Skip to main content

Diabetische Folgeerkrankungen

  • Chapter
Diabetologie kompakt

Zusammenfassung

Die diabetischen Spätschäden manifestieren sich in sehr unterschiedlichen Organen. Klinisch relevant sind vor allem die sowohl bei Typ-1- als auch bei Typ-2-Diabetikern auftretenden Spätkomplikationen an Auge, Niere, Nerven sowie Herz und großen Gefäßen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Literatur zu Abschn. 8.1

  • DCCT (1993) Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329: 977–986

    Google Scholar 

  • Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A (1989) Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia 32: 219–226

    Google Scholar 

  • Gil N, Goldberg R, Neuman T, Garsen M, Zcharia E, Rubinstein AM, van Kuppevelt T, Meirovitz A, Pisano C, Li JP, van der Vlag J, Vlodavsky I, Elkin M (2012) Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes 61: 208–216

    Google Scholar 

  • Hammes HP, Feng Y, Pfister F, Brownlee M (2011) Diabetic retinopathy: targeting vasoregression. Diabetes 60: 9–16

    Google Scholar 

  • Hirsch IB, Brownlee M (2010) Beyond HbA1c – Need for additional markers for diabetes microvascular complications. JAMA 303: 2291–2292

    Google Scholar 

  • Paneni F, Volpe M, Lüscher TF, Cosentino F (2013) SIRT1, p66Shc, and Set7/9 in vascular hyperglycemic memory. Diabetes 62: 1800–1807

    Google Scholar 

  • Pirart J (1993) Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973. Diabete Metab 3: 97–107

    Google Scholar 

  • Singh AK, Kari JA (2013) Metabolic syndrome and chronic kidney disease. Curr Opin Nephrol Hypertens 22: 198–203

    Google Scholar 

  • Thomas MC, Groop PH, Tryggvason K (2012) Towards understanding the inherited susceptibility for nephropathy in diabetes. Curr Opin Nephrol Hypertens 21:195–202

    Google Scholar 

Literatur zu Abschn. 8.2

  • BARI (1997) Influence of diabetes on 5-year mortality and morbidity in a randomized trial comparing CABG and PTCA in patients with multivessel disease: the Bypass Angioplasty Revascularization Investigation (BARI). Circulation 96(6) : 1761–1769

    Google Scholar 

  • Camm AJ et al. (2010) Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Europace 12(10): 1360–1420

    Google Scholar 

  • Charles M et al. (2012) Cardiovascular risk reduction following diagnosis of diabetes by screening: 1-year results from the ADDITION-Cambridge trial cohort. Br J Gen Pract 62(599 ): e396–402

    Google Scholar 

  • Diehm C et al. (2004) High prevalence of peripheral arterial disease and co-morbidity in 6880 primary care patients: cross-sectional study. Atherosclerosis 172 (1): 95–105

    Google Scholar 

  • Diehm C et al. (2009) Mortality and vascular morbidity in older adults with asymptomatic versus symptomatic peripheral artery disease. Circulation 120(21): 2053–2061

    Google Scholar 

  • Doerr R et al. (2011) Oral glucose tolerance test and HbA(1)c for diagnosis of diabetes in patients undergoing coronary angiography: [corrected] the Silent Diabetes Study. Diabetologia 54(11) : 2923–2930

    Google Scholar 

  • Du X et al. (2009) Risks of cardiovascular events and effects of routine blood pressure lowering among patients with type 2 diabetes and atrial fibrillation: results of the ADVANCE study. Eur Heart J 30(9): 1128–1135

    Google Scholar 

  • Farkouh ME, Domanski M, Sleeper LA et al. (2012) Strategies for Multivessel Revascularization in Patients with Diabetes. N Engl J Med 367 : 2375–2384

    Google Scholar 

  • Gerstein HC et al. (2012) Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med 367(4): 319–328

    Google Scholar 

  • Gibbons RJ et al. (2003) ACC/AHA 2002 guideline update for the management of patients with chronic stable angina-- summary article: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on the Management of Patients With Chronic Stable Angina). J Am Coll Cardiol 41(1): 159–168

    Google Scholar 

  • Gitt AK, Papp A, Towae F, Deeg E, Senges J, Zahn R Tschoepe D; SWEETHEART Study-Group (2011) Abstract 15682: High 3-year-mortality rates in females with newly diagnosed diabetes after acute STEMI and NSTEMI in clinical practice in Germany: results of the SWEETHEART Registry. Circulation 124: A15682

    Google Scholar 

  • Haffner SM et al. (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339(4): 229–234

    Google Scholar 

  • Hee L et al. (2012) Outcomes of coronary revascularization (percutaneous or bypass) in patients with diabetes mellitus and multivessel coronary disease. Am J Cardiol 110( 5): 643–648

    Google Scholar 

  • Huxley RR et al. (2011) Meta-analysis of cohort and casecontrol studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am J Cardiol 10 8(1): 56–62

    Google Scholar 

  • Huxley RR et al. (2012) Type 2 diabetes, glucose homeostasis and incident atrial fibrillation: the Atherosclerosis Risk in Communities study. Heart 98( 2): 133–138

    Google Scholar 

  • Mellbin LG et al. (2008) The impact of glucose lowering treatment on long-term prognosis in patients with type 2 diabetes and myocardial infarction: a report from the DIGAMI 2 trial. Eur Heart J 29(2): 166–176

    Google Scholar 

  • Paulus WJ, Tschoepe C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62( 4): 263–271

    Google Scholar 

  • Ray KK et al. (2009) Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet 373(9677) : 1765–1772

    Google Scholar 

  • Renner A et al. (2013) Coronary revascularization in diabetic patients: off-pump versus on-pump surgery. Ann Thorac Surg 96(2): 528–534

    Google Scholar 

  • Roger VL et al. (2012) Heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation 125(1): e2–e220

    Google Scholar 

  • Ryden L et al. (2007) Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary. The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). Eur Heart J 28(1): 88–136

    Google Scholar 

  • Ryden L et al. (2013) ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force on diabetes, prediabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). Eur Heart J 34(39): 3035–3087. doi: 10.1093/eurhe artj/eht108

    Google Scholar 

  • Scirica BM, Bhatt DL, Braunwald E et al. (2013) Saxagliptin and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus. N Engl J Med 369: 1317–1326

    Google Scholar 

  • Seferovic M et al. (2012) Diabetic cardiomyopathy: ongoing controversies in 2012. Herz 37(8): 880–886

    Google Scholar 

  • Tschoepe C, Lam CS (2012) Diastolic heart failure: What we still don’t know. Looking for new concepts, diagnostic approaches, and the role of comorbidities. Herz 37(8): 875–879

    Google Scholar 

  • Wenaweser P et al. (2008) Incidence and correlates of drugeluting stent thrombosis in routine clinical practice. 4-year results from a large 2-institutional cohort study. J Am Coll Cardiol 52(14) : 1134–1140

    Google Scholar 

  • White WB, Cannon CP, Heller SR et al. (2013) Alogliptin after Acute Coronary Syndrome in Patients with Type 2 Diabetes. N Engl J Med 369(14) : 1327–1335 Wijns W et al. (2010) Guidelines on myocardial revascularization. Eur Heart J 31(20): 2501–2555

    Google Scholar 

Literatur zu Abschn. 8.3

  • Advance Collaborative Group et al. (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358(24): 2560–2572

    Google Scholar 

  • Aiello LP, Cahill MT, Wong JS (2001) Systemic considerations in the management of diabetic retinopathy. Am J Ophthalmol 132 (5): 760–776

    Google Scholar 

  • Al-Kateb H, Mirea L, Xie X, Sun L, Liu M, Chen H, Bull SB, Boright AP, Paterson AD (2007) Multiple variants in vascular endothelial growth factor (VEGFA) are risk factors for time to severe retinopathy in type 1 diabetes: the DCCT/EDIC genetics study. Diabetes 56 (8): 2161–2168

    Google Scholar 

  • Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366 (13): 1227–1239

    Google Scholar 

  • Bandello F, Cunha-Vaz J, Chong NV, Lang GE, Massin P, Mitchell P, Porta M, Prunte C, Schlingemann R, Schmidt-Erfurth U (2012) New approaches for the treatment of diabetic macular oedema: recommendations by an expert panel. Eye (Lond) 26 (4): 485–493

    Google Scholar 

  • Beulens JW et al. (2009) Effects of blood pressure lowering and intensive glucose control on the incidence and progression of retinopathy in patients with type 2 diabetes mellitus: a randomised controlled trial. Diabetologia 52(10): 2027–2036

    Google Scholar 

  • Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M, Lafont S, Bergeonneau C, Kassai B, Erpeldinger S, Wright JM, Gueyffier F, Cornu C (2011) Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ 343: d4169

    Google Scholar 

  • Bronson-Castain KW, Bearse MA, Jr., Neuville J, Jonasdottir S, King-Hooper B, Barez S, Schneck ME, Adams AJ (2012) Early neural and vascular changes in the adolescent type 1 and type 2 diabetic retina. Retina 32 (1): 92–102

    Google Scholar 

  • Chaturvedi N et al. (2008) Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type 1 diabetes: randomised, placebo- controlled trials. Lancet 372(9647): 1394–1402

    Google Scholar 

  • Chew EY, Ambrosius WT, Davis MD, Danis RP, Gangaputra S, Greven CM, Hubbard L, Esser BA, Lovato JF, Perdue LH, Goff DC, Jr., Cushman WC, Ginsberg HN, Elam MB, Genuth S, Gerstein HC, Schubart U, Fine LJ (2010) Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med 363 (3): 233–244

    Google Scholar 

  • DCCT (2000) Diabetes Control and Complications Trial Research Group. Effect of pregnancy on microvascular complications in the diabetes control and complications trial. Diabetes Care 23(8): 1084–1091

    Google Scholar 

  • Duckworth W et al. (2009) Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 360(2): 129–139

    Google Scholar 

  • Finger RP, Bertram B, Wolfram C, Holz FG (2012) Blindness and visual impairment in Germany: a slight fall in prevalence. Dtsch Arztebl Int 109 (27–28): 484–489

    Google Scholar 

  • Gaede P et al. (2008) Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 358(6): 580–591

    Google Scholar 

  • Hemmingsen B, Lund SS, Gluud C, Vaag A, Almdal T, Hemmingsen C, Wetterslev J (2011) Intensive glycaemic control for patients with type 2 diabetes: systematic review with meta-analysis and trial sequential analysis of randomised clinical trials. BMJ 343: d6898

    Google Scholar 

  • Keech AC, Mitchell P, Summanen PA, O’Day J, Davis TM, Moffitt MS, Taskinen MR, Simes RJ, Tse D, Williamson E, Merrifield A, Laatikainen LT, d’Emden MC, Crimet DC, O’Connell RL, Colman PG (2007) Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet 370 (9600): 1687–1697

    Google Scholar 

  • Klein R et al. (1999) Association of ocular disease and mortality in a diabetic population. Arch Ophthalmol 117(11): 1487–1495

    Google Scholar 

  • Kramer CK, Rodrigues TC, Canani LH, Gross JL, Azevedo MJ (2001) Diabetic retinopathy predicts all-cause mortality and cardiovascular events in both type 1 and 2 diabetes: meta-analysis of observational studies. Diabetes Care 34 (5): 1238–1244

    Google Scholar 

  • Kyto JP, Harjutsalo V, Forsblom C, Hietala K, Summanen PA, Groop PH (2001) Decline in the cumulative incidence of severe diabetic retinopathy in patients with type 1 diabetes. Diabetes Care 34 (9): 2005–2007

    Google Scholar 

  • Malone JI, Morrison AD, Pavan PR, Cuthbertson DD (2001) Prevalence and significance of retinopathy in subjects with type 1 diabetes of less than 5 years’ duration screened for the diabetes control and complications trial. Diabetes Care 24 (3): 522–526

    Google Scholar 

  • Nathan DM, Zinman B, Cleary PA, Backlund JY, Genuth S, Miller R, Orchard TJ (2009) Modern-day clinical course of type 1 diabetes mellitus after 30 years’ duration: the diabetes control and complications trial/epidemiology of diabetes interventions and complications and Pittsburgh epidemiology of diabetes complications experience (1983–2005). Arch Intern Med 169 (14): 1307–1316

    Google Scholar 

  • Rudnisky CJ, Lavergne V, Katz D (2009) Visual acuity after intravitreal triamcinolone for diabetic macular edema refractory to laser treatment: a meta-analysis. Can J Ophthalmol 44 (5): 587–593

    Google Scholar 

  • Sjolie AK, Klein R, Porta M, Orchard T, Fuller J, Parving HH, Bilous R, Chaturvedi N (2008) Effect of candesartan on progression and regression of retinopathy in type 2 diabetes (DIRECT-Protect 2): a randomised placebocontrolled trial. Lancet 372 (9647): 1385–1393

    Google Scholar 

  • Tong Z, Yang Z, Patel S, Chen H, Gibbs D, Yang X, Hau VS, Kaminoh Y, Harmon J, Pearson E, Buehler J, Chen Y, Yu B, Tinkham NH, Zabriskie NA, Zeng J, Luo L, Sun JK, Prakash M, Hamam RN, Tonna S, Constantine R, Ronquillo CC, Sadda S, Avery RL, Brand JM, London N, Anduze AL, King GL, Bernstein PS, Watkins S, Jorde LB, Li DY, Aiello LP, Pollak MR, Zhang K (2008) Promoter polymorphism of the erythropoietin gene in severe diabetic eye and kidney complications. Proc Natl Acad Sci USA 105 (19): 6998–7003

    Google Scholar 

  • UKPDS 33 (1998) United Kingdom Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes. Lancet 352(9131): 837–853

    Google Scholar 

  • Van Hecke MV, Dekker JM, Nijpels G, Moll AC, Heine RJ, Bouter LM, Polak BC, Stehouwer CD (2005) Inflammation and endothelial dysfunction are associated with retinopathy: the Hoorn Study. Diabetologia. 48(7): 1300–1306

    Google Scholar 

  • Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, Chen SJ, Dekker JM, Fletcher A, Grauslund J, Haffner S, Hamman RF, Ikram MK, Kayama T, Klein BE, Klein R, Krishnaiah S, Mayurasakorn K, O’Hare JP, Orchard TJ, Porta M, Rema M, Roy MS, Sharma T, Shaw J, Taylor H, Tielsch JM, Varma R, Wang JJ, Wang N, West S, Xu L, Yasuda M, Zhang X, Mitchell P, Wong TY (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35 (3) :556–564

    Google Scholar 

Literatur zu Abschn. 8.4

  • Bianchi S, Bigazzi R, Campese VM (2006) Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney Int 70: 2116–2123

    Google Scholar 

  • Campbell R, Sangalli F, Perticucci E, Aros C, Viscarra C, Perna A, Remuzzi A, Bertocchi F, Fagiani L, Remuzzi G, Ruggenenti P (2003) Effects of combined ace inhibitor and angiotensin II antagonist treatment in human chronic nephropathies. Kidney Int 63: 1094–1103

    Google Scholar 

  • Cooper BA, Branley P, Bulfone L, Collins JF, Craig JC, Fraenkel MB, Harris A, Johnson DW, Kesselhut J, Li JJ, Luxton G, Pilmore A, Tiller DJ, Harris DC, Pollock CA (2010) A randomized, controlled trial of early versus late initiation of dialysis. N Engl J Med 363: 609–619

    Google Scholar 

  • Costacou T, Ellis D, Fried L, Orchard TJ (2007) Sequence of progression of albuminuria and decreased GFR in persons with type 1 diabetes: a cohort study. Am J Kidney Dis 50: 721–732

    Google Scholar 

  • Fried LF, Emanuele N, Zhang JH, Brophy M, Conner TA, Duckworth W, Leehey DJ, McCullough PA, O’Connor T, Palevsky PM, Reilly RF, Seliger SL, Warren SR, Watnick S, Peduzzi P, Guarino P (2013) Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med 369: 1892–1903

    Google Scholar 

  • Hansen HP, Tauber-Lassen E, Jensen BR, Parving HH (2002) Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy. Kidney Int 62: 220–228

    Google Scholar 

  • Hansson L, Zanchetti A, Carruthers SG, Dahlöf B, Elmfeldt D, Julius S, Menard J, Rahn KH, Wedel H, Westerling S (1998) Effects of intensive blood-pressure lowering and lowdose aspirin in patients with hypertension: principal results of the hypertension optimal treatment (hot) randomised trial. Lancet 351: 1755–1762

    Google Scholar 

  • Hasslacher C, Wolf G, Kempe P, Ritz E (2011) Diabetische Nephropathie. Diabetologie 6: S111–S114

    Google Scholar 

  • Hovind P, Rossing P, Tarnow L, Smidt UM, Parving HH (2001) Remission and regression in the nephropathy of type 1 diabetes when blood pressure is controlled aggressively. Kidney Int 60: 277–283

    Google Scholar 

  • Hughes DB, Britton ML (2005) Angiotensin-converting enzyme inhibitors or angiotensin ii receptor blockers for prevention and treatment of nephropathy associated with type 2 diabetes mellitus. Pharmacotherapy 25: 1602–1620

    Google Scholar 

  • Jun M, Perkovic V, Cass A (2011) Intensive glycemic control and renal outcome. Contrib Nephrol 170: 196–208

    Google Scholar 

  • Klahr S, Levey A, Beck G, Caggiula A, Hunsicker L, Kusek J, Striker G (1994) The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. N Engl J Med 330: 877–884

    Google Scholar 

  • Kuriyama S (2007) Peritoneal dialysis in patients with diabetes: Are the benefits greater than the disadvantages? Peritoneal dialysis international. J Int Soc Peritoneal Dialysis 27 Suppl 2: S190–195

    Google Scholar 

  • Mehdi UF, Adams-Huet B, Raskin P, Vega GL, Toto RD (2009) Addition of angiotensin receptor blockade or mineralo corticoid antagonism to maximal angiotensin-converting enzyme inhibition in diabetic nephropathy. J Am Soc Nephrol 20: 2641–2650

    Google Scholar 

  • Molitch ME, Steffes M, Sun W, Rutledge B, Cleary P, de Boer IH, Zinman B, Lachin J (2010) Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study. Diabetes Care 33: 1536–1543

    Google Scholar 

  • Navaneethan SD, Nigwekar SU, Sehgal AR, Strippoli GF (2009) Aldosterone antagonists for preventing the progression of chronic kidney disease: A systematic review and metaanalysis. Clin J Am Soc Nephrol 4: 542–551

    Google Scholar 

  • Palmer ND, Freedman BI (2012) Insights into the genetic architecture of diabetic nephropathy. Curr Diab Rep 12: 423–431

    Google Scholar 

  • Parving HH, Brenner BM, McMurray JJ, de Zeeuw D, Haffner SM, Solomon SD, Chaturvedi N, Persson F, Desai AS, Nicolaides M, Richard A, Xiang Z, Brunel P, Pfeffer MA (2012) Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med 367: 2204–2213

    Google Scholar 

  • Patel A, MacMahon S, Chalmers J, Neal B, Woodward M, Billot L, Harrap S, Poulter N, Marre M, Cooper M, Glasziou P, Grobbee DE, Hamet P, Heller S, Liu LS, Mancia G, Mogensen CE, Pan CY, Rodgers A, Williams B (2007) Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the advance trial): A randomised controlled trial. Lancet 370: 829–840

    Google Scholar 

  • Reutens AT, Atkins RC (2011) Epidemiology of diabetic nephropathy. Contrib Nephrol 170: 1–7

    Google Scholar 

  • Robertson L, Waugh N, Robertson A (2007) Protein restriction for diabetic renal disease. Cochrane Database Syst Rev: CD002181

    Google Scholar 

  • Rossing P, Hougaard P, Borch-Johnsen K, Parving HH (1996) Predictors of mortality in insulin dependent diabetes: 10 year observational follow up study. BMJ 313: 779–784

    Google Scholar 

  • Ruggenenti P, Cravedi P, Remuzzi G (2010) The raas in the pathogenesis and treatment of diabetic nephropathy. Nat Rev Nephrol 6: 319–330

    Google Scholar 

  • UK Prospective Diabetes Study U (1998) Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. Uk prospective diabetes study group. BMJ 317: 703–713

    Google Scholar 

  • Van Buren PN, Toto R (2013) Current update in the management of diabetic nephropathy. Curr Diab Rev 9: 62–77

    Google Scholar 

  • Van den Meiracker AH, Baggen RG, Pauli S, Lindemans A, Vulto AG, Poldermans D, Boomsma F (2006) Spironolactone in type 2 diabetic nephropathy: Effects on proteinuria, blood pressure and renal function. J Hypertens 24: 2285–2292

    Google Scholar 

  • Wolfe RA, Ashby VB, Milford EL, Ojo AO, Ettenger RE, Agodoa LY, Held PJ, Port FK (1999) Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med 341: 1725–1730

    Google Scholar 

Literatur zu Abschn. 8.5

  • Abbott CA, Malik RA, van Ross ER, Kulkarni J, Boulton AJ (2011) Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diab Care 34: 2220–2224

    Google Scholar 

  • Barrett AM, Lucero MA, Le T, Robinson RL, Dworkin RH, Chappell AS (2007) Epidemiology, public health burden, and treatment of diabetic peripheral neuropathic pain: a review. Pain Med 8 (Suppl 2): S50–62

    Google Scholar 

  • Bundesärztekammer (BÄK), KBV, AWMF (2011) Nationale VersorgungsLeitlinie Neuropathie bei Diabetes im Erwachsenenalter – Langfassung, Version 1.2 (28.11.2011). http://www.deutsche-diabetes-gesellschaft.de/fileadmin/Redakteur/Leitlinien/Evidenzbasierte_Leitlinien/nvl-t2d-neuro-lang.pdf. Zugriff 10 März 2014

  • Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL (2012a) Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 11: 521–534

    Google Scholar 

  • Callaghan BC, Hur J, Feldman EL (2012b) Diabetic neuropathy: one disease or two? Curr Opin Neurol 25: 536–541

    Google Scholar 

  • Chaudhry V, Russell J, Belzberg (2008) Decompressive surgery of lower limbs for symmetrical diabetic peripheral neuropathy. Cochrane Database of Systematic Reviews 2008, Issue 3. Art. No.: CD006152. doi: 10.1002/14651858. CD006152.pub2.

    Google Scholar 

  • Daousi C, MacFarlane IA, Woodward A, Nurmikko TJ, Bundred PE, Benbow SJ (2004) Chronic painful peripheral neuropathy in an urban community: a controlled comparison of people with and without diabetes. Diabet Med 21: 976–982

    Google Scholar 

  • Galer BS, Gianas A, Jensen MP (2000) Painful diabetic polyneuropathy: epidemiology, pain description, and quality of life. Diabetes Res Clin Pract 47: 123–128

    Google Scholar 

  • Lauria G, Hsieh ST, Johansson O, Kennedy WR, Leger JM, Mellgren SI, Nolano M, Merkies IS, Polydefkis M, Smith AG, Sommer C, Valls-Sole J (2010) European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur J Neurol 17: 903–912, e44–49

    Google Scholar 

  • Linn T, Ortac K, Laube H, Federlin K (1996) Intensive therapy in adult insulin-dependent diabetes mellitus is associated with improved insulin sensitivity and reserve: a randomized, controlled, prospective study over 5 years in newly diagnosed patients. Metabolism 45: 1508–1513

    Google Scholar 

  • Malavige LS, Levy JC (2009) Erectile dysfunction in diabetes mellitus. J Sex Med 6: 1232–1247

    Google Scholar 

  • Martina ISJ, van Koningsveld R, Schmitz PIM, van der Meché FGA, van Doorn PA (for the European Inflammatory Neuropathy Cause and Treatment (INCAT) group) (1998) Measuring vibration threshold with a graduated tuning fork in normal aging and in patients with polyneuropathy. J Neurol Neurosurg Psychiatry 65: 743–747

    Google Scholar 

  • Maser RE, Steenkiste AR, Dorman JS, Nielsen VK, Bass EB, Manjoo Q, Drash AL, Becker DJ, Kuller LH, Greene DA et al. (1989) Epidemiological correlates of diabetic neuro pathy. Report from Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes 38: 1456–14161

    Google Scholar 

  • Wile DJ, Toth C (2010) Association of metformin, elevated homocysteine, and methylmalonic acid levels and clinically worsened diabetic peripheral neuropathy. Diabetes Care 33: 156–161

    Google Scholar 

Literatur zu Abschn. 8.6

  • Armstrong DG, Lavery LA, Harkless LB (1998) Validation of a diabetic wound classification system.Diabetes Care 21: 856–859

    Google Scholar 

  • Armstrong DG, Lavery LA, Vazquez JR, Short B, Kimbriel HR, Nixon BP, Boulton AJ (2003) Clinical efficacy of the first metatarsophalangeal joint arthroplasty as a curative procedure for hallux interphalangeal joint wounds in patients with diabetes. Diabetes Care 26: 3284–3287

    Google Scholar 

  • Baglioni P, Malik M, Okosieme OE (2012) Acute Charcot foot. BMJ 344: e1397

    Google Scholar 

  • Bundesärztekammer (2010) Nationale Versorgungsleitlinie Typ-2-Diabetes Präventions- und Behandlungsstrategien für Fußkomplikationen Langfassung Version 2.8 Februar 2010 basierend auf der Fassung von November 2006. http://www.deutsche-diabetes-gesellschaft.de/fileadmin/Redakteur/Leitlinien/Evidenzbasierte_Leitlinien/NVLDM2-Fuss-lang-ddg-2.8-100215.pdf. Zugriff 10 März 2014

  • Eichenholtz SN (1966) Charcot Joints. Thomas, Springfield, IL Emanuele MA, Buchanan BJ, Abraira C (1981) Elevated leg systolic pressures and arterial calcification in diabetic occlusive vascular disease. Diabetes Care 4: 289–292

    Google Scholar 

  • Faglia E, Favales F, Morabito A (2001) New ulceration, new major amputation, and survival rates in diabetic subjects hospitalized for foot ulceration from 1990 to 1993: a 6.5-year follow-up. Diabetes Care 24: 78–83

    Google Scholar 

  • Fishco WD (2001) Surgically induced Charcot’s foot. J Am Podiatr Med Assoc 91: 388–393

    Google Scholar 

  • Frykberg RG, Belczyk R (2008) Epidemiology of the Charcot foot. Clin Podiatr Med Surg 25: 17–28

    Google Scholar 

  • Game FL, Catlow R, Jones GR, Edmonds ME, Jude EB, Rayman G, Jeffcoate WJ (2012) Audit of acute Charcot’s disease in the UK: the CDUK study. Diabetologia 55: 32–35

    Google Scholar 

  • Heller G, Günster C, Swart E (2005) Über die Häufigkeit von Amputationen unterer Extremitäten in Deutschland. Dtsch Med Wochenschr 130: 1689–1690

    Google Scholar 

  • Hochlenert D, Engels G, Altenhofen L (2006) Integrierte Versorgung, Ergebnisse des Netzwerk Diabetischer Fuß Köln und Umgebung. Dt Arztebl 103: A 1680–1683

    Google Scholar 

  • Hohenberger W, Stirkat F, Bruns J, Schmiegel W, Wesselmann S (2011) Krebsregister und Zentrumsbildung. Onkologe 17: 135–142)

    Google Scholar 

  • Jeffcoate WJ (2008) Charcot neuro-osteoarthropathy. Diabetes Metab Res Rev 24 (Suppl 1): S62–65

    Google Scholar 

  • Koller A et al. (2006) Deutsche Diabetes Gesellschaft. AG Diabetischer Fuß. Interdisziplinäre Arbeitsgruppe Schuhversorgung beim diabetischen Fußsyndrom. Schuhversorgung und Risikoklassen beim Diabetischen Fußsyndrom - und analogen Neuro-Angio-Arthropathien. Stand 25.02.2006. http://www.ag-fuss-ddg.de/download/1_Anlage_PG_31_Schuhversorgung%20und%20Risikoklassen%20beim%20DAF_25.05.2006.pdf. Zugriff 10 März 2014

  • Lawall H, Bramlage P, Amann B (2010) Stem cell and progenitor cell therapy in peripheral artery disease Thromb Haemost 103: 696–709

    Google Scholar 

  • Lobmann R, Balletshofer B (2011) Diabetisches Fußsyndrom. In: Häring HU et al. (Hrsg) Diabetologie in Klinik und Praxis. Thieme, Stuttgart, S 495, 523

    Google Scholar 

  • Maciejewski ML, Reiber GE, Smith DG, Wallace C, Hayes S, Boyko EJ (2004) Effectiveness of diabetic therapeutic footwear in preventing reulceration. Diabetes Care 27: 1774–1782

    Google Scholar 

  • Moura-Neto A, Fernandes TD, Zantut-Wittmann DE, Trevisan RO, Sakaki MH, Santos AL, Nery M, Parisi MC (2012) Charcot foot: skin temperature as a good clinical parameter for predicting disease outcome. Diabetes Res Clin Pract 96: e11–14

    Google Scholar 

  • Müller E, Bergmann K, Brunk-Loch S, Groene C, Kersken J, Lindloh C, Lobmann R, Mertes B (2006) Arbeitsgruppe Qualitätsmanagement der AG Fuß in der DDG e.V. Fußbehandlungseinrichtung DDG-erste Evaluation. Diabetol Stoffw 1–A195,doi:10.1055/s-2006-943920

    Google Scholar 

  • Pham H, Armstrong DG, Harvey C, Harkless LB, Giurini JM, Veves A (2000) Screening techniques to identify people at high risk for diabetic foot ulceration: a prospective multicenter trial. Diabetes Care 23: 606–611

    Google Scholar 

  • Richard JL, Almasri M, Schuldiner S (2012) Treatment of acute Charcot foot with bisphosphonates: a systematic review of the literature. Diabetologia 55: 1258–1264

    Google Scholar 

  • Risse A (2006) Anthropologische Bedeutung der Polyneuropathien für Patienten und Versorgung – Qualitativer, neophänomenologischer Beitrag. Diabetologe 2: 25–131

    Google Scholar 

  • Rümenapf G, Geiger S, Schneider B, Amendt K, Wilhelm N, Morbach S, Nagel N (2013) Readmissions of patients with diabetes mellitus and foot ulcers after infra-popliteal bypass surgery – attacking the problem by an integrated case management model ; Vasa 42: 56–67

    Google Scholar 

  • Sanders LJ, Frykberg RG. Charcot foot. In: Levin M, O’Neal L, Bowker J (eds)The diabetic foot, 5th edn. Mosby-Year Book, Boston, p 149–180

    Google Scholar 

  • Simon SR, Tejwani SG, Wilson DL, Santner TJ, Denniston NL (2000) Arthrodesis as an early alternative to nonoperative management of charcot arthropathy of the diabetic foot. J Bone Joint Surg Am 82: 939–950

    Google Scholar 

  • The Saint Vincent Declaration on diabetes care and research in Europe (1989) Acta diabetologia. 10: (Suppl) 143–144 Van Baal J, Hubbard R, Game F, Jeffcoate W (2010) Mortality Associated with Acute Charcot Foot and Neuropathic Foot Ulceration. Diabetes Care. DOI dc09-1428 [pii] 10.2337/dc09-1428

    Google Scholar 

  • Wagner FW (1981) The dysvascular foot.A system in diagnosis and treatment. Foot Ankle 2: 84–122

    Google Scholar 

  • Weck M, Rietzsch H., Lawall H, Pichlmeier U, Bramlage P, Schellong S (2008): Intermittent intravenous urokinase for critical limb ischemia in diabetic foot ulceration; Thrombosis and Haemostasis, 100/3: 365–516

    Google Scholar 

  • Zampa V, Bargellini I, Rizzo L, Turini F, Ortori S, Piaggesi A, Bartolozzi C (2011) Role of dynamic MRI in the follow-up of acute Charcot foot in patients with diabetes mellitus. Skeletal Radiol 40: 991–999

    Google Scholar 

  • Zander J, Risse A, Kunitz O, Frank J, Emmig U (2012): Anästhesie bei Stoffwechselerkrankungen. In: Rossaint R, Werner C, Zwißler B (Hrsg) Die Anästhesiologie. Springer, Berlin Heidelberg, S 1262–128

    Google Scholar 

Literatur zu Abschn. 8.7

  • Abber JC, Lue TF, Orvis BR, McClure RD, Williams RD (1986) Diagnostic tests for impotence: a comparison of papaverine injection with the penile-brachial index and nocturnal penile tumescence monitoring. J Urology 135(5): 923–925

    Google Scholar 

  • Andersson KE, Wagner G (1995) Physiology of penile erection. Physiol Rev 75: 192–236

    Google Scholar 

  • Baskerville TA, Douglas AJ (2008) Interactions between dopamine and oxytocin in the control of sexual behaviour. Prog Brain Res 170: 277–290

    Google Scholar 

  • Carson CC (1999) Reconstructive surgery using urological prosthesis. Curr Opin Urol 9: 233–239

    Google Scholar 

  • Cheitlin MD, Hutter AM, Brindis RG et al. (1999) Use of sildenafil citrate in patients with cardiovascular disease. Circulation 99: 168–177

    Google Scholar 

  • Enzlin P, Mathieu C, Wanderschueren D, Demyttenaere K (2003) Prevalence and predictors of sexual dysfunction in patients with type 1 diabetes. Diabetes Care 26: 409–414

    Google Scholar 

  • Fonseca V, Seftel A, Denne J, Fredlund P (2004) Impact of diabetes mellitus on the severity of erectile dysfunction and response to treatment: analysis of data from tadalafil clinical trials. Diabetologia.47(11): 1914–1923

    Google Scholar 

  • Goldstein I, Lue TF, Padma-Nathan H et al. (1998) Oral sildenafil in the treatment of erectile dysfunction. N Engl J Med 338(20): 1397–1404

    Google Scholar 

  • Goldstein I, Young JM, Fischer J et al. (2003) Vardenafil, a new phosphodiesterase type 5 inhibitor, in the treatment of erectile dysfunction in men with diabetes: a multicenter double-blind plazebo-controlled fixed-dose study. Diabetes Care 26: 777–783

    Google Scholar 

  • Jackson G (2004) Treatment of erectile dysfunction in patients with cardiovascular disease : guide to drug selection. Drugs 64: 1533–1545

    Google Scholar 

  • Klein R, Klein BE Lee KE et al. (1996) Prevalence of self-reported erectile dysfunction in people with long-term IDDM. Diabetes Care 19: 135–141

    Google Scholar 

  • Klotz T, Sachse R, Heidrich A et al. (2001) Vardenafil increases penile rigidity and tumescence in erectile dysfunction patients: a RigiScan and pharmacokinetic study. World J Urol 19: 32–39

    Google Scholar 

  • Lue TF (2000) Erectile dysfunction. New Engl J Med 342: 1802–1813

    Google Scholar 

  • Manning M, Spahn M, Jünemann KP (1998) Gefäßchirurgie, Implantationschirurgie und Vakuumerektionshilfe. Urol A 37: 509–515

    Google Scholar 

  • Meller SM, Stilp E, Walker CN, Mena-Hurtado C (2013) The link between vasculogenic erectile dysfunction, coronary artery disease, and peripheral artery disease: role of metabolic factors and endovascular therapy. J Invasive Cardiol 25(6): 313–319

    Google Scholar 

  • Morales A, Gingell C, Collins M et al. (1998) Clinical safety of oral sildenafil citrate (Viagra TM) in the treatment of erectile dysfunction. Int J Impot Res 10: 69–74

    Google Scholar 

  • Padma-Nathan H, Hellstrom WJ, Kaiser FE et al. (1997) Treatment of men with erectile dysfunction with transurethral alprostadil, Medicated Urethral System for Erection (MUSE) Study Group. N Engl J Med 336: 1–7

    Google Scholar 

  • Perimenis P, Gyftopoulos K, Athanasopoulos A, Barbalias G (2001) Diabetic impotence treated by intracaver-nosal injections: high treatment compliance and increasing dosage of vaso-active drugs. Eur Urol 40: 398–403

    Google Scholar 

  • Porst et al. 2001) Porst H, Rosen R, Padma-Nathan H et al. (2001) The efficacy and tolerability of vardenafil, a new oral, selective phosphodiesterase type 5 inhibitor, in patients with erectile dysfunction: the first at-home clinical trial. Int J Impot Res 13: 192–199

    Google Scholar 

  • Rendell MS, Rajfer J, Wicker PA et al. (1999) Sildenafil for treatment of erectile dysfunction in men with diabetes – a randomized controlled trial. Sildenafil Diabetes Study Group. J Am Med Ass 281: 421–426

    Google Scholar 

  • Safarinejad MR (2004) Oral sildenafil in the treatment of erectile dysfunction in diabetic men: a randomized double blind and plazebo-controlled study. J Diabetes Complications 18: 205–210

    Google Scholar 

  • Schwartz BG, Jackson G, Stecher VJ, Campoli-Richards DM, Kloner RA (2013) Phosphodiesterase type 5 inhibitors improve endothelial function and may benefit cardiovascular conditions. Am J Med 126(3): 192–199. doi: 10.1016/j.amjmed.2012.08.015

    Google Scholar 

  • Shabsigh R, Kaufman JM, Steidle C, Padma-Nathan H (2004) Randomized study of testosterone gel as adjunctive therapy to sildenafil in hypogonadal men with erectile dysfunction who do not respond to sildenafil alone. J Urology 172(2): 658–663

    Google Scholar 

  • Spollett GR (1999) Assessment and management of erectile dysfunctionin men with diabetes. Diabetes Educ 25: 65–73

    Google Scholar 

  • Stark S, Sachse R, Liedl T et al. (2001) Vardenafil increases penile rigidity and tumenescence in men with erectile dysfunction after a single oral dose Eur Urol 40: 181–190

    Google Scholar 

  • Stuckey BG, Jadzinsky MN, Murphy LJ et al. (2003) Sildenafil citrate for treatment of erectile dysfunction in men with type 1 diabetes: results of a randomized controlled trial. Diabetes Care 26: 279–284

    Google Scholar 

Literatur zu Abschn. 8.8

  • Huntley AC (1989) Cutaneou smanifestations of diabetes mellitus. Dermatol Clin 7: 531–546

    Google Scholar 

  • Meurer M, Stumvoll M, Szeimies RM (2004) Hautveränderungen bei Diabetes mellitus. Hautarzt 55: 428–435

    Google Scholar 

  • Sullivan KA, Feldman EL (2005) New developments in diabetic neuropathy. CurrOpinNeurol 18: 586–590

    Google Scholar 

  • Taylor GW, Borgnakke WS (2008) Periodontal disease: associations with diabetes, glycemic control and complications. Oral Diseases 14: 191–203

    Google Scholar 

  • Wohlrab J, Wohlrab D, Meiss F (2007) Hauterkrankungen bei Diabetes mellitus. J Dtsch Dermatol Ges 5: 37–53

    Google Scholar 

  • Stratmann B, Tschoepe D (2011) Heart in diabetes: not only a macrovascular disease. Diabetes Care 34 (Suppl 2): S138–144

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Doppler, K. et al. (2014). Diabetische Folgeerkrankungen. In: Schatz, H., Pfeiffer, A. (eds) Diabetologie kompakt. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41358-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41358-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41357-5

  • Online ISBN: 978-3-642-41358-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics