Skip to main content

Typ-2-Diabetes

  • Chapter
Diabetologie kompakt

Zusammenfassung

Der Diabetes mellitus Typ 2 ist durch eine Kombination von gestörter Insulinsekretion, Insulinresistenz und Hyperglykämie gekennzeichnet. Die Prävalenz dieser Stoffwechselstörung steigt in Abhängigkeit von Übergewicht und Adipositas stark an.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Literatur zu Abschn. 4.1

  • Cervera A, Wajcberg E, Sriwijitkamol A et al. (2008) Mechanisms of action of exenatide to reduce postprandial hyperglycemia in type 2 diabetes. Am J Physiol Endocrinol Metab 294: E846–E852

    Google Scholar 

  • DeFronzo RA (2009) Banting lecture: from the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58: 773–795

    Google Scholar 

  • Harder T, Rodekamp E, Schellong K et al. (2007) Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol 165: 849

    Google Scholar 

  • Hu FB, Li TY, Colditz GA, Willett WC, Manson JE (2003) Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA 289: 1785–1791

    Google Scholar 

  • Lyssenko V, Laakso M (2013) Genetic screening for the risk of type 2 diabetes. Diabetes Care 36 S2: S120–S126

    Google Scholar 

  • Matsuda M, Liu Y, Mahankali S, Pu Y et al. (1999) Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes 48: 1801–1806

    Google Scholar 

  • Stefan N, Häring HU (2013) Circulating fetuin-A and free fatty acids interact to predict insulin resistance in humans. Nat Med 19: 394–395

    Google Scholar 

  • Stumvoll M, Goldstein BJ, van Haeften TW (2005) Type 2 diabet es: principles of pathogenesis and therapy. Lancet 365: 1333

    Google Scholar 

Literatur zu Abschn. 4.2

  • Brownlee M (2001) Biochem istry and molecular cell biology of diabetic comp lications. Nature 414(6865): 813–820

    Google Scholar 

  • Kacerovsky-Bielesz G, Kacerovsky M et al. (2012) A single nucleotide polymorphism associates with the response of muscle ATP synthesis to long-term exercise training in relatives of type 2 diabetic humans. Diabetes Care 35(2): 350–357

    Google Scholar 

  • Patti ME, Corvera S (2010) The ro le of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev 31(3): 364– 395

    Google Scholar 

  • Petersen KF, Befroy D et al. (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300(5622):1140–1142

    Google Scholar 

  • Szendroedi J, Phielix E et al. (2011) The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol 8(2): 92–103

    Google Scholar 

  • Timmers S, Konings E et al. (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14(5): 612–622

    Google Scholar 

Literatur zu Abschn. 4.3

  • Balkau B, Shipley M, Jarrett RJ, Pyörälä K, Pyörälä M, Forhan A, Eschwège E (1998) High blood glucose concentration is a risk factor for mortality in middle-aged nondiabetic men. 20-year follow-up in the Whitehall Study, the Paris Prospective Study, and the Helsinki Policemen Study. Diabetes Care 21(3): 360–367

    Google Scholar 

  • Barrett-Connor E, Ferrara A (1998) Isolated postchallenge hyperglycemia and the risk of fatal cardiovascular disease in older women and men. The Rancho Bernardo Study. Diabetes Care 21(8): 1236–1239

    Google Scholar 

  • Black S, Kushner I, Samols D(2004) C-reactive Protein. J Biol Chem 279(47): 48487–48490

    Google Scholar 

  • Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M; STOP-NIDDM Trial Research Group (2003) Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 290(4): 486–494

    Google Scholar 

  • De Vegt F, Dekker JM, Ruhé HG, Stehouwer CD, Nijpels G, Bouter LM, Heine RJ (1999) Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population: the Hoorn Study. Diabetologia 42(8): 926–931

    Google Scholar 

  • DECODE Study Group (1999) Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE Study Group. European Diabetes Epidemiology Group. Diabetes Epidemiology: Collaborative analysis Of Diagnostic criteria in Europe. Lancet 354(9179): 617–621

    Google Scholar 

  • Donahue RP, Abbott RD, Reed DM, Yano K (1987) Postchallenge glucose concentration and coronary heart disease in men of Japanese ancestry. Honolulu Heart Program. Diabetes 36(6): 689–692

    Google Scholar 

  • Festa A, D’Agostino R Jr, Tracy RP, Haffner SM (2002) C-reactive protein is more strongly related to post-glucose load glucose than to fasting glucose in non-diabetic subjects; the Insulin Resistance Atherosclerosis Study. Diabet Med 19(11): 939–943

    Google Scholar 

  • Hanefeld M, Fischer S, Julius U, Schulze J, Schwanebeck U, Schmechel H, Ziegelasch HJ, Lindner J (1996) Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year followup. Diabetologia 39(12): 1577–1583

    Google Scholar 

  • Hanefeld M, Cagatay M, Petrowitsch T, Neuser D, Petzinna D, Rupp M (2004) Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: meta-analysis of seven long-term studies. Eur Heart J 25(1): 10–16

    Google Scholar 

  • Jackson CA, Yudkin JS, Forrest RD (1992) A comparison of the relationships of the glucose tolerance test and the glycated haemoglobin assay with diabetic vascular disease in the community. The Islington Diabetes Survey. Diabetes Res Clin Pract 17(2): 111–123

    Google Scholar 

  • Landmesser U, Hornig B, Drexler H (2004) Endothelial function: a critical determinant in atherosclerosis? Circulation109 (21 Suppl 1): II27–33

    Google Scholar 

  • Levitan EB, Song Y, Ford ES, Liu S (2004) Is nondiabetic hyperglycemia a risk factor for cardiovascular disease ? A meta-analysis of prospective studies. Arch Int Med 164(19): 2147–2155

    Google Scholar 

  • Marx N, Walcher D, Raichle C, Aleksic M, Bach H, Grub M, Hombach V, Libby P, Zieske A, Homma S, Strong J (2004) C-peptide colocalizes with macrophages in early arteriosclerotic lesions of diabetic subjects and induces monocyte chemotaxis in vitro. Arterioscler Thromb Vasc Biol 24(3): 540–545

    Google Scholar 

  • Meigs JB, Nathan DM, D’Agostino RB Sr, Wilson PW (2002) Fasting and postchallenge glycemia and cardiovascular disease risk: the Framingham Offspring Study. Diabetes Care 25(10): 1845–1850

    Google Scholar 

  • Monnier L, Lapinski H, Colette C (2003) Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA(1c). Diabetes Care 26(3): 881–885

    Google Scholar 

  • Raz I, Wilson PWF, Strojek K, Kowalska I, Bozikov V, Gitt AK, Jermendy G, Campaigne BN, Kerr L, Milicevic Z, Jacober SJ (2009) Effects of prandial versus fasting glycemia on cardiovascular outcomes in type-2 diabetes: The HEART2D trial. Diab Care 32(3): 381–386

    Google Scholar 

  • Shaw JE1, Hodge AM, de Courten M, Chitson P, Zimmet PZ (1999) Isolated post-challenge hyperglycaemia confirmed as a risk factor for mortality. Diabetologia 42(9): 1050–1054

    Google Scholar 

  • Walcher D, Aleksic M, Jerg V, Hombach V, Zieske A, Homma S, Strong J, Marx N (2004) C-peptide induces chemotaxis of human CD4-positive cells: involvement of pertussis toxinsensitive G-proteins and phosphoinositide 3-kinase. Diabetes 53(7): 1664–1670

    Google Scholar 

  • Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115(5): 1111–1119

    Google Scholar 

  • Willerson JT, Ridker PM (2004) Inflammation as a cardiovascular risk factor. Circulation 109(21 Suppl 1): II2–10

    Google Scholar 

Literatur zu Abschn. 4.4

  • Alberti KG, Zimmet P, Shaw J, IDF Epidemiology Task Force Consensus Group (2005) The metabolic syndrome – a new worldwide definition. Lancetr 366(9491): 1059–1062

    Google Scholar 

  • Alberti KG, Eckel RH, Grundy SM et al. (2009) Harmonizing the metabolic syndrome. a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(06): 1640–1645

    Google Scholar 

  • Giugliano D, Ceriello A, Esposito K (2008) Are there specific treatments for the metabolic syndrome? Am J Clin Nutr 87(1): 8–11

    Google Scholar 

  • Grundy SM, Cleeman JI, Daniels SR et al. (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112(17): 2735–2752

    Google Scholar 

  • Hube F, Hauner H (1999) The role of TNF-alpha in human adipose tissue: prevention of weight gain at the expense of insulin resistance? Horm Metab Res 31 (12): 626–631

    Google Scholar 

  • Kahn R, Buse J, Ferrannini E, Stern M (2005) The metabolic syndrome: time for a critical appraisal. Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 48(9): 1684–1699.

    Google Scholar 

  • NCEP (2001) Expert panel on detection, evaluation, and treatment of high blood pressure in adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood pressure in adults (Adult Treatment Panel III). JAMA 285: 533–535

    Google Scholar 

  • Sjöstrom L, Narbro K, SjöstromCD et al. (2007) Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 357(8): 745–752

    Google Scholar 

  • Stefan N, Stumvoll M (2002) Adiponectin – ist role in metabolism and beyond. Horm Metab Res 34(9): 469–474

    Google Scholar 

  • UKPDS (1998) UK Prospective Diabetes Study Group: Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352: 854–865

    Google Scholar 

Literatur zu Abschn. 4.5

  • Bosch J et al. (2006) Effect of ramipril on the incidence of diabetes. N Engl J Med 355(15): 1551–1562

    Google Scholar 

  • Brawley LR, Rejeski WJ, King AC (2003) Promoting physical activity for older adults: the challenges for changing behavior. Am J Prev Med 25 (Suppl 2): 172–183

    Google Scholar 

  • Buchanan TA (2007) (How) can we prevent type 2 diabetes? Diabetes 56(6): 1502–1507

    Google Scholar 

  • Chiasson JL et al. (2002) Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 359(9323): 2072–2077

    Google Scholar 

  • DAK (2007) Abschlussbericht der Projektgruppe Diabetesprävention zum Modellprojekt der DAK zur Diabetesprävention in Sachsen. Zentralinstitut für die kassenärztliche Versorgung in der Bundesrepublik Deutschland, Berlin

    Google Scholar 

  • DeFronzo RA et al. (2011) Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med 364(12): 1104–1115

    Google Scholar 

  • Greaves CJ, Sheppard KE, Abraham C, Hardeman W, Roden M, Evans PH, Schwarz P, The IMAGE Study Group Peter. Schwarz@uniklinikum-dresden.de (2011) Systematic review of reviews of intervention components associated with increased effectiveness in dietary and physical activity interventions. BMC Public Health 11: 119. doi:10.1186/1471-2458-11-119

    Google Scholar 

  • Gruhl U et al. (2008) Prävention vor Kuration. Gesundheit 2010 – unsere Chance. Deutsche Diabetes Stiftung, München, p 74

    Google Scholar 

  • Knowler WC et al. (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346(6): 393–403

    Google Scholar 

  • Kosaka K, Noda M Kuzuya T (2005) Prevention of type 2 diabetes by lifestyle intervention: a Japanese trial in IGT males. Diabetes Res Clin Pract 67(2): 152–162

    Google Scholar 

  • Lindstrom J et al. (2003) Prevention of diabetes mellitus in subjects with impaired glucose tolerance in the finnish diabetes prevention study: results from a randomized clinical trial. J Am Soc Nephrol 14 (7 Suppl 2): S108–113

    Google Scholar 

  • Lindstrom J et al. (2010) Take action to prevent diabetes – the IMAGE toolkit for the prevention of type 2 diabetes in Europe. Horm Metab Res 42 (Suppl 1): S37–S55

    Google Scholar 

  • Pan XR et al. (1997) Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 20(4): 537–544

    Google Scholar 

  • Paulweber B et al. (2010) A European evidence-based guideline for the prevention of type 2 diabetes. Horm Metab Res 42(Suppl 1): S3–S36

    Google Scholar 

  • Ramachandran A et al. (2006) The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 49(2): 289–297

    Google Scholar 

  • Schwarz PE, Peltonen M (2007) Prevention of type 2 diabetes – lessons we have learnt for implementation. Horm Metab Res 39(9): 636–641

    Google Scholar 

  • Schwarz PE et al. (2007) The European perspective on diabetes prevention: development and Implementation of A European Guideline and training standards for diabetes prevention (IMAGE). Diab Vasc Dis Res 4(4): 353–357

    Google Scholar 

  • Schwarz PE et al. (2012) Nonpharmacological interventions for the prevention of type 2 diabetes mellitus. Nat Rev Endocrinol 8(6): 363–373

    Google Scholar 

  • Snitker S et al. (2004) Changes in insulin sensitivity in response to troglitazone do not differ between subjects with and without the common, functional Pro12Ala peroxisome proliferator-activated receptor-gamma2 gene variant: results from the Troglitazone in Prevention of Diabetes (TRIPOD) study. Diabetes Care 27(6): 1365–1368

    Google Scholar 

  • Torgerson JS et al. (2004) XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care 27(1): 155–11

    Google Scholar 

  • Trenell MI et al. (2008) Increased daily walking improves lipid oxidation without changes in mitochondrial function in type 2 diabetes. Diabetes Care, 2008 31(8): 1644–1649

    Google Scholar 

  • Tudor-Locke CD, R Basset R Jr (2004) How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med 34(1): 1–8

    Google Scholar 

  • Tuomilehto J et al. (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344(18): 1343–1350

    Google Scholar 

  • Warburton DE, Nicol CW, Bredin SS (2006) Health benefits of physical activity: the evidence. CMAJ 174(6): 801–809

    Google Scholar 

  • Wenying Y et al. (2001) The preventive effect of acarbose and metformin on the progression to diabetes mellitus in the IGT population: a 3-year multicenter prospective study. Chin J Endocrinol Metab 17: 131–136

    Google Scholar 

  • Yates T et al. (2011a) The Pre-diabetes Risk Education and Physical Activity Recommendation and Encouragement (PREPARE) programme study: are improvements in glucose regulation sustained at 2 years? Diabet Med 28(10): 1268–1271

    Google Scholar 

  • Yates T et al. (2011b) Stand up for your health: Is it time to rethink the physical activity paradigm? Diabetes Res Clin Pract 93(2): 292–294

    Google Scholar 

Literatur zu Abschn. 4.6

  • Berger M et al. (1994) Behandlungs- und Schulungsprogramm für Typ-2-Diabetiker, die nicht Insulin spritzen. Deutscher Ärzte-Verlag, Köln

    Google Scholar 

  • European Diabetes Policy Group (2000) European Diabetes Policy Group 1998–1999, International Diabetes Federation. Europäische Region: Leitfaden zu Typ-2-Diabetes mellitus. Diabetes Stoffw 9: 104–136

    Google Scholar 

  • Füchtenbusch M, Standl E, Schatz H (2000) Clinical effficacy of new thiazolidinediones and glinides in the treatment of type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 108: 151–163

    Google Scholar 

  • Garber AJ, Duncan TG, Goodman AM, Mills DJ, Rohlf JL (1997) Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am J Med 103(6): 491–497

    Google Scholar 

  • Gerstein HC, Miller ME, Byington RP et al. (2008) Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358(24): 2545–2559

    Google Scholar 

  • Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359(15): 1577–1589

    Google Scholar 

  • Johnson JA, Majumdar SR, Simpson SH, Toth EL (2002) Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes. Diabetes Care 25(12): 2244–2248

    Google Scholar 

  • Kulzer B, Hermanns N (2001) Mehr Diabetes-Selbstmanagement Typ 2: Ein neues Schulungs- und Behandlungsprogramm für Menschen mit nicht-insulinpflichtigem Typ-2-Diabetes. MEDIAS 2 Basis. Kirchheim, Mainz

    Google Scholar 

  • Olsson J, Lindberg G, Gottsäter M, Lindwall K, Sjöstrand Å, Tisell A, Melander A (2000) Increased mortality in Type II diabetic patients using sulphonylurea and metformin in combination: a population-based observational study. Diabetologia 43(5): 558–560

    Google Scholar 

  • Patel A, MacMahon S, Chalmers J et al. (2008) ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358(24): 2560–2572

    Google Scholar 

  • Turnbull FM, Abraira C, Anderson RJ et al. (2009) Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia 52(11): 2288–2298

    Google Scholar 

  • UKPDS (1998a) UK Prospective Diabetes Study Group: Intensive blood-glucose control with sulfonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352: 837–853

    Google Scholar 

  • UKPDS (1998b) UK Prospective Diabetes Study Group: Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352: 854–865

    Google Scholar 

  • Yki-Järvinen H, Ryysy L, Nikkilä K, Tulokas T, Vanamo R, Heikkilä M (1999) Comparison of bedtime insulin regimens in patients with type 2 diabetes mellitus. A randomized, controlled trial. Ann Intern Med 130(5): 389–396

    Google Scholar 

Literatur zu Abschn. 4.7

Literatur zu Abschn. 4.8

  • Braun A et al. (2008) Effects of metabolic control, patient education and initiation of insulin therapy on the quality of life of patients with type 2 diabetes mellitus. Patient Educ Couns 73(1): 50–59

    Google Scholar 

  • Braun AK, Kubiak T, Kuntsche J, Meier-Höfig M, Müller UA, Feucht I, Zeyfang A (2009) SGS: a structured treatment and teaching programme for older patients with diabetes mellitus--a prospective randomised controlled multicentre trial. Age Ageing 38(4): 390–396

    Google Scholar 

  • Budnitz DS, Lovegrove MC, Shehab N, Richards CL (2011) Emergency hospitalizations for adverse drug events in older Americans. N Engl J Med 365(21): 2002–2012

    Google Scholar 

  • Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16: 31–41

    Google Scholar 

  • Inzucchi SE, Bergenstal RM, Buse JB et al. (2012) Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 55(6): 1577–1596

    Google Scholar 

  • Laiteerapong N, Karter AJ, Liu JY, Moffet HH, Sudore R, Schillinger D, John PJ, Huang ES (2011) Correlates of quality of life in older adults with diabetes – The Diabetes and Aging Study. Diabetes Care . 34 (8): 1749–1753

    Google Scholar 

  • Levey AS, Greene T, Kusek JW, Beck GL (2000) A simplified equation to predict glomerular filtration rate from serum creatinine. J Am Soc Nephrol 11: 155A

    Google Scholar 

  • Püllen R, Harhoff H-J, Nikolaus T, Oster P, Pfisterer M, Wernecke J, Zeyfang A (2010) Agaplesion Assessment Assistent Geriatrie. http://www.bethesda-stuttgart.de/Klinik-fuer-Innere-M.867.0.html (Downloads – AAA Geriatrie). Zugriff 26 Jan 2014

  • Roumie CL, Hung AM, Greevy RA et al. (2012) Comparative effectiveness of sulfonylurea and metformin monotherapy on cardiovascular events in type 2 diabetes. Ann Intern Med 157(9): 601–610

    Google Scholar 

  • Schulz RJ, Kurtal H, Steinhagen-Thiessen E (2008) Rehabilitative Versorgung alter Menschen. In: Kuhlmey, Adelheid; Schaeffer, Doris (Hrsg) Alter, Gesundheit und Krankheit. Handbuch Gesundheitswissenschaften, 1. Aufl. Huber, Bern, S 1–21

    Google Scholar 

  • Sinclair A, Morley JE, Rodriguez-Mañas L et al. (2012) Diabetes mellitus in older people: position statement on behalf of the International Association of Gerontology and Geriatrics (IAGG), the European Diabetes Working Party for Older People (EDWPOP), and the International Task Force of Experts in Diabetes. JAMDA 13 (6): 497–502

    Google Scholar 

  • Zeyfang A (2005) Specific aspects of diabetes management in the elderly. MMW Fortschr Med 147(7): 37, 39–40

    Google Scholar 

  • Zeyfang A, Bahrmann A, Wernecke J (2012b) Diabetes mellitus im Alter. Praxisleitlinie der Deutschen Diabetesgesellschaft. Diabetologie 7: S163–S169. http://www.deutschediabetes-gesellschaft.de/fileadmin/Redakteur/Leitlinien/Praxisleitlinien/2012/DuS_S2-12_Praxisempfehlungen_Zeyfang-etal_S163-169.pdf. Zugriff 26 Jan 2014

  • Zeyfang A, Berndt S, Aurnhammer G, Nikolaus T, Oster P, Bahrmann A (2012a) A short easy test can detect ability for autonomous insulin injection by the elderly with diabetes mellitus. J Am Med Dir Assoc 13(1): 81e 15–18

    Google Scholar 

Weiterführende Internet-Links

Literatur zu Abschn. 4.9

  • Buchanan TA, Xiang AH, Peters RK et al. (2002) Preservation of pancreatic ß-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes. 51: 2796–2803

    Google Scholar 

  • Buse J (2000) Combining insulin and oral agents. Am J Med 108 (Suppl 6A): 23–32

    Google Scholar 

  • Campbell IW (1985) Metformin an the sulphonylureas: the comparative risk. Horm Metab Rex 15 (Suppl): 105–111

    Google Scholar 

  • Chiasson JL, Gomis R, Hanefeld M, Josse RG, Karasik A, Laakso M (1998) The STOP-NIDDm Trial: an international study on the efficacy of an alpha-glucosidase inhibitor to prevent type 2 diabetes in a population with impaired glucose toleranz: rationale, design, and preliminary screening data of the study to Prevent Non-Insulin- Dependent Diabetes Mellitus. Diabetes Care 21: 1720–1725

    Google Scholar 

  • Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M; STOP-NIDDM Trail Research Group (2002) Acarbose for prevention ot type 2 diabetes mellitus: the STOP-NIDDM randomized trial. Lancet 359: 2072–2077

    Google Scholar 

  • Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M (2003) Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose toleranz: the STOP-NIDDM trial. J AM Med Ass 290: 486–494

    Google Scholar 

  • Cusi K, DeFronzo RA (1998) Metformin: a review of its metabolic effects. Diabetes Rev 6: 89–131

    Google Scholar 

  • DeFronzo RA, Goofman AM and the Multicenter Metformin Study Group (1995) Efficacy of metformin in NIDDM patients poorly controlled an diet alone or diet plus sulfonylurea. N Engl J Med 333: 541–549

    Google Scholar 

  • Dills DG, Schneider J and the Glimepirid/Glyburide Research Group (1996) Clinical evulation of glimepiride versus glyburide in NIDDM in a double-blind comparative study. Horm Metab Res 28: 426–429

    Google Scholar 

  • Fölsch UR, Lembcke B (1991) Inhibition der intestinalen Alpha-Glukosidase in der Therapie des Diabetes mellitus. Internist 32: 699–707

    Google Scholar 

  • Garber AJ, Dunacan TG, Goodman AM, Mills DJ, Rohlf JL (1997) Efficacy of metformin in type II diabetes: result of a double-blind, place-controlled, dose response trial. Am J Med 103: 491–497

    Google Scholar 

  • Gribble FM, Reimann F (2003) Differential selectivity of insulin secretagogues. Mechanisms, clinical implications, and drug interactions. Diabetes Complications17 (Suppl 2): 11–15

    Google Scholar 

  • Hansen JB (2006) Towards selective Kir6,2/SUR1 potassium channel openers, medicinal chemistry and therapeutic perspectives. Curr Med Chem13: 61–376

    Google Scholar 

  • Hansen AM, Christensen IT, Hansen JB et al. (2002) Differential interactions of nateglinide and repaglinide on the human beta-cell sulphonylurea receptor 1. Diabetes 51(9): 2789–2795

    Google Scholar 

  • Häring HU, Joost HG, Laube H, Matthaei S, MeissnerHP, Panten U, Schernthaner G (2003) Antihyperglykämische Therapie des Diabetes mellitus Typ 2. Evidenzbasierte Diabetes-Leitlinien DDG. Diabetes Stoffwechsel 12 (suppl 2): 13–31

    Google Scholar 

  • Hasslacher C (2003) Safety and efficacy of repaglinide in type 2 diabetic patients with and without impaired renalfunction. Diabetes Care 26(3): 886–891

    Google Scholar 

  • Holman RR, Cull CA, Turner RC (1999) A randomized double – blind trial of acarbose in type 2 diabetes shows improved glycaemic control over 3 years. Diabetes Care 22: 960–964

    Google Scholar 

  • Holstein A, Plaschke A, Egberts EH (2001) Lower incidence of severe hypoglycemia in patients with type 2 diabetes treated glimepride versus glibenclamid. Diabetes Metab Res Rev 17: 467–473

    Google Scholar 

  • Holstein A, Plaschke A, Hammer C, Egberts EH (2003) Characteristics and time course of severe glimepiride – versus glibenclamide-induced hypoglycemia. Eur J Clin Pharmacol 59(2): 91–97

    Google Scholar 

  • Kahn SE, Haffner SM, Heise MA, Herman WH, Holmann RR, Jones NP, Kravitz BG, Lachin JM, O´Neill MC, Zinman B, Viberti G; ADOPT Study Group (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355(23): 2427–2743

    Google Scholar 

  • Knowler WC, Barrett-Conner, E Fowler SE, Hamman RF, Lachin JM, Walker, EA, Nathan DM, for the Diabetes Prevention Program Research Group. (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346: 393–403

    Google Scholar 

  • Lebovitz H (1999) Effects of oral antihyperglycemic agents in modifying macrovascular risk factors in type 2 diabetes. Review. Diabetes Care 22 (Suppl 3): C41–44

    Google Scholar 

  • Luft D, Schmülling RM, Eggstein M (1978) Lactic acidose in biguanide-treated diabetics: a review of 330 cases. Diabetologia : 75–87

    Google Scholar 

  • Matthaei S, Hamann A, Klein HH et al. (1991) Association of metformin´s effect to increase insulinstimulated glucose transport with potentiation of insulin-induced translocation of glucose transports form intracellular pool to plasma membrane in rat adipocyte. Diabetes 40: 850–857

    Google Scholar 

  • Matthaei S, Hamann A (1993) Molekulare Mechanismen der antihyperglykämischen Wirkung von Metformin. Diabetes und Stoffwechsel 2: 307–314

    Google Scholar 

  • Matthaei S, Stumvoll M, Kellerer M, Häring HU (2000) Pathophysiology and pharmacological treatment of insulin resistance. Edocrine Rev 21: 585–618

    Google Scholar 

  • Mertes G (1998) Efficacy and safety of acarbose in the treatment of type 2 diabetes: data from a 2-year surveillance study. Diabetes Res Clin Pr 40: 63–70

    Google Scholar 

  • Müller G, Satoh Y, Geisen K (1995) Extrapanceratic effects of sulfonylureas – a comparison between glimepiride and conventional sulfonylureas. Diabetes Res Clin Pract 28 (Suppl): 115–137

    Google Scholar 

  • Navigator Studie Group, Holmann RR et.al. (2010) Effect of nateglinide on the incidence of diabetes and cardiovascular events. Engl J Med 362(16): 1463–1476

    Google Scholar 

  • Niemi M, Backman JT, Neuvonen M, Neuvonen PJ et al. (2003) Effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics and pharmacodynamics of repaglinide: potentially hazardous interaction between gemfibrozil and repaglinide. Diabetologia 46(3): 347–351

    Google Scholar 

  • Niemi M, Backman JT, Juntti-Patinen L, Neuvonen M, Neuvonen PJ (2005) Coadministration of gemfibrozil and itraconazole has only a minor effect on the pharmacokinetics of the CYP2C9 and CYP3A4 substrate nateglinide. Br J Clin Pharmacol 60: 208–217

    Google Scholar 

  • Overkamp D, Volk A, Maerker E, Heide PE, Wahl HG, Rett, K, Häring, HU (2002) Acute effect of glimepride on insulinstimulated glucose metabolism in glucose-tolerant insulin-resistant offspring of patients with type 2 diabetes. Diabetes Care 25: 2065–2073

    Google Scholar 

  • Patel A, MacMahon S, Chalmers J, Neal B, Billiot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Puulter N, Rodgers A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F; ADVANCE Collaborative Group (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358(24): 2560–2572

    Google Scholar 

  • Rosenstock J, Hassman DR, Madder RD, Brazinsky SA, Farrell J, Khutoryansky N, Hale PM; Repaglinide Versus Nateglinide Comparison Study Group (2004) Repaglinide versus nateglinide monotherapy: a randomized, multicenter study. Diabetes Care 27(6):1265–1270

    Google Scholar 

  • Rote Hand Brief (2003) Kontraindikation zur gleichzeitigen Anwendung von Repaglinid (Handelsname NovoNorm®) und Gemfibrozil. 19-05-2003. http://www.akdae.de/Arzneimittelsicherheit/RHB/Archiv/2003/90_20030519.pdf. Zugriff 10 März 2014

  • Salpeter SR, Greyber E, Pasternak GA, Salpeter EE (2010) Risk of fatal and nonfatal lactic acidosis with metformin use type 2 diabetes mellitus. Cochrane Database Syst Rev 4: CD002967. Doi; 10.1002/14651858.CD002967.pub4

    Google Scholar 

  • Schramm TK et al. (2011) Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes with or without a previous myocardial infarction. A nationwide study. Eur Heart J DOI: 10.1093/eurheartj/ehr077

    Google Scholar 

  • Standl E, Baumgartl HJ, Füchtenbusch M, Stemplinger J (1999) Effect of acarbose on additional insulin therapy in type 2 diabetic patients with late failure of sulphonylurea therapy. Diab Obes Metab 1: 215–220

    Google Scholar 

  • Stumvoll M, Nurjhab N, Perriello G, Dailey G, Gerich JE (1995) Metabolic effects of metformin in noninsulin-dependent diabetes mellitus. N Engl J Med 333: 550–554

    Google Scholar 

  • Tuomilehto J, Lindstrom J, Eriksson JG et. al. (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344: 1343–1350

    Google Scholar 

  • UKPDS (1998) UK Prospective Diabetes Study Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352: 584–865

    Google Scholar 

  • Yki-Järvinen H, Ryysy L, Nikkilä K, Tulokas T, Vanamo R, Heikkila M (1999) Comparison of bedtime insulin regimens in patients with type 2 diabetes mellitus. A randomized, controlled trial. Ann Intern Med 130: 389–396

    Google Scholar 

Literatur zu Abschn. 4.10

  • Bosetti C, Rosato V, Buniato D et al. (2013) Cancer risk for patients using thiazolidinediones for type 2 diabetes: a meta-analysis. Oncologist 18: 148–156

    Google Scholar 

  • Bray GA et al. (2013) Effect of pioglitazone on body composition and bone density in subjects with prediabetes in the ACT NOW trial. Diabetes Obes Metab 15(10): 913–917

    Google Scholar 

  • Dormandy JA et al. on behalf of the PROactive Investigators (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomized controlled trial. Lancet 366: 1279–1289

    Google Scholar 

  • Graham DJ, Ouellet-Hellstrom R, MaCurdy TE, Ali F, Sholley C, Worrall C, Kelman JA (2010) Risk of acute myocardial infarction, stroke, heart failure, and death in elderly Medicare patients treated with rosiglitazone or pioglitazone. JAMA 304: 411–418

    Google Scholar 

  • Inzucchi SE, Bergenstal RM, Buse JB et al. (2012) Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association fort he Study of Diabetes (EASD). Diabetes Care 35: 1364–1379

    Google Scholar 

  • Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, Kravitz BG, Lachin JM, O’Neill MC, Zinman B, Viberti G; ADOPT Study Group (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355: 2427

    Google Scholar 

  • Loke YK, Singh S, Furberg CD (2009) Long-term use of thiazolidinediones an d fractures in type 2 diabetes: a metaanalysis. CMJA 180: 32–39

    Google Scholar 

  • Meier C, Kraenzlin ME, Bodmer M, Jick SS, Jick H, Meier CR (2008) Use of thiazolidinediones and fracture risk. Arch Intern Med 168: 820

    Google Scholar 

  • Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356: 2457–2471

    Google Scholar 

  • Nissen SE, Wolski K (2010) Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch Intern Med 170: 1191–1201

    Google Scholar 

Literatur zu Abschn. 4.11

  • Anagnostis P, Athyros VG, Adamidou F et al. (2011) Glucagonlike peptide-1-based therapies and cardiovascular disease: looking beyond glycaemic control. Diabetes Obes Metab 13: 302–312

    Google Scholar 

  • Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132: 2131–2157

    Google Scholar 

  • Best JH, Hoogwerf BJ, Herman WH et al. (2011) Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies: a retrospective analysis of the LifeLink database. Diabetes Care 34: 90–95

    Google Scholar 

  • Butler PC, Elashoff M, Elashoff R et al. (2013) A critical analysis of the clinical use o f Incretin-based therapies: Are the GLP-1 therapies safe? Diabetes Care 36: 2118–2125

    Google Scholar 

  • Drucker DJ (2005) Biologic actions and therapeutic potential of the proglucagon -derived peptides. Nat Clin Pract Endocrinol Metab 1: 22–3. doi:10.1038/ncpendmet0017

    Google Scholar 

  • Egan AG et al. (2014) Pancreatic safety of incretin-based drugs – FDA and EMA assessment. New Engl J Med 370: 794–797

    Google Scholar 

  • Jose T, Inzucchi S E (2012) Cardiovascular effects of the DPP-4 inhibitors. Diab Vasc Dis Res 9: 109–116

    Google Scholar 

  • Mundil D, Cameron-Vendrig A, Husain M (2012) GLP-1 receptor ag onists: a clinical perspective on cardiovascular effects. Diab Vasc Dis Res 9: 95–108

    Google Scholar 

  • Nauck MA (20 09) Unraveling the science of incretin biology. Eur J Intern Med 20 Suppl 2: S303–308

    Google Scholar 

  • Nauck MA (2013) A critical analysis of the clinical use of incretin- based therapies: the benefits by far outweigh the potential risks. Diabetes Care 36: 2125–2132

    Google Scholar 

  • Nisal K, Kela R, Khunti K et al. (2012) Comparison of efficacy between incretin-based therapies for type 2 diabetes mellitus. BMC Med 10: 152

    Google Scholar 

  • Scirica BM, Bhatt DL, Braunwald E et al. (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369(14): 1317–1326

    Google Scholar 

  • White WB Cannon CP, Heller SR et al. (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 2013 369(14): 1327–1335

    Google Scholar 

Literatur zu Abschn. 4.12

  • Abdul-Ghani MA, Norton L, DeFronzo RA(2012) Efficacy and safety of SGLT2 inhibitors in the treatment of type 2 diabetes mellitus. Curr Diab Rep 12(3): 230–238

    Google Scholar 

  • Ferrannini E, Ramos SJ, Salsali A, Tang W, List JF (2010) Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 33(10): 2217–2224

    Google Scholar 

  • Hardman TC, Dubrey SW (2011) Development and potential role of type-2 sodium-glucose transporter inhibitors for management of type 2 diabetes. Diabetes Ther 2(3): 133–145

    Google Scholar 

  • Rosenstock J, Aggarwal N, Polidori D et al. (2012) Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care 35(6): 1232–1238

    Google Scholar 

  • Stenlof K, Cefalu WT, Kim KA et al. (2013) Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab 15(4): 372–382

    Google Scholar 

  • Washburn WN (2012) Sodium glucose co-transporter 2 (SGLT2) inhibitors: novel antidiabetic agents. Expert Opin Ther Pat 22(5): 483–494

    Google Scholar 

Literatur zu Abschn. 4.13

  • ACCORD (2008) Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose l owering in type 2 diabetes. N Engl J Med.358(24): 2545–2559

    Google Scholar 

  • ADVANCE (2008) The ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358: 2560–2572

    Google Scholar 

  • Bretzel RG, Nuber U, Landgraf W, Owens DR, Bradley C, Linn T (2008) Once-daily basal insulin glargine versus thricedaily prandial insulin lispro in people with type 2 diabetes on oral hypoglycaemic agents (APOLLO): an open randomised controlled trial. Lancet 371: 1073–1084

    Google Scholar 

  • DECODE Study Group (1999) Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: Collaborative analysis Of Diagnostic criteria in Europe. Lancet 354: 617–621

    Google Scholar 

  • EMA (2013) European Medicines Agency. Outcome of review of new safety data on insulin glargine Data from population- based studies and the scientific literature do not indicate an increased risk of cancer. http://www.ema.europa.eu/docs/en_GB/document_library/Medicine_QA/2013/05/WC500143823.pdf. Zugriff 16 Feb 2014

  • Esposito K, Chiodini P, Colao A, Lenzi A, Giugliano D (2012) Metabolic syndrome and risk of cancer: a systematic review and meta-analysis. Diabetes Care 35: 2402–2411 Garber AJ (2013) Treat-to-target trials: uses, interpretation, and review of concepts. Diabetes Obes Metab. doi: 10.1111/dom.12129

    Google Scholar 

  • Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH Jr, Probstfield JL, Simons-Morton DG, Friedewald WT (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358: 2545–2559

    Google Scholar 

  • Gerstein HC, Bosch J, Dagenais GR, Diaz R, Jung H, Maggioni AP, Pogue J, Probstfield J, Ramachandran A, Riddle MC, Ryden LE, Yusuf S (2012) Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med 367: 319–328

    Google Scholar 

  • Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359(15): 1577–1589

    Google Scholar 

  • Holman RR, Farmer AJ, Davies MJ, Levy JC, Darbyshire JL, Keenan JF, Paul SK (2009) Three-year efficacy of complex insulin regimens in type 2 diabetes. N Engl J Med 361: 1736-1747

    Google Scholar 

  • Home PD (2012) The pharmacokinetics and pharmacodynamics of rapid-acting insulin analogues and their clinical consequences. Diabetes Obes Metab 14: 780–788

    Google Scholar 

  • Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR (2012) Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 55(6): 1577–1596

    Google Scholar 

  • Krssak M, Brehm A, Bernroider E, Anderwald C, Nowotny P, Dalla MC, Cobelli C, Cline GW, Shulman GI, Waldhausl W, Roden M (2004) Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes 53: 3048–3056

    Google Scholar 

  • Monnier L, Lapinski H, Colette C (2003) Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA(1c). Diabetes Care 26: 881–885

    Google Scholar 

  • Raz I, Wilson PW, Strojek K, Kowalska I, Bozikov V, Gitt AK, Jermendy G, Campaigne BN, Kerr L, Milicevic Z, Jacober SJ (2009) Effects of prandial versus fasting glycemia on cardiovascular outcomes in type 2 diabetes: the HEART2D trial. Diabetes Care 32: 381–386

    Google Scholar 

  • Roden M (2009) Optimal insulin treatment in type 2 diabetes. N Engl J Med 361: 1801–1803

    Google Scholar 

Literatur zu Abschn. 4.14 Ausgewählte Literatur

  • Holstein A, Beil W, Kovacs P (2012) CYP2C metabolism of oral antidiabetic drugs--impact on pharmacokinetics, drug interactions and pharmacogenetic aspects. Expert Opin Drug MetabToxicol 8: 1549–1563

    Google Scholar 

  • Joost HG, Nauck M (2010) Diabetes mellitus. In: Lemmer B, Brune K (Hrsg) Pharmakotherapie Klinische Pharmakologie. Springer, Berlin Heidelberg, S 371–379

    Google Scholar 

  • Juurlink DN, Mamdani M, Kopp A, Laupacis A, Redelmeier DA (2003) Drug-drug interactions among elderly patients hospitalized for drug toxicity. JAMA 289: 1652–1658 Lebovitz HE (1999) Insulin secretagogues: old and new. Diabetes Rev 7: 139–146

    Google Scholar 

  • Ritter CA, Klotz U, Kroemer HK (2010) Wechselwirkungen zwischen Arzneimitteln. In: Lemmer B, Brune K (Hrsg) Pharmakotherapie Klinische Pharmakologie. Springer, Berlin Heidelberg, S 469–477

    Google Scholar 

  • Scheen AJ (2005) Drug interactions of clinical importance with antihyperglycaemic agents: an update. Drug Safety 28: 601–631

    Google Scholar 

Literatur zu Abschn. 4.15

  • Astrup A et al. (2009) Effects of liraglutide in the treatment of obesity: a randomized, double-blind, placebo-controlled study. Lancet 374: 1606–1616

    Google Scholar 

  • Brooks M (2013) FDA sides with EMA on incretin diabetes drugs. August 01, 2013

    Google Scholar 

  • Butler AE, Campbell-Thompson M, Gurlo T, Dawson DW, Atkinson M, Butler PC (2013) Marked expansion of exocrine and endocrine pancreas with incretin therapy in humans with increased exocrine pancreas dysplasia and the potential for glucagon-producing neuroendocrine tumors. Diabetes 62(7): 2595–2604

    Google Scholar 

  • Egan AG, Blind E, Dunder K et al. (2014) Pancreatic safety of incretin-based drugs – FDA and EMA Assessment. New Engl J Med 370: 794–797

    Google Scholar 

  • Nainggolan L (2013) EU Agency has no new concerns on incretin diabetes drugs. July 26, 2013

    Google Scholar 

  • Schatz H (2011) Antidiabetika in der Pipeline. Diabetes Forum Heft 4/2011, pp 32–37

    Google Scholar 

  • Schatz H (2013a) Die GRADE-Studie: Welches Medikament als Kombinationspartner zu Metformin bei Typ-2-Diabetes? Kardiovaskuläre FDA-Outcome-Studien sinnlos? Beitrag im DGE-Blog vom 17. September 2013. http://blog.endokrinologie.net/date/2013/09/. Zugriff 16 Feb 2014 Schatz H (2013b) Innovationen in der Diabetesbehandlung: Neue Insuline. Diabetes aktuell 11(2): 60–66

  • Schatz H (2013c) Inkretin-Diabetesmedikamente: Kein Nachweis eines erhöhten Pankreatitisrisikos durch GLP-1- Analoga und Dipeptidylpeptidase-4-Hemmer. Beitrag im DGE-Blog vom 27. Juli 2013. http://www.blog.endokrinologie.net/date/2013/07/. Zugriff 6 März 2014

  • Schatz H (2013d)Herzinsuffizienz bei Diabetes bisher zu wenig beachtet: Relevant bei der Therapiewahl. Beitrag im DGE-Blog vom 27. September 2013 http://blog.endokrinologie.net/date/2013/09/. Zugriff 16 Feb 2014 Schatz H (2014) Herzinsuffizienzrisiko unter Saxagliptin wird von Amerikanischer Arzneibehörde FDA überprüft. Beitrag im DGE-Blog vom 13. Februar 2014. http://www. blog.endokrinologie.net/date/2013/02/. Zugriff 6 März 2014

  • Singh S, Chang H-Y, Richards TM et al. (2013) Glucagonlike peptide 1–based therapies and risk of hospitalization for acute pancreatitis in type 2 diabetes mellitus: a population- based matched case-control study. JAMA Intern Med 173(7): 534–539. doi: 10.1001/jamainternmed. 2013.2720

    Google Scholar 

  • Tucker ME (2013) Experts express mixed thoughts on canagliflozin approval. April 18, 2013

    Google Scholar 

  • Viberti G, Kahn SE, Greene DA et al. (2002) A Diabetes Outcome Progression Trial (ADOPT). An international multicenter study of the comparative efficacy of rosiglitazone, glyburide, and metformin in recently diagnosed type 2 diabetes Diabetes Care 25 (10): 1737–1743. doi: 10.2337/ diacare.25.10.1737

    Google Scholar 

Literatur zu Abschn. 4.16

  • Ammon HPT, Shehata AM (2011) Prevention of multiple low dose streptozotocin (MLD-STZ) induced diabetes in mice by extract from gum resin of Boswellia serrata and 11-keto-β-boswellic acids. Diabetologia 54 (Suppl 1): S 437

    Google Scholar 

  • Leach MJ, Kumar S (2012) Cinnamon for diabetes mellitus. Cochrane Database Syst Rev 9:CD007170

    Google Scholar 

  • Loopstra-Masters RC, Liese AD, Haffner SM, Wagenknecht LE, Hanley AJ (2011) Associations between the intake of caffeinated and decaffeinated coffee and measures of insulin sensitivity and beta cell function. Diabetologia 54:320–328

    Google Scholar 

  • Yeh GY, Eisenberg DM, Kaptchuk TJ, Phillips RS (2003) Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care 26: 1277–1294

    Google Scholar 

Literatur zu Abschn. 4.17

Literatur zu Abschn. 4.18

  • Aterburn DE, Bogart A, Sherwood NE et al (2013) A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass. Obes Surg 23: 93–102

    Google Scholar 

  • Buchwald H, Avidor Y, Braunwald E et al. (2004) Bariatric surgery: a systematic review and meta-analysis. JAMA 292: 1724–1737

    Google Scholar 

  • Carlsson LMS, Peltonen M, Ahlin S et al. (2012) Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects. NEJM 367: 695–704

    Google Scholar 

  • Chang SH, Stoll CR, Song J et al. (2013) The effectiveness and risks of bariatric surgery. An updated systematic review and meta-analysis, 2003–2012. JAMA Surg. doi:10.1001/ jamasurg.2013.3654

    Google Scholar 

  • Laferre B, Heshka S, Wang K et al. (2007) Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care 30: 1709–1716

    Google Scholar 

  • Leroy J, Ananian P, Rubino F et al. (2005) The impact of obesity on technical feasibility and postoperative outcomes of laparoscopic left colectomy. Ann Surg 241(1): 69–76

    Google Scholar 

  • Moran-Atkin E, Brody F, Fu SW, Rojkind M (2013) Changes in GIP gene expression following bariatric surgery. Surg Endosc 27(7): 2492–2497

    Google Scholar 

  • Runkel N, Colombo-Benkmann M, Hüttl TP et al. (2011) Bariatric surgery. Dtsch Ärztebl 108(20): 341–346

    Google Scholar 

  • Sjöström L (2013) Review of the key results from the Swedish Obese Subjects (SOS) trial – a prospective controlled intervention study of bariatric surgery. J Int Med 273(3): 219–234

    Google Scholar 

  • Thaler JP, Cummings DE (2009) Minireview: Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology 150(6): 2518–2525

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ammon, H. et al. (2014). Typ-2-Diabetes. In: Schatz, H., Pfeiffer, A. (eds) Diabetologie kompakt. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41358-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41358-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41357-5

  • Online ISBN: 978-3-642-41358-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics