Skip to main content

Hämodynamisches und respiratorisches Monitoring

  • Chapter
  • First Online:
Die Intensivmedizin

Zusammenfassung

Störungen der Herz-Kreislauf- und Lungenfunktion zählen – sowohl als primäre Erkrankung, aber auch als sekundäres Begleitphämonen systemischer Störungen wie Sepsis oder als Folge großer chirurgischer Eingriffe – zu den führenden Gründen, eine Intensivtherapie einzuleiten. Konsekutiv kommt der laufenden Überwachung dieser Organfunktionen größte Bedeutung zu. Daher ist es nicht erstaunlich, dass sich kaum ein Bereich in Anästhesie und Intensivmedizin in den letzten Jahren so dynamisch entwickelt hat wie das Monitoring. Und es vergeht kaum ein Monat, in dem nicht ein neues oder modifiziertes Verfahren zur Überwachung der Herz-Kreislauf- oder Lungenfunktion vorgestellt oder wissenschaftlich evaluiert wird.

Dies birgt für den Anwender naturgemäß die Schwierigkeit, den Überblick über die zur Verfügung stehenden Verfahren und ihre Wertigkeit zu behalten. Gleichzeitig gilt es zu berücksichtigen, dass in kaum einem Bereich der Akutmedizin Wunsch (was man alles messen kann!) und Wirklichkeit (ob der Einsatz eines Monitoringverfahrens tatsächlich zu einem besseren Outcome führt!) so stark divergieren wie beim Monitoring; eine Beobachtung, die sich allerdings zwanglos dadurch erklären lässt, dass Monitoring per se niemals einen Patienten heilen, sondern nur einen Krankheitszustand beschreiben kann.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338(6):347–54

    Article  CAS  PubMed  Google Scholar 

  • Balik M, Pachl J, Hendl J (2002) Effect of the degree of tricuspid regurgitation on cardiac output measurements by thermodilution. Intensive Care Med 28(8):1117–21

    Article  PubMed  Google Scholar 

  • Baulig W, Bernhard EO, Bettex D, Schmidlin D, Schmid ER (2005) Cardiac output measurement by pulse dye densitometry in cardiac surgery. Anaesthesia 60:968–973

    Article  CAS  PubMed  Google Scholar 

  • Bendjelid K, Marx G, Kiefer N, Simon TP, Geisen M, Hoeft A, Siegenthaler N, Hofer CK (2013) Performance of a new pulse contour method for continuous cardiac output monitoring: validation in critically ill patients. Br J Anaesth 111(4):573–9

    Article  CAS  PubMed  Google Scholar 

  • Blanch L, Lopez-Aguilar J, Villagra A (2007) Bedside evaluation of pressure-volume curves in patients with acute respiratory distress syndrome. Curr Opin Crit Care 13(3):332–7

    Article  PubMed  Google Scholar 

  • Blankman P, Gommers D (2012) Lung monitoring at the bedside in mechanically ventilated patients. Curr Opin Crit Care 18(3):261–6

    Article  PubMed  Google Scholar 

  • Boehmer RD (1987) Continuous, real-time, noninvasive monitor of blood pressure: Penaz methodology applied to the finger. J Clin Monit 3(4):282–7

    CAS  PubMed  Google Scholar 

  • Boehne M, Schmidt F, Witt L et al (2012) Comparison of transpulmonary thermodilution and ultrasound dilution technique: novel insights into volumetric parameters from an animal model. Pediatr Cardiol 33:625–632

    Article  PubMed  Google Scholar 

  • Bossert T, Gummert JF, Bittner HB, Barten M, Walther T, Falk V, Mohr FW (2006) Swan-Ganz catheter-induced severe complications in cardiac surgery: right ventricular perforation, knotting, and rupture of a pulmonary artery. J Card Surg 21(3):292–5

    Article  PubMed  Google Scholar 

  • Branson RD, Johannigman JA (2009) Innovations in mechanical ventilation. Respir Care 54(7):933–47

    Article  PubMed  Google Scholar 

  • Broch O, Renner J, Höcker J, Gruenewald M, Meybohm P, Schöttler J, Steinfath M, Bein B (2011) Uncalibrated pulse power analysis fails to reliably measure cardiac output in patients undergoing coronary artery bypass surgery. Crit Care 15(1):R76

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown LM, Liu KD, Matthay MA (2009) Measurement of extravascular lung water using the single indicator method in patients: research and potential clinical value. Am J Physiol Lung Cell Mol Physiol 297(4):L547–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cabello B, Mancebo J (2006) Work of breathing. Intensive Care Med 32(9):1311–4

    Article  PubMed  Google Scholar 

  • Carl M, Alms A, Braun J, Dongas A, Erb J, Goetz A, Goepfert M, Gogarten W, Grosse J, Heller AR, Heringlake M, Kastrup M, Kroener A, Loer SA, Marggraf G, Markewitz A, Reuter D, Schmitt DV, Schirmer U, Wiesenack C, Zwissler B, Spies C (2010) S3 guidelines for intensive care in cardiac surgery patients: hemodynamic monitoring and cardiocirculary system. Ger Med Sci 15:8

    Google Scholar 

  • Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators JAMA 276:889–897

    Google Scholar 

  • Cortes GA, Marini JJ (2013) Two steps forward in bedside monitoring of lung mechanics: transpulmonary pressure and lung volume. Crit Care 17(2):219

    Article  PubMed Central  PubMed  Google Scholar 

  • Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL (2009) Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol 53(7):582–8

    Article  PubMed  Google Scholar 

  • Dark PM, Singer M (2004) The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med 30:2060–2066

    Article  PubMed  Google Scholar 

  • De Simone R, Wolf I, Mottl-Link S, Böttiger BW, Rauch H, Meinzer HP, Hagl S (2005) Intraoperative assessment of right ventricular volume and function. Eur J Cardiothorac Surg 27(6):988–93

    Article  PubMed  Google Scholar 

  • Desebbe O, Henaine R, Keller G, Koffel C, Garcia H, Rosamel P, Obadia JF, Bastien O, Lehot JJ, Haftek M, Critchley LA (2013) Ability of the Third-Generation FloTrac/Vigileo Software to Track Changes in Cardiac Output in Cardiac Surgery Patients: A Polar Plot Approach. J Cardiothorac Vasc Anesth 27:1122–1127. doi:10.1053/j.jvca.2013.03.008;

    Google Scholar 

  • Dhainaut A et al. (1987) Bedside evaluation of right ventricular performance using a rapid computerized thermodilution method. Crit Care Med 15:147–152

    Google Scholar 

  • Donati A, Loggi S, Preiser JC, Orsetti G, Münch C, Gabbanelli V, Pelaia P, Pietropaoli P (2007) Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest 132(6):1817–24

    Article  PubMed  Google Scholar 

  • Eichhorn V, Goepfert MS, Eulenburg C, Malbrain ML, Reuter DA (2012) Comparison of values in critically ill patients for global end-diastolic volume and extravascular lung water measured by transcardiopulmonary thermodilution: a meta-analysis of the literature. Med Intensiva 36(7):467–74

    Article  CAS  PubMed  Google Scholar 

  • Eleftheriadis S, Galatoudis Z, Didilis V, Bougioukas I, Schön J, Heinze H, Berger KU, Heringlake M (2009) Variations in arterial blood pressure are associated with parallel changes in FlowTrac/Vigileo-derived cardiac output measurements: a prospective comparison study. Crit Care 13(6):R179

    Article  PubMed Central  PubMed  Google Scholar 

  • Fischer MO, Avram R, Cârjaliu I, Massetti M, Gérard JL, Hanouz JL, Fellahi JL (2012) Non-invasive continuous arterial pressure and cardiac index monitoring with Nexfin after cardiac surgery. Br J Anaesth 109(4):514–21

    Article  CAS  PubMed  Google Scholar 

  • Frank O (1930) Schätzung des Schlagvolumens des menschlichen Herzens aufgrund der Wellen- und WindkesselTheorie. ZBiol 90:405

    Google Scholar 

  • Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, Fumagalli R (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 333(16):1025–32

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos D, Prinianakis G, Kondili E (2006) Bedside waveforms interpretation as a tool to identify patient-ventilator asynchronies. Intensive Care Med 32(1):34–47

    Article  PubMed  Google Scholar 

  • Grasso S, Terragni P, Mascia L, Fanelli V, Quintel M, Herrmann P, Hedenstierna G, Slutsky AS, Ranieri VM (2004) Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med 32(4):1018–27

    Article  PubMed  Google Scholar 

  • Gruenewald M, Meybohm P, Renner J, Broch O, Caliebe A, Weiler N, Steinfath M, Scholz J, Bein B (2011) Effect of norepinephrine dosage and calibration frequency on accuracy of pulse contour-derived cardiac output. Crit Care 15(1):R22

    Article  PubMed Central  PubMed  Google Scholar 

  • Hamilton MA, Cecconi M, Rhodes A (2011) A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg 112(6):1392–402

    Article  PubMed  Google Scholar 

  • Hamilton WF, Moore JW, Kinsman JM, Spurling RGIV (1932) Further Analysis of the Injection Method, an of Changes in Hemodynamics under Physiological and Pathological Conditions. Am J Physiol 99:534–551

    CAS  Google Scholar 

  • Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330(24):1717–22

    Article  CAS  PubMed  Google Scholar 

  • Hein M, Roehl AB, Baumert JH, Rossaint R, Steendijk P (2009) Continuous right ventricular volumetry by fast-response thermodilution during right ventricular ischemia: head-to-head comparison with conductance catheter measurements. Crit Care Med 37(11):2962–7

    Article  PubMed  Google Scholar 

  • Heinze H, Eichler W (2009) Measurements of functional residual capacity during intensive care treatment: the technical aspects and itspossible clinical applications. Acta Anaesthesiol Scand 53:1121–1130

    Article  CAS  PubMed  Google Scholar 

  • Hinz J, Hahn G, Neumann P, Sydow M, Mohrenweiser P, Hellige G, Burchardi H (2009) End-expiratory lung impedance change enables bedside monitoring of end-expiratory lung volume change. Intensive Care Med 29(1):37–43

    Google Scholar 

  • Hohn A, Defosse JM, Becker S, Steffen C, Wappler F, Sakka SG (2013) Non-invasive continuous arterial pressure monitoring with Nexfin does not sufficiently replace invasive measurements in critically ill patients. Br J Anaesth 111(2):178–84

    Article  CAS  PubMed  Google Scholar 

  • Holm JH, Frederiksen CA, Juhl-Olsen P, Sloth E (2012) Perioperative use of focus assessed transthoracic echocardiography (FATE). Anesth Analg 115(5):1029–32

    Article  PubMed  Google Scholar 

  • Imai T, Takahashi K, Fukura H, Morishita Y (1997) Measurement of cardiac output by pulse dye densitometry using indocyanine green: a comparison with the thermodilution method. Anesthesiology 87:816–822

    Article  CAS  PubMed  Google Scholar 

  • Kisloukhine VV, Dean DA (1996) Validation of a novel ultrasound dilution method to measure cardiac output during hemodialysis. ASAIO J 42(5):M906–7

    Article  CAS  PubMed  Google Scholar 

  • Kuhlen R, Hausmann S, Pappert D, Slama K, Rossaint R, Falke K (1995) A new method for P0.1 measurement using standard respiratory equipment. Intensive Care Med 21 7:554–60

    Article  Google Scholar 

  • Le Manach Y, Hofer CK, Lehot JJ, Vallet B, Goarin JP, Tavernier B, Cannesson M (2012) Can changes in arterial pressure be used to detect changes in cardiac output during volume expansion in the perioperative period? Anesthesiology 117(6):1165–74

    Article  PubMed  Google Scholar 

  • Lichtwarck-Aschoff M, Zeravik J, Pfeiffer UJ (1992) Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intensive Care Med 18(3):142–7

    Article  CAS  PubMed  Google Scholar 

  • Linton RA, Band DM, Haire KM (1993) A new method of measuring cardiac output in man using lithium dilution. Br J Anaesth 71:262–266

    Article  CAS  PubMed  Google Scholar 

  • Linton R, Band D, O’Brien T, Jonas M, Leach R (1997) Lithium dilution cardiac output measurement: a comparison with thermodilution. Crit Care Med 25(11):1796–1800

    Article  CAS  PubMed  Google Scholar 

  • Lucangelo U, Bernabe F, Blanch L (2007) Lung mechanics at the bedside: make it simple. Curr Opin Crit Care 13(1):64–72

    Article  PubMed  Google Scholar 

  • Lucangelo U, Bernabe F, Vatua S et al (2008) Prognostic value of different dead space indices in mechanically ventilated patients with acute lung injury and ARDS. Chest 133(1):62–71

    Article  PubMed  Google Scholar 

  • Luepschen H, Meier T, Grossherr M, Leibecke T, Karsten J, Leonhardt S (2007) Protective ventilation using electrical impedance tomography. Physiol Meas 28(7):247–60

    Article  Google Scholar 

  • Marik PE, Cavallazzi R (2013) Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med 41(7):1774–81

    Article  PubMed  Google Scholar 

  • Michard F (2007) Bedside assessment of extravascular lung water by dilution methods: temptations and pitfalls. Crit Care Med 35(4):1186–92

    Article  PubMed  Google Scholar 

  • Moller JT, Pedersen T, Rasmussen LS, Jensen PF, Pedersen BD, Ravlo O, Rasmussen NH, Espersen K, Johannessen NW, Cooper JB (1993) Randomized evaluation of pulse oximetry in (20,802 patients: I. Design, demography, pulse oximetry failure rate, and overall complication rate. Anesthesiology Mar 78(3):436–44

    Article  CAS  Google Scholar 

  • Mythen MG, Webb AR (1995) Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 130(4):423–9

    Article  CAS  PubMed  Google Scholar 

  • Nemer SN, Barbas CS (2011) Predictive parameters for weaning from mechanical ventilation. J Bras Pneumol 37(5):669–79

    Article  PubMed  Google Scholar 

  • Neumann P (1999) Extravascular lung water and intrathoracic blood volume: double versus single indicator dilution technique. Intensive Care Med 25(2):216–9

    Article  CAS  PubMed  Google Scholar 

  • Ospina-Tascon GA, Cordioli RL, Vincent JL (2008) What type of monitoring has been shown to improve outcomes in acutely ill patients? Intensive Care Med 34(5):800–20

    Article  PubMed  Google Scholar 

  • Paarmann H, Groesdonk HV, Sedemund-Adib B, Hanke T, Heinze H, Heringlake M, Schön J (2011) Lack of agreement between pulmonary arterial thermodilution cardiac output and the pressure recording analytical method in postoperative cardiac surgery patients. Br J Anaesth 106(4):475–81

    Article  CAS  PubMed  Google Scholar 

  • Poldermans D, Bax JJ, Boersma E, De Hert S, Eeckhout E, Fowkes G, Gorenek B, Hennerici MG, Iung B, Kelm M, Kjeldsen KP, Kristensen SD, Lopez-Sendon J, Pelosi P, Philippe F, Pierard L, Ponikowski P, Schmid JP, Sellevold OF, Sicari R, Van den Berghe G, Vermassen F (2009) Guidelines for pre-operative cardiac risk assessment and perioperative cardiac management in non-cardiac surgery. Eur Heart J 30(22):2769–812

    Article  PubMed  Google Scholar 

  • Pölönen P, Ruokonen E, Hippeläinen M, Pöyhönen M, Takala J (2000) A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg 90(5):1052–9

    Article  PubMed  Google Scholar 

  • Renner J et al. (2012) Perioperatives Flüssigkeitsmanagement – Abschätzung des Volumenstatus. Anasthesiol Intensivmed Notfallmed Schmerzther 47:470

    Google Scholar 

  • Richter HP, Petersen C, Goetz AE, Reuter DA, Kubitz JC (2011) Detection of right ventricular insufficiency and guidance of volume therapy are facilitated by simultaneous monitoring of static and functional preload parameters. J Cardiothorac Vasc Anesth 25(6):1051–5

    Article  PubMed  Google Scholar 

  • Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med Nov 8; 345(19):1368–77

    Article  Google Scholar 

  • Rossi P, Wanecek M, Rudehill A, Konrad D, Weitzberg E, Oldner A (2006) Comparison of a single indicator and gravimetric technique for estimation of extravascular lung water in endotoxemic pigs. Crit Care Med 34(5):1437–43

    Article  PubMed  Google Scholar 

  • Sakka SG, Rühl CC, Pfeiffer UJ, Beale R, McLuckie A, Reinhart K, Meier-Hellmann A (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26(2):180–7

    Article  CAS  PubMed  Google Scholar 

  • Sakka SG, Reuter DA, Perel A (2012) The transpulmonary thermodilution technique. J Clin Monit Comput 26(5):347–53

    Article  PubMed  Google Scholar 

  • Sander M, Spies CD, Foer A, Weymann L, Braun J, Volk T, Grubitzsch H, von Heymann C (2007) Agreement of central venous saturation and mixed venous saturation in cardiac surgery patients. Intensive Care Med 33(10):1719–25

    Article  PubMed  Google Scholar 

  • Scheer B, Perel A, Pfeiffer UJ (2002) Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care 6(3):199–204

    Article  PubMed Central  PubMed  Google Scholar 

  • Schön J, Paarmann H, Heringlake M (2012) Cerebral oximetry: clinical importance for cardiac surgery patients. Anaesthesist 61(11):934–40

    Article  PubMed  Google Scholar 

  • Scolletta S, Romano SM, Biagioli B, Capannini G, Giomarelli P (2005) Pressure recording analytical method (PRAM) for measurement of cardiac output during various haemodynamic states. Br J Anaesth 95(2):159–65

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker WC, Appel PL, Kram HB (1992) Role of oxygen debt in the development of organ failure sepsis, and death in high-risk surgical patients. Chest 102(1):208–15

    Article  CAS  PubMed  Google Scholar 

  • Siddiki H, Kojicic M, Li G, Yilmaz M, Thompson TB, Hubmayr RD, Gajic O (2010) Bedside quantification of dead-space fraction using routine clinical data in patients with acute lung injury: secondary analysis of two prospective trials. Crit Care 14(4):R141

    Article  PubMed Central  PubMed  Google Scholar 

  • Singer M (2009) Oesophageal Doppler. Curr Opin Crit Care 15(3):244–8

    Article  PubMed  Google Scholar 

  • Talmor D, Sarge T, Malhotra A et al (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 359(20):2095–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Beest PA, Hofstra JJ, Schultz MJ, Boerma EC, Spronk PE, Kuiper MA (2008) The incidence of low venous oxygen saturation on admission to the intensive care unit: a multi-center observational study in The Netherlands. Crit Care 12(2):R33

    Article  PubMed Central  PubMed  Google Scholar 

  • van Beest PA, van Ingen J, Boerma EC, Holman ND, Groen H, Koopmans M, Spronk PE, Kuiper MA (2010) No agreement of mixed venous and central venous saturation in sepsis, independent of sepsis origin. Crit Care 14(6):R219

    Article  PubMed Central  PubMed  Google Scholar 

  • Via G, Storti E, Gulati G, Neri L, Mojoli F, Braschi A (2012) Lung ultrasound in the ICU: from diagnostic instrument to respiratory monitoring tool. Minerva Anestesiol 78(11):1282–96

    CAS  PubMed  Google Scholar 

  • Victorino JA, Borges JB, Okamoto VN, Matos GF, Tucci MR, Caramez MP, Tanaka H, Sipmann FS, Santos DC, Barbas CS, Carvalho CR, Amato MB (2004) Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med Apr 1; 169(7):791–800

    Article  Google Scholar 

  • Wheeler AP, Bernard GR, Thompson BT, Schoenfeld D, Wiedemann HP, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL (2006) Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med May 25;354(21):2213–24

    Google Scholar 

  • Wilhelm W, Larsen R, Pargger H, Ziegeler S, Mertzlufft F (2011) Hämodynamisches und respiratorisches Monitoring, intravasale Katheter. In: Burchardi H, Larsen R, Marx G, Muhl E, Schölmerich J (Hrsg) Die Intensivmedizin, 11. Aufl. Springer, Berlin Heidelberg New York, S 147–179

    Chapter  Google Scholar 

  • Wrigge H, Zinserling J, Muders T, Varelmann D, Günther U, von der Groeben C, Magnusson A, Hedenstierna G, Putensen C (2008) Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med 36(3):903–9

    Article  PubMed  Google Scholar 

  • Zhao Z, Möller K, Steinmann D, Frerichs I, Guttmann J (2009) Evaluation of an electrical impedance tomography-based Global Inhomogeneity Index for pulmonary ventilation distribution. Intensive Care Med 35(11):1900–6

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heringlake, M., Paarmann, H., Heinze, H., Groesdonk, HV., Brandt, S. (2015). Hämodynamisches und respiratorisches Monitoring. In: Marx, G., Muhl, E., Zacharowski, K., Zeuzem, S. (eds) Die Intensivmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54953-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54953-3_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54952-6

  • Online ISBN: 978-3-642-54953-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics