Skip to main content

Kinematik und angewandte Physiologie und Pathophysiologie der Ligamente

  • Chapter
Das Knie

Zusammenfassung

In diesem Kapitel steht die Kinematik und angewandte Physiologie sowie Pathophysiologie der Ligamente im Vordergrund. Hierbei werden vor allem wesentliche kinematische und physiologische Aspekte der Kreuzbänder und Kollateralbänder sowie das Zusammenspiel der Bandkomponenten untereinander, aber auch mit den anderen Strukturen des Knies und vor allem bei den unterschiedlichen Varianten der Rotation beleuchtet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In der offiziellen Nomenklatur heißt dieses Tuberculum von Gerdy »Tuberositas tractus iliotibialis«. Die Bezeichnung nach dem französischen Anatomen Gerdy ist heute aber allgemein geläufig, weil sie eine Verwechslung der zwei nebeneinander liegenden Tuberositates (T. tibiae und T. tractus iliotibialis) vermeiden hilft.

Literatur

  • Abbott L, Carpenter W. Surgical approaches to the knee joint. J Bone Joint Surg [Am]. 1945;27:277–310

    Google Scholar 

  • Adachi N, Ochi M, Uchio Y, Iwasa J, Kuriwaka M, Ito Y. Reconstruction of the anterior cruciate ligament. Single- versus double-bundle multistranded hamstring tendons. J Bone Joint Surg Br. 2004;86:515–20

    CAS  PubMed  Google Scholar 

  • Andersson C, Odensten M, Good L, Gillquist J. Surgical or non-surgical treatment of acute rupture of the anterior cruciate ligament. A randomized study with long-term follow-up. The Journal of bone and joint surgery American volume. 1989;71:965–74

    Google Scholar 

  • Artmann M, Wirth CJ. Untersuchung über den funktionsgerechten Verlauf der vorderen Kreuzbandplastik. Zeitschrift fürOrthopädie und ihre Grenzgebiete. 1974;112:160–5

    Google Scholar 

  • Bartel DL, Marshall JL, Schieck RA, Wang JB. Surgical repositioning of the medial collateral ligament. An anatomical and mechanical analysis. The Journal of bone and joint surgery American volume. 1977; 59:107–16

    Google Scholar 

  • Basmajian JV, Lovejoy JF, Jr. Functions of the popliteus muscle in man. A multifactorial electromyographic study. The Journal of bone and joint surgery American volume. 1971;53:557–62

    Google Scholar 

  • Beauchamp P, Laurin CA, Bailon JP. Etudes des proprietes mecaniques des ligaments croises en vue de leur remplacement prothetique. Revue de chirurgie orthopedique et reparatrice de l‹appareil moteur. 1979;65:197–207

    Google Scholar 

  • Brantigan O, Voshell A. The mechanics of the ligaments and menisci of the knee joint. J Bone Joint Surg [Am]. 1941;23:44–66

    Google Scholar 

  • Brantigan O, Voshell A. The tibial collateral ligament: Its function, its bursae and its relation to the medial meniscus. J Bone Joint Surg [Am]. 1943;25:121–31

    Google Scholar 

  • Braune W, Fischer. Bewegungen des Kniegelenks nach einer neuen Methode an lebenden Menschen gemessen. Abhandl Math-Phys Cl Koenigl Saechs Ges Wiss. 1891;17:75–150

    Google Scholar 

  • Butler DL, Noyes FR, Grood ES. Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. The Journal of bone and joint surgery American volume. 1980;62:259–70

    Google Scholar 

  • Campos JC, Chung CB, Lektrakul N, Pedowitz R, Trudell D, Yu J, et al. Pathogenesis of the Segond fracture: anatomic and MR imaging evidence of an iliotibial tract or anterior oblique band avulsion. Radiology. 2001;219:381–6

    Article  CAS  PubMed  Google Scholar 

  • Chalandre A. Le remplacement du ligament croise anterieur du genou par le procede de Lindemann. Grenoble: Université de Grenoble; 1977

    Google Scholar 

  • Chapchal G. Injuries of the ligaments and their repair. Stuttgart: Thieme; 1977

    Google Scholar 

  • Dahlstedt LJ, Dalen N, Jonsson U. Extraarticular repair of the unstable knee. Disappointing 6-year results of the Slocum and Ellison operations. Acta Orthop Scand. 1988;59:687–91

    Article  CAS  PubMed  Google Scholar 

  • Del Pizzo W, Norwood, Blazina ME, et al. Analysis of 100 patients with anterolateral rotatory instability of the knee. Clinical orthopaedics and related research. 1977:178–80

    Google Scholar 

  • Diamantopoulos AP, Lorbach O, Paessler HH. Anterior cruciate ligament revision reconstruction: results in 107 patients. Am J Sports Med. 2008;36:851–60

    Article  PubMed  Google Scholar 

  • Edmonds EW, Polousky J. A Review of Knowledge in Osteochondritis Dissecans: 123 Years of Minimal Evolution from Konig to the ROCK Study Group. Clinical orthopaedics and related research. 2012

    Google Scholar 

  • Fairbank T. Knee joint changes after meniscectomy. J Bone Joint Surg [Br]. 1948;30B:66–4

    Google Scholar 

  • Fick R. Anatomie der Gelenke. In Bardeleben K, editor. Handbuch der Anatomie des Menschen. Jena: Fischer; 1904. p. 36–7

    Google Scholar 

  • Frankel VH. Biomechanics of the knee. The Orthopedic clinics of North America. 1971;2:175–90

    Google Scholar 

  • Frankel VH, Burstein AH, Brooks DB. Biomechanics of internal derangement of the knee. Pathomechanics as determined by analysis of the instant centers of motion. The Journal of bone and joint surgery American volume. 1971;53:945–62

    Google Scholar 

  • Freeman MA, Wyke B. The innervation of the knee joint. An anatomical and histological study in the cat. J Anat. 1967;101:505–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman MA, Pinskerova V. The movement of the knee studied by magnetic resonance imaging. Clinical orthopaedics and related research. 2003:35–43

    Google Scholar 

  • Frobell RB, Roos EM, Roos HP, Ranstam J, Lohmander LS. A randomized trial of treatment for acute anterior cruciate ligament tears. N Engl J Med. 2010;363:331–42

    Article  CAS  PubMed  Google Scholar 

  • Frobell RB. Change in cartilage thickness, posttraumatic bone marrow lesions, and joint fluid volumes after acute ACL disruption: a two-year prospective MRI study of sixty-one subjects. The Journal of bone and joint surgery American volume. 2011;93:1096–103

    Google Scholar 

  • Galway HR, MacIntosh DL. The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clinical orthopaedics and related research. 1980:45–50

    Google Scholar 

  • Gill SS, Diduch DR. Outcomes after meniscal repair using the meniscus arrow in knees undergoing concurrent anterior cruciate ligament reconstruction. Arthroscopy. 2002;18:569–77

    Article  PubMed  Google Scholar 

  • Girgis FG, Marshall JL, Monajem A. The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clinical orthopaedics and related research. 1975:216–31

    Google Scholar 

  • Goodfellow J, O’Connor J. The mechanics of the knee and prosthesis design. J Bone Joint Surg Br. 1978;60-B:358–69

    CAS  PubMed  Google Scholar 

  • Grant JCB, Basmajian JV. Grant's method of anatomy. Baltimore: Williams & Wilkins; 1965

    Google Scholar 

  • Groh W. Kinematische Untersuchungen des menschlichen Kniegelenkes und einiger Prothesen-Kniekonstruktionen, die als physiologische Kniegelenke bezeichnet werden. Arch Orthop Unfallchir. 1955;47:637–45

    Google Scholar 

  • Gudde P, Wagenknecht R. Untersuchungsergebnisse bei 50 Patienten 10-12 Jahre nach der Innenmeniskusoperation bei gleichzeitig vorliegender Ruptur des vorderen Kreuzbandes. Zeitschrift für Orthopädie und ihre Grenzgebiete. 1973;111:369–72

    Google Scholar 

  • Hoshino Y, Araujo P, Irrgang JJ, Fu FH, Musahl V. An image analysis method to quantify the lateral pivot shift test. Knee Surg Sports Traumatol Arthrosc. 2012;20:703–7

    Article  PubMed  Google Scholar 

  • Howell SM, Clark JA, Farley TE. A rationale for predicting anterior cruciate graft impingement by the intercondylar roof. A magnetic resonance imaging study. Am J Sports Med. 1991;19:276–82

    Google Scholar 

  • Howell SM, Clark JA. Tibial tunnel placement in anterior cruciate ligament reconstructions and graft impingement. Clinical orthopaedics and related research. 1992:187–95

    Google Scholar 

  • Howell SM, Taylor MA. Failure of reconstruction of the anterior cruciate ligament due to impingement by the intercondylar roof. The Journal of bone and joint surgery American volume. 1993;75:1044–55

    Google Scholar 

  • Howell SM, Barad SJ. Knee extension and its relationship to the slope of the intercondylar roof. Implications for positioning the tibial tunnel in anterior cruciate ligament reconstructions. Am J Sports Med. 1995;23:288–94

    Article  CAS  PubMed  Google Scholar 

  • Hughston JC. Acute knee injuries in athletes. Clinical orthopaedics. 1962;23:114–33

    Google Scholar 

  • Hughston JC, Eilers AF. The role of the posterior oblique ligament in repairs of acute medial (collateral) ligament tears of the knee. The Journal of bone and joint surgery American volume. 1973;55:923–40

    Google Scholar 

  • Hughston JC, Andrews JR, Cross MJ, Moschi A. Classification of knee ligament instabilities. Part I. The medial compartment and cruciate ligaments. The Journal of bone and joint surgery American volume. 1976;58:159–72

    Google Scholar 

  • Huson A. Biomechanische Probleme des Kniegelenks. Der Orthopäde. 1970;3:119–26

    Google Scholar 

  • Irrgang JJ, Bost JE, Fu FH. Re: Outcome of single-bundle versus double-bundle reconstruction of the anterior cruciate ligament: a meta-analysis. Am J Sports Med. 2009;37:421-2; author reply 2

    Google Scholar 

  • Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br. 2000;82:1189–95

    Article  CAS  PubMed  Google Scholar 

  • Jagodzinski M, Richter GM, Passler HH. Biomechanical analysis of knee hyperextension and of the impingement of the anterior cruciate ligament: a cinematographic MRI study with impact on tibial tunnel positioning in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2000;8:11–9

    Article  CAS  PubMed  Google Scholar 

  • Jagodzinski M, Leis A, Iselborn KW, Mall G, Nerlich M, Bosch U. Impingement pressure and tension forces of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 2003;11:85–90

    Article  CAS  PubMed  Google Scholar 

  • Jonasch E. Zerreissung des ausseren und inneren Knieseitenbandes; Behandlungsergebnisse von 1211 röntgenologisch nachgewiesenen und mit Hollerithkarten verarbeiteten Fällen. Hefte zur Unfallheilkunde. 1958;59:1–86

    CAS  PubMed  Google Scholar 

  • Kapandji IA. The physiology of the joints. Vol. II. Edinborough, London: Churchill Livingstone; 1970

    Google Scholar 

  • Kaplan EB. The iliotibial tract; clinical and morphological significance. The Journal of bone and joint surgery American volume. 1958;40-A:817–32

    Google Scholar 

  • Kaplan EB. Some aspects of functional anatomy of the human knee joint. Clinical orthopaedics. 1962;23:18–29

    Google Scholar 

  • Kennedy JC, Weinberg HW, Wilson AS. The anatomy and function of the anterior cruciate ligament. As determined by clinical and morphological studies. The Journal of bone and joint surgery American volume. 1974;56:223–35

    Google Scholar 

  • Kennedy JC, Hawkins RJ, Willis RB, Danylchuck KD. Tension studies of human knee ligaments. Yield point, ultimate failure, and disruption of the cruciate and tibial collateral ligaments. The Journal of bone and joint surgery American volume. 1976;58:350–5

    Google Scholar 

  • Kettelkamp DB. Clinical implications of knee biomechanics. Arch Surg. 1973;107:406–10

    Article  CAS  PubMed  Google Scholar 

  • Koeck FX, Perlick L, Luring C, Handel M, Beckmann J, Linhardt O, et al. Leg axis correction with ConforMIS iForma (interpositional device) in unicompartmental arthritis of the knee. Int Orthop. 2009;33:955–60

    Article  PubMed  Google Scholar 

  • Komistek RD, Dennis DA, Mahfouz M. In vivo fluoroscopic analysis of the normal human knee. Clinical orthopaedics and related research. 2003:69–81

    Google Scholar 

  • Kopf S, Musahl V, Tashman S, Szczodry M, Shen W, Fu FH. A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc. 2009;17:213–9

    Article  PubMed  Google Scholar 

  • Krauss I, List R, Janssen P, Grau S, Horstmann T, Stacoff A. Comparison of distinctive gait variables using two different biomechanical models for knee joint kinematics in subjects with knee osteoarthritis and healthy controls. Clin Biomech (Bristol, Avon). 2012;27:281–6

    Article  Google Scholar 

  • Lahlaidi A. Valeur morphlogique des insertions posterieures du menisque externe dans le genou humain. Revue de chirurgie orthopedique et reparatrice de l’appareil moteur. 1971;57:593–600

    Google Scholar 

  • Lange M. Orthopädisch-chirurgische Operationslehre. München: Bergmann; 1951

    Book  Google Scholar 

  • Lanz von T, Wachsmuth W. Praktische Anatomie. Berlin, Heidelberg, New York: Springer; 1972

    Google Scholar 

  • LaPrade RF, Ly TV, Wentorf FA, Engebretsen L. The posterolateral attachments of the knee: a qualitative and quantitative morphologic analysis of the fibular collateral ligament, popliteus tendon, popliteofibular ligament, and lateral gastrocnemius tendon. Am J Sports Med. 2003;31:854–60

    PubMed  Google Scholar 

  • Livesay GA, Fujie H, Kashiwaguchi S, Morrow DA, Fu FH, Woo SL. Determination of the in situ forces and force distribution within the human anterior cruciate ligament. Ann Biomed Eng. 1995;23:467-74-8

    Article  Google Scholar 

  • Livesay GA, Li G, Fu FH. In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. J Orthop Res. 1997;15:285–93

    Google Scholar 

  • Livesay GA, Rudy TW, Woo SL, Runco TJ, Sakane M, Li G, et al. Evaluation of the effect of joint constraints on the in situ force distribution in the anterior cruciate ligament. J Orthop Res. 1997;15:278–84

    Article  CAS  PubMed  Google Scholar 

  • Lobenhoffer P, Biedert R, Stauffer E, Lattermann C, Gerich TG, Muller W. Occurrence and distribution of free nerve endings in the distal iliotibial tract system of the knee. Knee Surg Sports Traumatol Arthrosc. 1996; 4:111–5

    Article  CAS  PubMed  Google Scholar 

  • Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35:1756–69

    Article  PubMed  Google Scholar 

  • Marshall JL, Fetto JF, Botero PM. Knee ligament injuries: a standardized evaluation method. Clinical orthopaedics and related research. 1977:115–29

    Google Scholar 

  • Martelli S, Zaffagnini S, Bignozzi S, Lopomo N, Marcacci M. Description and validation of a navigation system for intra-operative evaluation of knee laxity. Computer aided surgery: official journal of the International Society for Computer Aided Surgery. 2007;12:18–1

    Article  Google Scholar 

  • Mauck H. A new operative procedure for instability of the knee. J Bone Joint Surg. 1936;18:984–90

    Google Scholar 

  • McDevitt C, Gilbertson E, Muir H. An experimental model of osteoarthritis; early morphological and biochemical changes. J Bone Joint Surg Br. 1977;59:24–35

    CAS  PubMed  Google Scholar 

  • Menschik A. Mechanik des Kniegelenkes. Teil 1. Zeitschrift für Orthopädie und ihre Grenzgebiete. 1974;112:481–95

    Google Scholar 

  • Menschik A. Mechanik des Kniegelenkes. II. Teil: Schlussrotation. Zeitschrift für Orthopädie und ihre Grenzgebiete. 1975;113:388–400

    Google Scholar 

  • Menschik A. Biometrie: Das Konstruktionsprinzip des Kniegelenks, des Hüftgelenks, der Beinlänge und der Körpergröße. Berlin Heidelberg New York London Paris Tokyo: Springer; 1987

    Google Scholar 

  • Meredick RB, Vance KJ, Appleby D, Lubowitz JH. Outcome of single-bundle versus double-bundle reconstruction of the anterior cruciate ligament: a meta-analysis. Am J Sports Med. 2008;36:1414–21

    Article  PubMed  Google Scholar 

  • Meyer H. Die Mechanik des Kniegelenks. Arch Anat Physiol Wiss Med. 1853:497–547

    Google Scholar 

  • Morscher E. Traumatische Knorpelimpression an den Femurcondylen. Hefte zur Unfallheilkunde. 1975:71–82

    Google Scholar 

  • Müller W. Neuere Aspekte der funktionellen Anatomie des Kniegelenkes. Hefte zur Unfallheilkunde. 1977:131–7

    Google Scholar 

  • Musahl V, Hoshino Y, Becker R, Karlsson J. Rotatory knee laxity and the pivot shift. Knee Surg Sports Traumatol Arthrosc. 2012;20:601–2

    Article  PubMed  Google Scholar 

  • Musahl V, Kopf S, Rabuck S, Becker R, van der Merwe W, Zaffagnini S, et al. Rotatory knee laxity tests and the pivot shift as tools for ACL treatment algorithm. Knee Surg Sports Traumatol Arthrosc. 2012;20:793–800

    Article  PubMed  Google Scholar 

  • Nicholas JA. The five-one reconstruction for anteromedial instability of the knee. Indications, technique, and the results in fifty-two patients. The Journal of bone and joint surgery American volume. 1973; 55:899–922

    Google Scholar 

  • Nietert M. Untersuchungen zur Kinematik des menschlichen Kniegelenkes im Hinblick auf ihre Approximation in der Prothetik. Berlin: Technische Universität Berlin; 1975

    Google Scholar 

  • Noyes FR, Torvik PJ, Hyde WB, DeLucas JL. Biomechanics of ligament failure. II. An analysis of immobilization, exercise, and reconditioning effects in primates. The Journal of bone and joint surgery American volume. 1974;56:1406–18

    Google Scholar 

  • Noyes FR, Grood ES. The strength of the anterior cruciate ligament in humans and Rhesus monkeys. The Journal of bone and joint surgery American volume. 1976;58:1074–82

    Google Scholar 

  • Olsson SE, Marshall JL, Story E. Osteophytosis of the knee joint in the dog. A sign of instability. Acta radiologica Supplementum. 1972;319:165–7

    Google Scholar 

  • Palmer I. On the injuries to the ligaments of the knee joint: a clinical study. Acta Chir Scand. 1938;81 [Suppl]:53

    Google Scholar 

  • Palmer I. Pathophysiology of the medial ligament of the knee joint. Acta Chir Scand. 1958;115:312–8

    CAS  PubMed  Google Scholar 

  • Pearle AD, Solomon DJ, Wanich T, Moreau-Gaudry A, Granchi CC, Wickiewicz TL, et al. Reliability of navigated knee stability examination: a cadaveric evaluation. Am J Sports Med. 2007;35:1315–20

    Article  PubMed  Google Scholar 

  • Pearle AD, Kendoff D, Musahl V, Warren RF. The Pivot-shift phenomenon during computer-assisted anterior cruciate ligament reconstruction. The Journal of bone and joint surgery American volume. 2009;91 Suppl 1:115–8

    Google Scholar 

  • Pinskerova V, Maquet P, Freeman MA. The anatomic literature relating to the knee from 1836 to 1917: a historic note. Clinical orthopaedics and related research. 2003:13–8

    Google Scholar 

  • Pinskerova V, Johal P, Nakagawa S, Sosna A, Williams A, Gedroyc W, et al. Does the femur roll-back with flexion? J Bone Joint Surg Br. 2004; 86:925–31

    Article  CAS  PubMed  Google Scholar 

  • Puhl W, Dustmann HO, Schulitz KP. Knorpelveränderungen bei experimentellem Hämarthros. Zeitschrift für Orthopädie und ihre Grenzgebiete. 1971;109:475–86

    Google Scholar 

  • Ruetsch H, Morscher E. Measurement of the rotatory stability of the knee joint. In: Chapchal G, editor. Injuries of the ligaments and their repair. Stuttgart: Thieme; 1977. p. 116–22

    Google Scholar 

  • Scarvell JM, Smith PN, Refshauge KM, Galloway HR, Woods KR. Association between abnormal kinematics and degenerative change in knees of people with chronic anterior cruciate ligament deficiency: a magnetic resonance imaging study. The Australian journal of physiotherapy. 2005;51:233–40

    Article  PubMed  Google Scholar 

  • Schmitt O, Mittelmeier H. Die Bedeutung der Mm. vastus medialis et lateralis für die Biomechanik des Kniegelenkes. Arch Orthop Trauma Surg. 1978;91:291–5

    Article  CAS  PubMed  Google Scholar 

  • Segal P, Lallement JJ, Raguet M, Jacob M, Gerard Y. Les lesions osteo-cartilagineuses de la laxite antero-interne du genou. Revue de chirurgie orthopedique et reparatrice de l’appareil moteur. 1980;66:357–65

    Google Scholar 

  • Segond P. Recherches cliniques et experimentales sur les epanchements sangouins du genou par entorse. Prog Med. 1879;7:297–421

    Google Scholar 

  • Shaw JA, Murray DG. The longitudinal axis of the knee and the role of the cruciate ligaments in controlling transverse rotation. The Journal of bone and joint surgery American volume. 1974;56:1603–9

    Google Scholar 

  • Siebold R, Ellert T, Metz S, Metz J. Tibial insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry, arthroscopic landmarks, and orientation model for bone tunnel placement. Arthroscopy. 2008;24:154–61

    Article  PubMed  Google Scholar 

  • Siebold R, Schuhmacher P. Restoration of the tibial ACL footprint area and geometry using the Modified Insertion Site Table. Knee Surg Sports Traumatol Arthrosc. 2012

    Google Scholar 

  • Slocum DB, Larson RL. Rotatory instability of the knee. Its pathogenesis and a clinical test to demonstrate its presence. The Journal of bone and joint surgery American volume. 1968;50:211–25

    Google Scholar 

  • Smilie IS. Injuries of the knee joint. 4 ed. Baltimore: Williams and Wilkins; 1962

    Google Scholar 

  • Stone RG, Frewin PR, Gonzales S. Long-term assessment of arthroscopic meniscus repair: a two- to six-year follow-up study. Arthroscopy. 1990;6:73–8

    Article  CAS  PubMed  Google Scholar 

  • Stäubli HU, Birrer S. The popliteus tendon and its fascicles at the popliteal hiatus: gross anatomy and functional arthroscopic evaluation with and without anterior cruciate ligament deficiency. Arthroscopy. 1990;6:209–20

    Article  PubMed  Google Scholar 

  • Steiner ME, Battaglia TC, Heming JF, Rand JD, Festa A, Baria M. Independent drilling outperforms conventional transtibial drilling in anterior cruciate ligament reconstruction. Am J Sports Med. 2009;37:1912–9

    Article  PubMed  Google Scholar 

  • Stilwell D. The innervation of tendons and aponeuroses. Am J Anat. 1957;100:289–317

    Article  PubMed  Google Scholar 

  • Stilwell DL, Jr. Regional variations in the innervation of deep fasciae and aponeuroses. Anat Rec. 1957;127:635–53

    Article  PubMed  Google Scholar 

  • Strasser H. Lehrbuch der Muskel und Gelenkmechanik. Berlin: Springer; 1917

    Google Scholar 

  • Streich NA, Zimmermann D, Bode G, Schmitt H. Reconstructive versus nonreconstructive treatment of anterior cruciate ligament insufficiency. A retrospective matched-pair long-term follow-up. Int Orthop. 2011;35:607–13

    Article  PubMed  Google Scholar 

  • Tanaka M, Vyas D, Moloney G, Bedi A, Pearle AD, Musahl V. What does it take to have a high-grade pivot shift? Knee Surg Sports Traumatol Arthrosc. 2012;20:737–42

    Article  CAS  PubMed  Google Scholar 

  • Tibesku CO, Mastrokalos DS, Jagodzinski M, Passler HH. Kernspintomographische Untersuchung der Meniskusbeweglichkeit und -deformation in vivo unter Gewichtsbelastung. Sportverletz Sportschaden. 2004;18:68–75

    Article  CAS  PubMed  Google Scholar 

  • Trillat A, Rainaut JJ. Traitement des laxites ligamentaires posttraumatiques du genou. Revue de chirurgie orthopedique et reparatrice de l‹appareil moteur. 1959;45:97–117

    Google Scholar 

  • Vallois HV. Etude anatomique de l’articulation du genou chez les primates. Montpellier: Abeille; 1914

    Google Scholar 

  • van Eck CF, Kopf, Fu FH, et al. Singlebundle versus double-bundle reconstruction for anterior cruciate ligament rupture: a meta-analysis–does anatomy matter? Arthroscopy. 2012;28:405–24

    Article  PubMed  Google Scholar 

  • Walker PS, Hajek JV. The load-bearing area in the knee joint. J Biomech. 1972;5:581–9

    Article  CAS  PubMed  Google Scholar 

  • Wang CJ, Walker PS. The effects of flexion and rotation on the length patterns of the ligaments of the knee. J Biomech. 1973;6:587–96

    Article  CAS  PubMed  Google Scholar 

  • Wang CJ, Walker PS. Rotatory laxity of the human knee joint. The Journal of bone and joint surgery American volume. 1974;56:161–70

    Google Scholar 

  • Warren LA, Marshall JL, Girgis F. The prime static stabilizer of the medical side of the knee. The Journal of bone and joint surgery American volume. 1974;56:665–74

    Google Scholar 

  • Warren RF, Marshall JL. Injuries of the anterior cruciate and medial collateral ligaments of the knee. A retrospective analysis of clinical records - part I. Clinical orthopaedics and related research. 1978:191–7

    Google Scholar 

  • Warren LF, Marshall JL. The supporting structures and layers on the medial side of the knee: an anatomical analysis. The Journal of bone and joint surgery American volume. 1979;61:56–62

    Google Scholar 

  • Weiss JA, Gardiner JC. Computational modeling of ligament mechanics. Critical reviews in biomedical engineering. 2001;29:303–71

    Google Scholar 

  • Weiss JA, Gardiner JC, Ellis BJ, Lujan TJ, Phatak NS. Three-dimensional finite element modeling of ligaments: technical aspects. Medical engineering & physics. 2005;27:845–61

    Google Scholar 

  • Wilson JN. A diagnostic sign in osteochondritis dissecans of the knee. The Journal of bone and joint surgery American volume. 1967;49:477–80

    Google Scholar 

  • Wirth CJ, Artmann M. Verhalten der Roll-Gleit-Bewegung des belasteten Kniegelenkes bei Verlust und Ersatz des vorderen Kreuzbandes. Arch Orthop Unfallchir. 1974;78:356–61

    Article  CAS  PubMed  Google Scholar 

  • Wolterbeek N, Garling EH, Mertens B, Valstar ER, Nelissen RG. Mobile bearing knee kinematics change over time. A fluoroscopic study in rheumatoid arthritis patients. Clin Biomech (Bristol, Avon). 2009;24:441–5

    Article  CAS  Google Scholar 

  • Wünschel M, Leichtle U, Lo J, Wülker N, Müller O. Differences in tibiofemoral kinematics between the unloaded robotic passive path and a weightbearing knee simulator. Orthopedic reviews. 2012;4:e–2

    Google Scholar 

  • Xerogeanes JW, Takeda Y, Livesay GA, Ishibashi Y, Kim HS, Fu FH, et al. Effect of knee flexion on the in situ force distribution in the human anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 1995;3:9–13

    Article  CAS  PubMed  Google Scholar 

  • Yeow CH, Lee PV, Goh JC. Direct contribution of axial impact compressive load to anterior tibial load during simulated ski landing impact. J Biomech. 2010;43:242–7

    Article  CAS  PubMed  Google Scholar 

  • Zaffagnini S, Bruni D, Marcheggiani Muccioli GM, Bonanzinga T, Lopomo N, Bignozzi S, et al. Single-bundle patellar tendon versus non-anatomical double-bundle hamstrings ACL reconstruction: a prospective randomized study at 8-year minimum follow-up. Knee Surg Sports Traumatol Arthrosc. 2011;19:390–7

    Article  PubMed  Google Scholar 

  • Zippel H. Meniskusverletzungen. Med Sport. 1977;17:79–88

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jagodzinski, M., Müller, W., Friederich, N. (2016). Kinematik und angewandte Physiologie und Pathophysiologie der Ligamente. In: Das Knie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45001-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45001-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45000-6

  • Online ISBN: 978-3-642-45001-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics