Skip to main content

Tissue Engineering

  • Chapter
Plastische Chirurgie

Zusammenfassung

Der Ersatz von durch Trauma, angeborene Defekte oder Resektionen verlorenem Gewebe ist eine Forderung, mit der Plastisch-rekonstruktive Chirurgen täglich konfrontiert werden. Technische Fortschritte auf dem Gebiet der Mikrochirurgie sowie der allogenen und autologen Transplantationen brachten die Plastische Chirurgie an die vorderste Front der medizinischen Wissenschaft und Forschung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 229.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Acil Y, Terheyden H, Dunsche A, Fleiner B, Jepsen S (2000) Three-dimensional cultivation of human osteoblast-like cells on highly porous natural bone mineral. J Biomed Mater Res 51: 703

    Article  PubMed  CAS  Google Scholar 

  2. Andrades JA et al. (1999) A recombinant human TGF-beta fusion protein with collagen-binding domain promotes migration, growth, and differentiation of bone marrow mesenchymal cells. Exp Cell Res 250: 485–498

    Article  PubMed  CAS  Google Scholar 

  3. Andreadis ST, Hamoen KE, Yannush ML, Morgan JR (2001) Keratinocyte growth factor induces hyperproliferation and delays differentiation in a skin equivalent model system. Faseb J 15: 898–906

    Article  PubMed  CAS  Google Scholar 

  4. Asahina L, Watanabe M, Sakurai N, Mori M, Enomoto S (1997) Repair of bone defect in primate mandible using a bone morphogenetic protein (BMP)-hydroxyapatite-collagen composite. J Mcd Dent Sci 44: 63–70

    CAS  Google Scholar 

  5. Bennett S et al. (1996) Initial biocompatibility studies of a novel degradable polymeric bone substitute that hardens in situ. Bone 19:101S–107S

    Article  PubMed  CAS  Google Scholar 

  6. Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen.phenotype when cultured in agarose gels. Cell 30: 215–224

    Article  PubMed  CAS  Google Scholar 

  7. Bergsma JE, de Bruijn WC, Rozerna FR, Bos RR, Boering G (1995) Late degradation tissue response to poly(L-lactide) bone plates and screws. Biomaterials 16: 25–31

    Article  PubMed  CAS  Google Scholar 

  8. Berrey BH Jr, Lord CF, Gebhardt MC, Mankin HJ (1990) Fractures of allografts. Frequency, treatment, and end-results. J Bone Joint Surg Am 72: 825–833

    PubMed  Google Scholar 

  9. Bostnian O, Hirvensalo E, Makinen J, Rokkanen P (1990) Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. J Bone Joint Surg Br 72: 592–596

    Google Scholar 

  10. Boyan BD et al. (1999) Potential of porous poly-D,L-lactide-co-glycolide particles as a carrier for recombinant human bone morphogenetic protein-2 during osteoinduction in vivo. J Biomed Mater Res 46: 51–59

    Article  PubMed  CAS  Google Scholar 

  11. Breitbart AS et al. (1998) Tissue engineered bone repair of calvarial defects using cultured periosteal cells. Plast Reconstr Surg 101: 567–574 (discussion 575–576)

    Article  PubMed  CAS  Google Scholar 

  12. Brittberg M et al. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Mcd 331: 889–895

    Article  CAS  Google Scholar 

  13. Bruder SP, Fink DJ, Caplan AI (1994) Mcsenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56: 283–294

    Article  PubMed  CAS  Google Scholar 

  14. Bruder SP et al. (1998) Mcsenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop: S247–256

    Google Scholar 

  15. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcul-tivation and following cryopreservation. J Cell Biochem 64: 278–294

    Article  PubMed  CAS  Google Scholar 

  16. Butler CE, Yannas IV, Compton CC, Correia CA, Orgill DP (1999) Comparison of cultured and uncultured keratinocytes seeded into a collagen-GAG matrix for skin replacements. Br J Plast Surg 52:127

    Article  PubMed  CAS  Google Scholar 

  17. Caplan AI (1991) Mcsenchymal stem cells. J Orthop Res 9: 641–650

    Article  PubMed  CAS  Google Scholar 

  18. Chapman MW, Bucholz R, Cornell C (1997) Treatment of acute fractures with a collagen-calcium phosphate graft material. A randomized clinical trial. J Bone Joint Surg Am 79:495–502

    PubMed  CAS  Google Scholar 

  19. Compton CC, Butler CE, Yannas IV, Warland G, Orgill DP (1998) Organized skin structure is regenerated in vivo from collagen-GAG matrices seeded with autologous keratinocytes. J Invest Dermatol 110: 908–916

    Article  PubMed  CAS  Google Scholar 

  20. Connolly JF (1995) Injectable bone marrow preparations to stimulate osteogenic repair. Clin Orthop: 8–18

    Google Scholar 

  21. Connolly JF (1998) Clinical use of marrow osteoprogenitor cells to stimulate osteogenesis. Clin Orthop: S257–266

    Google Scholar 

  22. Connolly JF, Shindell R (1986) Percutaneous marrow injection for an ununited tibia. Nebr Mcd J 71:105–107

    CAS  Google Scholar 

  23. Connolly JF, Guse R, Tiedeman J, Dehne R (1991) Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clin Orthop: 259–270

    Google Scholar 

  24. Dagalakis N, Flink L, Stasikelis P, Burke JF, Yannas IV (1980) Design of an artificial skin. Part III. Control of pore structure. J Biomed Mater Res 14: 511–528

    Article  PubMed  CAS  Google Scholar 

  25. Delecrin L, Takahashi S, Gouin F, Passuti N (2000) A synthetic porous ceramic as a bone graft substitute in the surgical management of scoliosis: a prospective, randomized study. Spine 25: 563–569

    Article  PubMed  CAS  Google Scholar 

  26. Detmar M et al. (1995) Keratinocyte-derived vascular permeability factor (vascular endothelial growth factor) is a potent mitogen for dermal microvascular endothelial cells. J Invest Dermatol 105: 4450

    Article  Google Scholar 

  27. Duda GN et al. (2000) Mechanical quality of tissue engineered cartilage: results after 6 and 12 weeks in vivo. J Biomed Mater Res 53: 673–677

    Article  PubMed  CAS  Google Scholar 

  28. Elima K (1993) Osteoinductive proteins. Ann Mcd 25: 395–402

    CAS  Google Scholar 

  29. Eming SA et al. (1995) Genetically modified human epidernis overexpressing P13GF-A directs the development of a cellular and vascular connective tissue stroma when transplanted to athymic mice-implications for the use of genetically modified keratinocytes to modulate dermal regeneration. J Invest Dermatol 105: 756–763

    Article  PubMed  CAS  Google Scholar 

  30. Eming SA, Mcdalie DA, Tompkins RG, Yannush ML, Morgan JR (1998) Genetically modified human keratinocytes overexpressing I’DGF-A enhance the performance of a composite skin graft. Hum Gene Ther 9: 529–539

    Article  PubMed  CAS  Google Scholar 

  31. Eming SA et al. (1999) Particle-mediated gene transfer of I’DG17 isoforms promotes wound repair. J Invest Dermatol 112: 297–302

    Article  PubMed  CAS  Google Scholar 

  32. Falanga V, Sabolinski M (1999) A bilayered living skin construct (APLIGRAF) accelerates completeclosure of hard-to-heal venous ulcers. Wound Repair Regen 7: 201–207

    Article  PubMed  CAS  Google Scholar 

  33. Falanga V et al. (1998) Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Human Skin Equivalent Investigators Group. Arch Dermatol 134: 293–300

    Article  PubMed  CAS  Google Scholar 

  34. Frank S et al. (1995) Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. J Biol Chem 270:12607–12613

    Article  PubMed  CAS  Google Scholar 

  35. Freed LE, Langer R, Martin L, Pellis NR, Vunjak-Novakovic G (1997) Tissue engineering of cartilage in space. Proc Natl Acad Sci USA 94:13885–13890

    Article  PubMed  CAS  Google Scholar 

  36. Freed LE, Martin I, Vunjak-Novakovic G (1999) Frontiers in tissue engineering. In vitro modulation of chondrogenesis. Clin Orthop: S46–58

    Google Scholar 

  37. Friedlaender GE, Strong DM, Sell KW (1984) Studies on the antigenicity of bone. J Bone Joint Surg Am 66:107–112

    PubMed  CAS  Google Scholar 

  38. Grande DA, Halberstadt C, Naughton G, Schwartz R, Manji R (1997) Evaluation of matrix.scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res 34: 211–220

    Article  PubMed  CAS  Google Scholar 

  39. Guyton AC (2000) Textbook of medical physiology. Saunders, Philadelphia

    Google Scholar 

  40. Hefton JM, Madden MR, Finkelstein JL, Shires GT (1983) Grafting of bum patients with allografts of cultured epidermal cells. Lancet 2: 428–430

    Article  PubMed  CAS  Google Scholar 

  41. Hollinger JO, Battistone GC (1986) Biodegradable bone repair materials. Synthetic polymers and ceramics. Clin Orthop: 290–305

    Google Scholar 

  42. Holmes R, Mooney V, Bucholz R, Tencer A (1984) A coralline hydroxyapatite bone graft substitute. Preliminary report. Clin Orthop: 252–262

    Google Scholar 

  43. Ishaug-Riley SL, Crane-Kruger GM, Yaszeniski MJ, Mikos AG (1998) Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 19:1405–1412

    Article  PubMed  CAS  Google Scholar 

  44. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238: 265–272

    Article  PubMed  CAS  Google Scholar 

  45. Kale AA, Di Cesare PE (1995) Osteoinductive agents. Basic science and clinical applications. Am J Orthop 24: 752–761

    PubMed  CAS  Google Scholar 

  46. Kim WS et al. (1994) Cartilage engineered in predetermined shapes employing cell transplantation on.synthetic biodegradable polymers. Plast Reconstr Surg 94: 233–237 (discussion: 238–240)

    Article  PubMed  CAS  Google Scholar 

  47. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  PubMed  CAS  Google Scholar 

  48. Lanza RP, Langer R, Chick L (eds) (1997) Principles of tissue engineering. Academic Press, San Diego

    Google Scholar 

  49. Le Baron RG, Athanasiou KA (2000) Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials. Tissue Eng 6: 85–103

    Article  Google Scholar 

  50. Livesey SA, Herndon DN, Hollyoak MA, Atkinson YH, Nag A (1995) Transplanted acellular allograft dermal matrix. Potential as a template for the reconstruction of viable dermis. Transplantation 60:1–9

    Article  PubMed  CAS  Google Scholar 

  51. Long MW, Robinson JA, Ashcraft EA, Mann KG (1995) Regulation of human bone marrowderived osteoprogenitor cells by osteogenic growth factors. J Clin Invest 95: 881–887

    Article  PubMed  CAS  Google Scholar 

  52. Mackay AM et al. (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4: 415–428

    Article  PubMed  CAS  Google Scholar 

  53. Madden MR et al. (1986) Grafting of cultured allogeneic epidermis on second-and third-degree bum wounds on 26 patients. Trauma 26: 955–962

    Article  CAS  Google Scholar 

  54. Mauck RL et al. (2000) Functional tissue engineering of articular cartilage through dynamic loading of.chondro-cyte-seeded agarose gels. J Biomech Eng 122: 252–560

    Article  PubMed  CAS  Google Scholar 

  55. Mcdalie DA et al (1997) Differences in dermal analogs influence subsequent pigmentation, epidermal differentiation, basement membrane, and rete ridge formation of transplanted composite skin grafts. Transplantation 64: 454–465

    Article  Google Scholar 

  56. McNab A (1995) Hydroxyapatite orbital implants. Experience with 100 cases. Aust NZ J Ophthalmol 23:117–123

    Article  CAS  Google Scholar 

  57. Minas T (1998) Chondrocyte implantation in the repair of chondral lesions of the knee: economics and quality of life. Am J Orthop 27: 739–744

    PubMed  CAS  Google Scholar 

  58. Mora F, Ouhayoun JP (1995) Clinical evaluation of natural coral and porous hydroxy apatite implants in periodontal bone lesions: results of a 1-year follow-up. J Clin Periodon-tol 22: 877–884

    Article  CAS  Google Scholar 

  59. Morgan JR, Yannush ML (eds) (1999) Tissue engineering methods and protocols. Humana Press, Totowa/NJ

    Google Scholar 

  60. Morgan JR, Barrandon Y, Green H, Mulligan RC (1987) Expression of an exogenous growth hormone gene by trans-plantable human epidermal cells. Science 237:1476–1479

    Article  PubMed  CAS  Google Scholar 

  61. Munster AM (1996) Cultured skin for massive bums. A prospective, controlled trial. Ann Surg 224: 372–375 (discussion: 375–377)

    Article  PubMed  CAS  Google Scholar 

  62. Muschler GR, Hyodo A, Manning T, Kambic H, Easley K (1994) Evaluation of human bone morphogenetic protein 2 in a canine spinal fusion model. Clin Orthop: 229–240

    Google Scholar 

  63. Nakahara H et al. (1990) Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone 11:181–188

    Article  PubMed  CAS  Google Scholar 

  64. Nakahara H et al. (1991) In vitro differentiation of bone and hypertrophic cartilage from periosteal derived cells. Exp Cell Res 195: 492–503

    Article  PubMed  CAS  Google Scholar 

  65. Norman ME, Elgendy HM, Shors EC, el-Amin SF, Laurencin CT (1994) An in-vitro evaluation of coralline porous hydro-xyapatite as a scaffold for osteoblast growth. Clin Mater 17: 85–91

    Article  PubMed  CAS  Google Scholar 

  66. O’Connor NE (1981) Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet 1: 75–78

    Article  Google Scholar 

  67. Perka C et al. (2000) Joint cartilage repair with transplantation of embryonic chondrocytes embedded in.collagen-fibrin matrices. Clin Exp Rheumatol 18:13–22

    PubMed  CAS  Google Scholar 

  68. Peterson L et al. (2000) Two-to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop: 212–234

    Google Scholar 

  69. Petite H et al. (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18: 959–963

    Article  PubMed  CAS  Google Scholar 

  70. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276: 71–74

    Article  PubMed  CAS  Google Scholar 

  71. Prunieras M, Regnier M, Woodley D (1983) Mcthods for cultivation of keratinocytes with an airliquid interface. J Invest Dermatol 81: 28S–33S

    Article  PubMed  CAS  Google Scholar 

  72. Puelacher WC, Vacanti JP, Ferraro NF, Schloo B, Vacanti CA (1996) Femoral shaft reconstruction using tissue-engineered growth of bone. Int J Oral Maxillofac Surg 25: 223–228

    Article  PubMed  CAS  Google Scholar 

  73. Quatela VC, Sherris DA, Rosier RN (1993) The human auricular chondrocyte. Responses to growth factors. Arch Otolaryngol Head Neck Surg 119: 32–37

    Article  PubMed  CAS  Google Scholar 

  74. Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of ke-ratinizing colonies from single cells. Cell 6: 331–343

    Article  PubMed  CAS  Google Scholar 

  75. Rodriguez A et al. (1999) Characteristics of cartilage engineered from human pediatric auricular cartilage. Plast Re-constr Surg 103:1111–1119

    Article  CAS  Google Scholar 

  76. Saadeb PB et al. (1999) Human cartilage engineering: chondrocyte extraction, proliferation, and characterization for construct development. Ann Plast Surg 42: 509–513

    Article  Google Scholar 

  77. Saito N et al. (2001) A biodegradable polymer as a cytokine delivery system for inducing bone formation. Nat Biotechnol 19: 332–335

    Article  PubMed  CAS  Google Scholar 

  78. Schreiber RE, Dunkelman NS, Naughton G, Ratcliffe A (1999) A method for tissue engineering of cartilage by cell seeding on bioresorbable scaffolds. Ann NY Acad Sci 875: 398–404

    Article  PubMed  CAS  Google Scholar 

  79. Schulz JT, Tompkins RG, Burke JF (2000) Artificial skin. Annu Rev Mcd 51: 231–244

    Article  CAS  Google Scholar 

  80. Shea LD, Wang D, Franceschi RT, Mooney DJ (2000) Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds. Tissue Eng 6: 605–617

    Article  PubMed  CAS  Google Scholar 

  81. Sheridan R et al. (1998) Acellular allodermis in bums surgery: 1-year results of a pilot trial. J Burn Care Rehabil 19: 528–530

    Article  PubMed  CAS  Google Scholar 

  82. Strong DM et al. (1996) Immunologie responses in human recipients of osseous and osteochondral allografts. Clin Orthop: 107–114

    Google Scholar 

  83. Supp DM, Supp AP, Bell SM, Boyce ST (2000) Enhanced vas-cularization of cultured skin substitutes genetically modified to overexpress vascular endothelial growth factor. J Invest Dermatol 114: 5–13

    Article  PubMed  CAS  Google Scholar 

  84. Takahashi T et al. (1999) Use of porous hydroxyapatite graft containing recombinant human bone morphogenetic protein-2 for cervical fusion in a caprine model. J Neurosurg 90: 224–230

    PubMed  CAS  Google Scholar 

  85. Takigawa M et al. (1987) Chondrocytes dedifferentiated by serial monolayer culture form cartilagenodules in nude mice. Bone Miner 2: 449–462

    PubMed  CAS  Google Scholar 

  86. Temenoff JS, Mikos AG (2000) Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials 21: 2405–2412

    Article  PubMed  CAS  Google Scholar 

  87. Tiedeman JL, Garvin KL, Kile TA, Connolly JF (1995) The role of a composite, demineralized bone matrix and bone marrow in the treatment of osseous defects. Orthopedics 18:1153–1158

    PubMed  CAS  Google Scholar 

  88. Urist MR (1972) Osteoinduction in undernineralized bone implants modified by chemical inhibitors of endogenous matrix enzymes. A preliminary report. Clin Orthop 87: 132–137

    PubMed  CAS  Google Scholar 

  89. Urist MR, Silverman BF, Buring K, Dubuc FL, Rosenberg JM (1967) The bone induction principle. Clin Orthop 53: 243–283

    PubMed  CAS  Google Scholar 

  90. Vacanti CA, Cima L, Ratkowski D (1992) Tissue engineering of new cartilage in the shape of a human ear employing specially configured synthetic polymers seeded with chondrocytes. Materials Research Society Symposium Proceedings 252:367–373

    Article  CAS  Google Scholar 

  91. Vacanti CA, Vacanti JP (1994) Bone and cartilage reconstruction with tissue engineering approaches. Otolaryngol Clin North Am 27: 263–276

    PubMed  CAS  Google Scholar 

  92. Van der Elst M, Klein CP, de Blieck-Hogervorst JM, Patka P, Haarman HJ (1999) Bone tissue response to biodegradable polymers used for intra medullary fracture fixation: a longterm in vivo study in sheep femora. Biomaterials 20: 121–128

    Article  PubMed  Google Scholar 

  93. Van Osch GL, van der Veen SW, Verwoerd-Verhoef HL (2001) In vitro redifferentiation of culture-expanded rabbit and human auricular chondrocytes for cartilage reconstruction. Plast Reconstr Surg 107: 433–440

    Article  PubMed  Google Scholar 

  94. Veves A, Falanga V, Armstrong DG, Sabolinski ML (2001) Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers. Diabetes Care 24: 290–295

    Article  PubMed  CAS  Google Scholar 

  95. Von der Mark K, Gauss V, Von der Mark H, Muller P (1977) Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 267: 531–532

    Article  PubMed  Google Scholar 

  96. Wainwright DJ (1995) Use of an acellular allograft dermal matrix (AlloDerin) in the management of full-thickness burns. Burns 21: 243–248

    Article  PubMed  CAS  Google Scholar 

  97. Wakitani S et al. (1989) Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg Br 71: 74–80

    PubMed  CAS  Google Scholar 

  98. Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426

    Article  PubMed  CAS  Google Scholar 

  99. White EW et al. (1975) Replamineform porous biomaterials for hard tissue implant applications. J Biomed Mater Res 9: 23–27

    Article  PubMed  CAS  Google Scholar 

  100. Wozney JM et al. (1988) Novel regulators of bone formation: molecular clones and activities. Science 242: 1528–1534

    Article  PubMed  CAS  Google Scholar 

  101. Yannas IV, Burke JF (1980) Design of an artificial skin. 1. Basic design principles. J Biomed Mater Res 14: 65–81

    Article  PubMed  CAS  Google Scholar 

  102. Yannas IV, Burke JF, Huang C, Gordon PL (1975) Correlation of in vivo collagen degradation rate with in vitro measurements. J Biomed Mater Res 9: 623–628

    Article  PubMed  CAS  Google Scholar 

  103. Yannas IV, Burke JE, Gordon PL, Huang C, Rubenstein RH (1980) Design of an artificial skin. II. Control of chemical composition. J Biomed Mater Res 14:107–132

    Article  PubMed  CAS  Google Scholar 

  104. Yazdi M, Bernick S, Paule WJ, Nimni ME (1991) Postmortem degradation of dernineralized bone matrix osteo-inductive potential. Effect of time and storage temperature. Clin Orthop: 281–288

    Google Scholar 

  105. Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3:1925

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rakhorst, H.A., Morgan, J.R. (2003). Tissue Engineering. In: Berger, A., Hierner, R. (eds) Plastische Chirurgie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55886-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55886-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62713-2

  • Online ISBN: 978-3-642-55886-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics