucokinase gene structure. Functional implications of molecular genetic studies. Diabetes 39: 523–527

    Article  PubMed  CAS  Google Scholar 

  30. Mahley RW, Ji ZS (l999) Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res 40: 1–16

    Google Scholar 

  31. Martin G, Nemoto M, Gelman L et al. (2000) The human fatty acid transport protein-1 (SLC27A1; FATP-1) cDNA and gene: Organization, chromosomal localization, and expression. Genomics 66: 296–304

    Article  PubMed  CAS  Google Scholar 

  32. Martin G, Schoonjans K, Lefebvre A-M, Staels B, Auwerx J (1997) Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARα and PPARγ activators. J Biol Chem 272: 28210–28217

    Article  PubMed  CAS  Google Scholar 

  33. Matschinsky FM (1990) Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes. Diabetes 39: 647–652

    Article  PubMed  CAS  Google Scholar 

  34. Newgard CB, Brady MJ, O’Doherty RM, Saltiel AR (2000) Organizing glucose disposal: emerging roles of the glycogen targeting subunits of protein phosphatase-1. Diabetes 49: 1967–1977

    Article  PubMed  CAS  Google Scholar 

  35. O’Doherty RM, Jensen PB, Anderson Pet al. (2000) Activation of direct and indirect pathways of glycogen synthesis by hepatic overexpression of protein targeting to glycogen. J Clin Invest 105: 479–488

    Article  PubMed  Google Scholar 

  36. Olivier LM, Krisans SK (2000) Peroxisomal protein targeting and identification of peroxisomal targeting signals in cholesterol biosynthetic enzymes. Biochchim Biophys Acta 1529: 89–102

    Article  CAS  Google Scholar 

  37. Pagliassotti MJ, Holste LC, Moore MC, Neal DW, Cherrington AD (1996) Comparison of the time courses of insulin and the portal signal on hepatic glucose and glycogen metabolism in the conscious dog. J Clin Invest 97: 81–91

    Article  PubMed  CAS  Google Scholar 

  38. Palacin M, Estevez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78: 969–1054

    PubMed  CAS  Google Scholar 

  39. Patel DD, Knight BL, Soutar AK et al. (2000) The effect of peroxisome-proliferator-activated receptor-α on the activity of the Cholesterol 7α-hydroxylase gene. Biochem J 351: 747–753

    Article  PubMed  CAS  Google Scholar 

  40. Po-Shiuan H, Courtney Moore M, Neal DW, Cherrington AD (2000) Importance of the hepatic arterial glucose level in generation of the portal signal in conscious dogs. Am J Physiol 279: E284–E292

    Google Scholar 

  41. Schwarz JM, Chioler RO, Revelly JP et al. (2000) Effects of enteral carbohydrates on de novo lipogenesis in critically ill patients. Am J Clin Nutr 72: 940–945

    PubMed  CAS  Google Scholar 

  42. Srivastava AK, Pandey SK (1998) Potential mechanism(s) involved in the regulation of glycogen synthesis by insulin. Mol Cell Biochem 182: 135–141

    Article  PubMed  CAS  Google Scholar 

  43. Stumpel F, Jungermann K (1997) Sensing by intrahepatic muscarinic nerves of a portal-arterial glucose concentration gradient as a signal for insulin-dependent glucose uptake in the perfused rat liver. FEBS 406: 119–122

    Article  CAS  Google Scholar 

  44. Tayior R, Magnusson I, Rothman DL et al. (1996) Direct assessment of liver glycogen storage by 13C nuclear magnetic resonance spectroscopy and regulation of glucose homeostasis after a mixed meal im normal subjects. J Clin Invest 97: 126–132

    Article  Google Scholar 

  45. Thorens B (1996) Glucose transporters in the regulation of intestinal, renal and liver glucose fluxes. Am J Physiol 270: G541–G553

    PubMed  CAS  Google Scholar 

  46. Tietge UJF, Bakillah A, Maugeais C et al. (1999) Hepatic orerexpression of microsomal triglyceride transfer protein (MTP) results in increased in vivo secretion of VLDL triglycerides and apolipoprotein B. J Lipid Res 40: 2134–2139

    PubMed  CAS  Google Scholar 

  47. Trigatti BL, Rigotti A, Braun A (2000) Cellular and physiological roles of SR-BI, a lipoprotein receptor which mediates selective lipid uptake. Biochim Biophys Acta 1529: 276–286

    Article  PubMed  CAS  Google Scholar 

  48. Van deWerve GA, Lange A, Newgard C et al. (2000) New lessons in the regulation of glucose metabolism taught by the glucose 6-phosphatase system. Eur J Biochem 267, 1533–1549

    Article  Google Scholar 

  49. Van Schaftingen E, Detheux M, Veiga da Cunha M (1994) Short-term control of glucokinase activity: role of a regulatory protein. FASEB J 8: 414–419

    PubMed  Google Scholar 

  50. Villar-Palasi, C, Guinovart JJ (1997) The role of glucose 6-phosphate in the control of glycogen synthase. FASEB J 11: 544–558

    PubMed  CAS  Google Scholar 

  51. Willnow TE (1999) The low-density lipoprotein receptor gene family: multiple roles in lipid metabolism. J Mol Med 77: 306–315

    Article  PubMed  CAS  Google Scholar 

  52. Yahagi N, Shimano H, Hasty AH et al. (1999) A crucial role of sterol regulatory element binding protein-1 in the regulation of lipogenic gene expression by polyunsaturated fatty acids. J Biol Chem 274: 35840–35844

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Löffler, G. (2003). Der Stoffwechsel von Nahrungsinhaltstoffen in der Leber. In: Stein, J., Jauch, KW. (eds) Praxishandbuch klinische Ernährung und Infusionstherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55896-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55896-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62625-8

  • Online ISBN: 978-3-642-55896-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics