Skip to main content

Hypnotika: Barbiturate, Propofol, Etomidat

  • Chapter
Die Anästhesiologie
  • 2192 Accesses

Zusammenfassung

Hypnotika werden sowohl zur Narkoseeinleitung und -aufrechterhaltung im Rahmen einer totalen intravenösen Anästhesie (TIVA) als auch zur Sedierung auf Intensivstationen eingesetzt. Entsprechend hoch ist ihr Stellenwert in der Anästhesie. Das Kapitel gibt einen Überblick über den grundsätzlichen Wirkmechanismus der Hypnotika sowie die Pharmakokinetik, Pharmakodynamik und die klinischen Anwendungsgebiete der einzelnen Hypnotika.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 209.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Apfel CC, Korttila K, Abdalla M et al. (2004) A factorial trial of six interventions for the prevention of postoperative nausea and vomiting. N Engl J Med 350: 2441–2451

    Article  PubMed  CAS  Google Scholar 

  2. Avram MJ, Sanghvi R, Henthorn TK et al. (1993) Determinants of thiopental induction dose requirements. Anesth Analg 76: 10–17

    Article  PubMed  CAS  Google Scholar 

  3. Barann M, Linden I, Witten S, Urban BW (2008) Molecular actions of propofol on human 5-HT3A receptors: enhancement as well as inhibition by closely related phenol derivatives. Anesth Analg 106: 846–857

    Article  PubMed  CAS  Google Scholar 

  4. Bennett SN, McNeil MM, Bland LA et al. (1995) Postoperative infections traced to contamination of an intravenous anesthetic, propofol. N Engl J Med 333: 147–154

    Article  PubMed  CAS  Google Scholar 

  5. Borgeat A, Wilder-Smith OH, Saiah M, Rifat K (1992) Subhypnotic doses of propofol possess direct antiemetic properties. Anesth Analg 74: 539–541

    Article  PubMed  CAS  Google Scholar 

  6. Bray RJ (1998) Propofol infusion syndrome in children. Paediatric Anaesthesia 8: 491–499

    Article  PubMed  CAS  Google Scholar 

  7. Brown EN, Lydic R, Schiff ND (2010) General anesthesia, sleep, and coma. N Engl J Med 363: 2638–2650

    Article  PubMed  CAS  Google Scholar 

  8. Cremer OL, Moons KG, Bouman EA et al. (2001) Long-term propofol infusion and cardiac failure in adult head-injured patients. Lancet 357: 117–118

    Article  PubMed  CAS  Google Scholar 

  9. Cuthbertson BH, Sprung CL, Annane D et al. (2009) The effects of etomidate on adrenal responsiveness and mortality in patients with septic shock. Intensive Care Medicine 35: 1868–1876

    Article  PubMed  CAS  Google Scholar 

  10. De Smet T, Struys MM, Neckebroek MM et al. (2008) The accuracy and clinical feasibility of a new bayesian-based closed-loop control system for propofol administration using the bispectral index as a controlled variable. Anesth Analg 107: 1200–1210

    Article  PubMed  Google Scholar 

  11. Doenicke AW, Roizen MF, Rau J et al. (1996) Reducing pain during propofol injection: the role of the solvent. Anesth Analg 82: 472–474

    PubMed  CAS  Google Scholar 

  12. Eames WO, Rooke GA, Wu RS, Bishop MJ (1996) Comparison of the effects of etomidate, propofol, and thiopental on respiratory resistance after tracheal intubation. Anesthesiology 84: 1307–1311

    Article  PubMed  CAS  Google Scholar 

  13. Fechner J, Ihmsen H, Jeleazcov C, Schuttler J (2009) Fospropofol disodium, a water-soluble prodrug of the intravenous anesthetic propofol (2,6-diisopropylphenol). Expert Opin Investig Drugs 18: 1565–1571

    Article  PubMed  CAS  Google Scholar 

  14. Fragen RJ, Shanks CA, Molteni A, Avram MJ (1984) Effects of etomidate on hormonal responses to surgical stress. Anesthesiology 61: 652–656

    Article  PubMed  CAS  Google Scholar 

  15. Franks NP, Lieb WR (1997) Inhibitory synapses. Anaesthetics set their sites on ion channels. Nature 389: 334–335

    CAS  Google Scholar 

  16. Fudickar A, Bein B, Tonner PH (2006) Propofol infusion syndrome in anaesthesia and intensive care medicine. Current Opinion in Anaesthesiology 19: 404–410

    Article  PubMed  Google Scholar 

  17. He YL, Ueyama H, Tashiro C et al. (2000) Pulmonary disposition of propofol in surgical patients. Anesthesiology 93: 986–991

    Article  PubMed  CAS  Google Scholar 

  18. Hempel V (1994) [60 years thiopental]. Anästhesiologie Intensivmedizin Notfallmedizin Schmerztherapie: AINS 29: 400–407

    Article  CAS  Google Scholar 

  19. Hiraoka H, Yamamoto K, Miyoshi S et al. (2005) Kidneys contribute to the extrahepatic clearance of propofol in humans, but not lungs and brain. Br J Clin Pharmacol 60: 176–182

    Article  PubMed  CAS  Google Scholar 

  20. Hornuss C, Praun S, Villinger J et al. (2007) Real-time monitoring of propofol in expired air in humans undergoing total intravenous anesthesia. Anesthesiology 106: 665–674

    Article  PubMed  CAS  Google Scholar 

  21. Hoymork SC, Raeder J (2005) Why do women wake up faster than men from propofol anaesthesia? Br J Anaesth 95: 627–633

    Article  PubMed  CAS  Google Scholar 

  22. Hudson RJ, Stanski DR, Burch PG (1983) Pharmacokinetics of methohexital and thiopental in surgical patients. Anesthesiology 59: 215–219

    Article  PubMed  CAS  Google Scholar 

  23. Jalota L, Kalira V, George E et al. (2011) Prevention of pain on injection of propofol: systematic review and meta-analysis. BMJ 342: d1110

    Article  PubMed  Google Scholar 

  24. Lamberts SW, Bons EG, Bruining HA, de Jong FH (1987) Differential effects of the imidazole derivatives etomidate, ketoconazole and miconazole and of metyrapone on the secretion of cortisol and its precursors by human adrenocortical cells. J Pharmacol Experimental Therapeutics 240: 259–264

    CAS  Google Scholar 

  25. Masui K, Upton RN, Doufas AG et al. (2010) The Performance of Compartmental and Physiologically Based Recirculatory Pharmacokinetic Models for Propofol: A Comparison Using Bolus, Continuous, and Target-Controlled Infusion Data. Anesth Analg: 111: 368–379

    Article  CAS  Google Scholar 

  26. Matot I, Neely CF, Katz RY, Marshall BE (1994) Fentanyl and propofol uptake by the lung: effect of time between injections. Acta Anaesthesiol Scand 38: 711–715

    Article  PubMed  CAS  Google Scholar 

  27. Nitsun M, Szokol JW, Saleh HJ et al. (2006) Pharmacokinetics of midazolam, propofol, and fentanyl transfer to human breast milk. Clin Pharmacol Ther 79: 549–557

    Article  PubMed  CAS  Google Scholar 

  28. Picard P, Tramer MR (2000) Prevention of pain on injection with propofol: a quantitative systematic review. Anesth Analg 90: 963–969

    Article  PubMed  CAS  Google Scholar 

  29. Price HL (1960) A dynamic concept of the distribution of thiopental in the human body. Anesthesiology 21: 40–45

    Article  PubMed  CAS  Google Scholar 

  30. Reinhold P, Kraus G, Schlüter E (1998) [Propofol for anesthesia and shortterm sedation. The final word on use in children under three years]. Anaesthesist 47: 229–237

    Article  PubMed  CAS  Google Scholar 

  31. Roberts I (2000) Barbiturates for acute traumatic brain injury. Cochrane Database Syst Rev: CD000033

    Google Scholar 

  32. Schelling G, Hauer D, Azad SC et al. (2006) Effects of general anesthesia on anandamide blood levels in humans. Anesthesiology 104: 273–277

    Article  PubMed  CAS  Google Scholar 

  33. Schmidt H (1998) [Intubation anesthesia and nursing]. Anaesthesist 47: 81–82

    Article  PubMed  CAS  Google Scholar 

  34. Smith I, White PF, Nathanson M, Gouldson R (1994) Propofol. An update on its clinical use. Anesthesiology 81: 1005–1043

    CAS  Google Scholar 

  35. Struys MM, Fechner J, Schuttler J, Schwilden H (2010) Erroneously published fospropofol pharmacokinetic-pharmacodynamic data and retraction of the affected publications. Anesthesiology 112: 1056–1057

    Article  PubMed  Google Scholar 

  36. Takita A, Masui K, Kazama T (2007) On-line monitoring of end-tidal propofol concentration in anesthetized patients. Anesthesiology 106: 659–664

    Article  PubMed  CAS  Google Scholar 

  37. Takizawa D, Hiraoka H, Goto F et al. (2005) Human kidneys play an important role in the elimination of propofol. Anesthesiology 102: 327–330

    Article  PubMed  CAS  Google Scholar 

  38. Van Hamme MJ, Ghoneim MM, Ambre JJ (1978) Pharmacokinetics of etomidate, a new intravenous anesthetic. Anesthesiology 49: 274–277

    Article  PubMed  Google Scholar 

  39. Vanlersberghe C, Camu F (2008) Etomidate and other non-barbiturates. Handbook of Experimental Pharmacology 182: 267–282

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bayer, A., Hornuß, C. (2012). Hypnotika: Barbiturate, Propofol, Etomidat. In: Rossaint, R., Werner, C., Zwißler, B. (eds) Die Anästhesiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21125-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21125-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21124-9

  • Online ISBN: 978-3-642-21125-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics