Skip to main content

Habitat- und Nahrungswahl

  • Chapter
Verhaltensbiologie

Part of the book series: Springer-Lehrbuch ((SLB))

  • 6745 Accesses

Zusammenfassung

Jedes Tier muss regelmäßig Nahrung zu sich nehmen, um die energetischen Grundlagen für Wachstum, Aufrechterhaltung der Grundfunktionen und Reproduktion zu gewährleisten. Daher kommt der Suche, Auswahl, Verteidigung und Aufnahme von Nahrung im Verhaltensrepertoire der meisten Arten eine wichtige Funktion beim tagtäglichen Überleben zu. Dabei muss ein Individuum zunächst ein geeignetes Habitat wählen und darin nach Futter suchen. Bei der Wahl des Futterplatzes muss dabei das Prädationsrisiko einerseits und die Intensität der Nahrungskonkurrenz durch Artgenossen andererseits berücksichtigt werden. In diesem Zusammenhang muss ein Tier auch entscheiden, ob es seine Nahrungsressourcen gegebenenfalls gegen Konkurrenten verteidigt. Wenn ein geeigneter Futterplatz gefunden ist, stellt sich die Frage, wie lange dieser genutzt werden sollte, bevor ein neuer gesucht wird. Beim Fressen an einer Stelle muss ein Tier außerdem entscheiden, welche der verfügbaren Nahrungseinheiten es auswählt und tatsächlich nutzt. In diesem Zusammenhang kommt es zu zahlreichen Interaktionen zwischen Tieren und Pflanzen, mit weit reichenden evolutiven Konsequenzen. Ob eine Art selbst als Räuber und/oder Beute in der Nahrungspyramide agiert, hat zudem eine Vielzahl von Konsequenzen für ihr jeweiliges Sozialverhalten (→ Kapitel 6.3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adams ES (2001) Approaches to the study of territory size and shape. Annu Rev Ecol Syst 32:277–303

    Google Scholar 

  • Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326

    PubMed  CAS  Google Scholar 

  • Allen J, Bekoff M, Crabtree R (1999) An observational study of coyote (Canis latrans) scent-marking and territoriality in Yellowstone National Park. Ethology 105:289–302

    Google Scholar 

  • Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515

    PubMed  CAS  Google Scholar 

  • Bacon IE, Hurly TA, Healy S (2010) Both the past and the present affect risksensitive decisions of foraging rufous hummingbirds. Behav Ecol 21:626–632

    Google Scholar 

  • Bautista LM, Alonso JC, Alonso JA (1995) A field test of ideal free distribution in flock-feeding common cranes. J Anim Ecol 64:747–757

    Google Scholar 

  • Belovsky GE (1978) Diet optimization in a generalist herbivore: the moose. Theoret Pop Biol 14:105–134

    CAS  Google Scholar 

  • Berumen ML, Pratchett MS (2008) Trade-offs associated with dietary specialization in corallivorous butterflyfishes (Chaetodontidae: Chaetodon). Behav Ecol Sociobiol 62:989–994

    Google Scholar 

  • Bleher B, Böhning-Gaese K (2001) Consequences of frugivore diversity for seed dispersal, seedling establishment and the spatial pattern of seedlings and trees. Oecologia 129:385–394

    Google Scholar 

  • Bolnick DI (2001) Interspecific competition favours niche width expansion in Drosophila melanogaster. Nature 410:463–466

    PubMed  CAS  Google Scholar 

  • Bond AB, Kamil AC (2002) Visual predators select for crypticity and polymorphism in virtual prey. Nature 415:609–613

    PubMed  CAS  Google Scholar 

  • Bourski OV, Forstmeier W (2000) Does interspecific competition affect territorial distribution of birds? A long-term study on Siberian Phylloscopus warblers. Oikos 88:341–350

    Google Scholar 

  • Boydston EEM, Morelli TL, Holekamp KE (2001) Sex differences in territorial behavior exhibited by the spotted hyena (Hyaenidae, Crocuta crocuta). Ethology 107:369–385

    Google Scholar 

  • Brodman PA, Reyer H-U (1999) Nestling provisioning in water pipits (Anthus spinoletta): do parents go for specific nutrients of profitable prey? Oecologia 120:506–514

    Google Scholar 

  • Bruinzeel LW, van de Pol M (2004) Site attachment of floaters predicts success in territory acquisition. Behav Ecol 15:290–296

    Google Scholar 

  • Bshary R, Schäffer D (2002) Choosy reef fish select cleaner fish that provide high-quality service. Anim Behav 63:557–564

    Google Scholar 

  • Calsbeek R, Sinervo B (2002) An experimental test of the ideal despotic distribution. J Anim Ecol 71:513–523

    Google Scholar 

  • Carmona D, Lajeunesse MJ, Johnson MTJ (2011) Plant traits that predict resistance to herbivores. Funct Ecol 25:358–367

    Google Scholar 

  • Carrai V, Borgognini-Tarli SM, Huffmann MA, Bardi M (2003) Increase in tannin consumption by sifaka (Propithecus verreauxi verreauxi) females during the birth season: a case for self-medication in prosimians? Primates 44:61–66

    PubMed  Google Scholar 

  • Castro JJ, Santiago JA (1998) The influence of food distribution on the aggressive behaviour of juvenile white seabream (Diplodus sargus). Aggr Behav 24:379–384

    Google Scholar 

  • Catania KC, Remple FE (2005) Asymptotic prey profitability drives star-nosed moles to the foraging speed limit. Nature 433:519–522

    PubMed  CAS  Google Scholar 

  • Charnov EL (1976) Optimal foraging, the marginal value theorem. Theoret Pop Biol 9:129–136

    CAS  Google Scholar 

  • Cook JM, Rasplus J-Y (2003) Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol Evol 18:241–248

    Google Scholar 

  • Dall SRX (2002) Can information sharing explain recruitment to food from communal roosts? Behav Ecol 13:42–51

    Google Scholar 

  • Davies NB (1978) Territorial defence in the speckled wood butterfly (Pararge aegeria): the resident always wins. Anim Behav 26:138–147

    Google Scholar 

  • Davis JM, Stamps JA (2004) The effect of natal experience on habitat preferences. Trends Ecol Evol 19:411–416

    PubMed  Google Scholar 

  • Deus CP, Petrere-Junior M (2003) Seasonal diet shifts of seven fish species in an Atlantic rainforest stream in Southeastern Brazil. Braz J Biol 63:579–588

    PubMed  CAS  Google Scholar 

  • Devenport JA, Luna LD, Devenport LD (2000) Placement, retrieval, and memory of caches by thirteen-lined ground squirrels. Ethology 106:171–183

    Google Scholar 

  • Dias PC (1996) Sources and sinks in population biology. Trends Ecol Evol 11:326–330

    PubMed  CAS  Google Scholar 

  • Dobler S (2001) Evolutionary aspects of defense by recycled plant compounds in herbivorous insects. Basic Appl Ecol 2:15–26

    CAS  Google Scholar 

  • Doligez B, Danchin E, Clobert J (2002) Public information and breeding habitat selection in a wild bird population. Science 297:1168–1170

    PubMed  CAS  Google Scholar 

  • Donázar JA, Travaini A, Ceballos O, Rodriguez A, Delibes M, Hiraldo F (1999) Effects of sex-associated competitive asymmetries on foraging group structure and despotic distribution in Andean condors. Behav Ecol Sociobiol 45:55–65

    Google Scholar 

  • Doniol-Valcroze T, Lesage V, Giard J, Michaud R (2011) Optimal foraging theory predicts diving and feeding strategies of the largest marine predator. Behav Ecol 22:880–888

    Google Scholar 

  • Dubois F, Giraldeau L-A, Grant JWA (2003) Resource defense in a groupforaging context. Behav Ecol 14:2–9

    Google Scholar 

  • Eggers S, Griesser M, Nystrand M, Ekman J (2006) Predation risk induces changes in nest-site selection and clutch size in the Siberian jay. Proc R Soc Lond B 273:701–706

    Google Scholar 

  • Evans CS, Evans L (1999) Chicken food calls are functionally referential. Anim Behav 58:307–319

    PubMed  Google Scholar 

  • Flaxman SM, deRoos CA (2007) Different modes of resource variation provide a critical test of ideal free distribution models. Behav Ecol Sociobiol 61:877–886

    Google Scholar 

  • Focardi S, Farnsworth K, Poli BM, Ponzetta MP, Tinelli A (2003) Sexual segregation in ungulates: individual behaviour and the missing link. Pop Ecol 45:83–95

    Google Scholar 

  • Fretwell SD, Lucas HL (1970) On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor 19:1–39

    Google Scholar 

  • Ganzhorn JU (1989) Niche separation of seven lemur species in the eastern rainforest of Madagascar. Oecologia 79:279–286

    Google Scholar 

  • Ganzhorn JU (1992) Leaf chemistry and the biomass of folivorous primates in tropical forests: test of a hypothesis. Oecologia 91:540–547

    Google Scholar 

  • Ganzhorn JU, Fietz J, Rakotovao E, Schwab D, Zinner D (1999) Lemurs and the regeneration of dry deciduous forest in Madagascar. Conserv Biol 13:794–804

    Google Scholar 

  • Gardener MC, Gillman MP (2002) The taste of nectar – a neglected area of pollination ecology. Oikos 98:552–557

    Google Scholar 

  • Gende SM, Quinn TP, Wilson MF (2001) Consumption choice by bears feeding on salmon. Oecologia 127:372–382

    Google Scholar 

  • Giannini N, Kalko E (2004) Trophic structure in a large assemblage of phyllostomid bats in Panama. Oikos 105:209–220

    Google Scholar 

  • Gill FB, Wolf LL (1975) Economics of feeding territoriality in the golden-winged sunbird. Ecology 56:333–345

    Google Scholar 

  • Giraldeau L-A (2008) Solitary foraging strategies. In: Danchin E, Giraldeau L-A, Cézilly F (eds) Behavioural Ecology. Oxford Univ Press, Oxford

    Google Scholar 

  • Goerlitz HR, Siemers BM (2007) Sensory ecology of prey rustling sounds: acoustical features and their classification by wild grey mouse lemurs. Funct Ecol 21:143–153

    Google Scholar 

  • Goldberg JL, Grant JWA, Lefebvre L (2001) Effects of the temporal predictability and spatial clumping of food on the intensity of competitive aggression in the Zenaida dove. Behav Ecol 12:490–495

    Google Scholar 

  • Grand TC (1997) Foraging site selection by juvenile coho salmon: ideal free distributions of unequal competitors. Anim Behav 53:185–196

    Google Scholar 

  • Grand TC, Dill LM (1999) Predation risk, unequal competitors and the ideal free distribution. Evol Ecol Res 1:389–409

    Google Scholar 

  • Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711

    PubMed  CAS  Google Scholar 

  • Harper DGC (1982) Competitive foraging in mallards: ‘ideal free’ ducks. Anim Behav 30:574–584

    Google Scholar 

  • Hauser MD, Teixidor P, Field L, Flaherty R (1993) Food-elicited calls in chimpanzees – effects of food quantity and divisibility. Anim Behav 45:817–819

    Google Scholar 

  • Heinrich B, Marzluff JM (1991) Do common ravens yell because they want to attract others? Behav Ecol Sociobiol 21:13–21

    Google Scholar 

  • Herrel A, Huyghe K, Vanhooydonck B, Backeljau T, Breugelmans K, Grbac I, Van Damme R, Irschick DJ (2008) Rapid large-scale evolutionary divergence in morphology and performance associated with exploitation of a different dietary resource. Proc Natl Acad Sci USA 105:4792–4795

    PubMed  CAS  Google Scholar 

  • Horat P, Semlitsch RD (1994) Effects of predation risk and hunger on the behaviour of two species of tadpoles. Behav Ecol Sociobiol 34:393–401

    Google Scholar 

  • Huffman MA (2001) Self-medicative behavior in the African great apes: an evolutionary perspective into the origins of human traditional medicine. BioScience 51:651–661

    Google Scholar 

  • Hughes NF, Grand TC (2000) Physiological ecology meets the ideal-free distribution: predicting the distribution of size-structured fish populations across temperature gradients. Environ Biol Fishes 59:285–298

    Google Scholar 

  • Jarman PJ (1974) The social organization of antelope in relation to their ecology. Behaviour 48:215–267

    Google Scholar 

  • Johnson DDP, Kays R, Blackwell PG, Macdonals D-W (2002) Does the resource dispersion hypothesis explain group living? Trends Ecol Evol 17:563–570

    Google Scholar 

  • Johnson CA, Grant JWA, Giraldeau L-A (2004) The effect of patch size and competitor number on aggression among foraging house sparrows. Behav Ecol 15:412–418

    Google Scholar 

  • Keasar T, Rashkovich E, Cohen D, Shmida A (2002) Bees in two-armed bandit situations: foraging choices and possible decision mechanisms. Behav Ecol 13:757–765

    Google Scholar 

  • Kirkpatrick M, Barton NH (1997) Evolution of a species’ range. Am Nat 150:1–23

    PubMed  CAS  Google Scholar 

  • Klopfer PH (1963) Behavioral aspects of habitat selection: the role of early experience. Wilson Bull 75:15–22

    Google Scholar 

  • Kodric-Brown A, Brown JH (1978) Influence of economics, interspecific competition and sexual dimorphism on territoriality of migrant rufous hummingbirds. Ecology 59:285–296

    Google Scholar 

  • Kokko H (1999) Competition for early arrival in migratory birds. J Anim Ecol 68:940–950

    Google Scholar 

  • Krams I (2000) Long-range call use in dominance-structured crested tit Parus cristatus winter groups. J Avian Biol 31:15–19

    Google Scholar 

  • Krauss J, Bommarco R, Guardiola M, Heikkinen RK, Helm A, Kuussaari M, Lindborg R, Öckinger E, Pärtel M, Pino J, Pöyry J, Raatikainen KM, Sang A, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13:597–605

    PubMed  Google Scholar 

  • Krebs JR (1982) Territorial defence in the great tit (Parus major): do residents always win? Behav Ecol Sociobiol 11:185–194

    Google Scholar 

  • Krebs JR, Erichsen JT, Webber MI, Charnov EL (1977) Optimal prey selection in the great tit (Parus major). Anim Behav 25:30–38

    Google Scholar 

  • Kreuzer MP, Huntly NJ (2003) Habitat-specific demography: evidence for sourcesink population structure in a mammal, the pika. Oecologia 134:343–349

    PubMed  CAS  Google Scholar 

  • Křivan V, Sikder A (1999) Optimal foraging and predator-prey dynamics. II. Theoret Pop Biol 55:111–126

    Google Scholar 

  • Langen TA, Tripet F, Nonacs PN (2000) The red and the black: habituation and the dear-enemy phenomenon in two desert Pheidole ants. Behav Ecol Sociobiol 48:285–292

    Google Scholar 

  • Levin SA, Muller-Landau HC, Nathan R, Chave J (2003) The ecology and evolution of seed dispersal: a theoretical perspective. Annu Rev Ecol Syst 34:575–604

    Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and a prospectus. Can J Zool 68:619–640

    Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    PubMed  CAS  Google Scholar 

  • Mabry KE, Stamps JA (2008) Dispersing brush mice prefer habitat like home. Proc R Soc Lond B 275:543–548

    Google Scholar 

  • Maher CR, Lott DF (1995) Definitions of territorialty used in the study of variation of vertebrate spacing systems. Anim Behav 49:1581–1597

    Google Scholar 

  • Marler CA, Moore MC (1989) Time and energy costs of aggression in testosterone-implanted free-living male mountain spiny lizards. Physiol Zool 62:1334–1350

    CAS  Google Scholar 

  • Marzluff JM, Heinrich B, Marzluff C (1996) Raven roosts are mobile information centres. Anim Behav 51:89–103

    Google Scholar 

  • Mattila HR, Otis GW (2003) A comparison of the host preference of monarch butterflies (Danaus plexippus) for milkweed (Asclepias syriaca) over dogstrangler vine (Vincetoxicum rossicum). Entom Exp Appl 107:193–199

    Google Scholar 

  • Mauricio R (2000) Natural selection and the joint evolution of tolerance and resistance as plant defenses. Evol Ecol 14:491–507

    Google Scholar 

  • Milinski M (1979) An evolutionary stable feeding strategy in sticklebacks. Z Tierpsychol 51:36–40

    Google Scholar 

  • Milinski M, Heller R (1978) Influence of a predator on optimal foraging behavior of sticklebacks (Gasterosteus aculeatus L.). Nature 275:642–644

    Google Scholar 

  • Montoya D, Zavala MA, Rodríguez MA, Purves DW (2008) Animal versus wind dispersal and the robustness of tree species to deforestation. Science 320:1502–1504

    PubMed  CAS  Google Scholar 

  • Moody AI, Houston AI, McNamara JM (1996) Ideal free distributions under predation risk. Behav Ecol Sociobiol 38:131–143

    Google Scholar 

  • Moore BD, Foley WJ (2005) Tree use by koalas in a chemically complex landscape. Nature 435:488–490

    PubMed  CAS  Google Scholar 

  • Morris DW, Lundberg P, Ripa J (2001) Hamilton’s rule confronts ideal free habitat selection. Proc R Soc Lond B 268:921–924

    CAS  Google Scholar 

  • Mosser A, Fryxell JM, Eberly L, Packer C (2009) Serengeti real estate: density vs. fitness-based indicators of lion habitat quality. Ecol Lett 12:1050–1060

    PubMed  Google Scholar 

  • Mougeot F, Redpath SM, Leckie F, Hudson PJ (2003) The effect of aggressiveness on the population dynamics of a territorial bird. Nature 421:737–739

    PubMed  CAS  Google Scholar 

  • Müller C, Manser M (2007) ‘Nasty neighbours’ rather than ‘dear enemies’ in a social carnivore. Proc R Soc Lond B 274:959–965

    Google Scholar 

  • Muñoz A, Bonal R (2008) Seed choice by rodents: learning or inheritance? Behav Ecol Sociobiol 62:913–922

    Google Scholar 

  • Naef-Daenzer L, Naef-Daenzer B, Nager RG (2000) Prey selection and foraging performance of breeding great tits Parus major in relation to food availability. J Avian Biol 31:206–214

    Google Scholar 

  • Naguib M, Altenkamp R, Griessmann B (2001) Nightingales in space: song and extra-territorial forays of radio tagged song birds. J Ornithol 142:306–312

    Google Scholar 

  • Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol 15:278–285

    PubMed  Google Scholar 

  • Neutel A-M, Heesterbeek JA, de Ruiter PC (2002) Stability in real food webs: weak links in long loops. Science 296:1120–1123

    PubMed  CAS  Google Scholar 

  • Nicholson AJ (1954) An outline of the dynamics of animal populations. Austr J Zool 2:9–65

    Google Scholar 

  • Noble J, Todd PM, Tuci E (2001) Explaining social learning of food preferences without aversions: an evolutionary simulation model of Norway rats. Proc R Soc Lond B 268:141–149

    CAS  Google Scholar 

  • Novotny V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L, Drozd P (2002) Low host specificity of herbivorous insects in a tropical forest. Nature 416:841–844

    PubMed  CAS  Google Scholar 

  • Nunn CL, Deaner RO (2004) Patterns of participation and free riding in territorial conflicts among ringtailed lemurs (Lemur catta). Behav Ecol Sociobiol 57:50–61

    Google Scholar 

  • Ohashi K, Thomson JD, D’Souza D (2007) Trapline foraging by bumble bees: IV. Optimization of route geometry in the absence of competition. Behav Ecol 18:1–11

    Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Google Scholar 

  • Ord TJ, Blumstein DT (2002) Size constraints and the evolution of display complexity: why do large lizards have simple displays? Biol J Linn Soc 76:145–161

    Google Scholar 

  • Ord TJ, Peters RA, Evans CS, Taylor AJ (2002) Digital video playback and visual communication in lizards. Anim Behav 63:879–890

    Google Scholar 

  • Parker GA (2000) Scramble in behaviour and ecology. Philos Trans R Soc Lond B 355:1637–1645

    CAS  Google Scholar 

  • Perry G, Pianka ER (1997) Animal foraging: past, present and future. Trends Ecol Evol 12:360–364

    PubMed  CAS  Google Scholar 

  • Pierce GJ, Ollason JG (1987) Eight reasons why optimal foraging theory is a complete waste of time. Oikos 49:111–118

    Google Scholar 

  • Pietrewicz AT, Kamil AC (1979) Search image formation in the blue jay Cyanocitta cristata . Science 204:1332–1333

    PubMed  CAS  Google Scholar 

  • Piper WH (2011) Making habitat selection more “familiar”: a review. Behav Ecol Sociobiol 65:1329–1351

    Google Scholar 

  • Pöysä H (2001) Dynamics of habitat distribution in breeding mallards: assessing the applicability of current habitat selection models. Oikos 94:365–373

    Google Scholar 

  • Pole A, Gordon IJ, Gorman ML, MacAskill M (2004) Prey selection by African wild dogs (Lycaon pictus) in southern Zimbabwe. J Zool Lond 262:207–215

    Google Scholar 

  • Pravosudov VV, Clayton NS (2001) Effects of demanding foraging conditions on cache retrieval accuracy in food-caching mountain chickadees (Poecile gambeli). Proc R Soc Lond B 268:363–368

    CAS  Google Scholar 

  • Pryke SR, Andersson S (2003) Carotenoid-based epaulettes reveal male competitive ability: experiments with resident and floater red-shouldered widowbirds. Anim Behav 66:217–224

    Google Scholar 

  • Pusenius J, Schmidt KA (2002) The effects of habitat manipulation on population distribution and foraging behavior in meadow voles. Oikos 98:251–262

    Google Scholar 

  • Pyke GH (1984) Optimal foraging theory: a critical review. Annu Rev Ecol Syst 15:523–575

    Google Scholar 

  • Reid PJ, Shettleworth SJ (1992) Detection of cryptic prey: search image or search rate? J Exp Psychol 18:273–286

    CAS  Google Scholar 

  • Revilla E, Palomares F (2001) Differences in key habitat use between dominant and subordinate animals: intraterritorial dominance payoffs in Eurasian badgers? Can J Zool 79:165–170

    Google Scholar 

  • Robinson EJH, Jackson DE, Holcombe M, Ratnieks FLW (2005) ‘No entry’ signal in ant foraging. Nature 438:442

    PubMed  CAS  Google Scholar 

  • Rutten AL, Oosterbeek K, Verhulst S, Dingemanse NJ, Ens BJ (2010) Experimental evidence for interference competition in oystercatchers, Haematopus ostralegus. II. Free-living birds. Behav Ecol 21:1261–1270

    Google Scholar 

  • Schaefer HM (2010) Visual communication: Evolution, ecology, and functional mechanisms. In: Kappeler PM (ed) Animal Behaviour: Evolution and Mechanisms. Springer, Heidelberg, pp 3–28

    Google Scholar 

  • Schluter D (2000) Ecological character displacement in adaptive radiation. Am Nat 156:S4–S16

    Google Scholar 

  • Schradin C (2004) Territorial defense in a group-living solitary forager: who, where, against whom? Behav Ecol Sociobiol 55:439–446

    Google Scholar 

  • Scott SN, Clegg SM, Blomberg SP, Kikkawa J, Owens IP (2003) Morphological shifts in island-dwelling birds: the roles of generalist foraging and niche expansion. Evolution 57:2147–2156

    PubMed  Google Scholar 

  • Searle KR, Stokes CJ, Gordon IJ (2008) When foraging and fear meet: using foraging hierarchies to inform assessments of landscapes of fear. Behav Ecol 19:475–482

    Google Scholar 

  • Sih A, Jonsson BG, Luikart G (2000) Habitat loss: ecological, evolutionary and genetic consequences. Trends Ecol Evol 15:132–134

    Google Scholar 

  • Sirot E (2000) An evolutionary stable strategy for aggressiveness in feeding groups. Behav Ecol 11:351–356

    Google Scholar 

  • Smith TB, Skulason S (1996) Evolutionary significance of resource polymorphisms in fishes, amphibian and birds. Annu Rev Ecol Syst 27:111–133

    Google Scholar 

  • Smith RD, Ruxton GD, Cresswell W (2001) Dominance and feeding interference in small groups of blackbirds. Behav Ecol 12:475–481

    Google Scholar 

  • Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proc Natl Acad Sci USA 98:3898–3903

    PubMed  CAS  Google Scholar 

  • Steenbeek R, van Schaik CP (2001) Competition and group size in Thomas’s langurs (Presbytis thomasi): the folivore paradox revisited. Behav Ecol Sociobiol 49:100–110

    Google Scholar 

  • Stevens JR, Gilby IC (2004) A conceptual framework for nonkin food sharing: timing and currency of benefits. Anim Behav 67:603–614

    Google Scholar 

  • Stokke S, du Toit JT (2000) Sex and size related differences in the dry season feeding patterns of elephants in Chobe National Park, Botswana. Ecography 23:70–80

    Google Scholar 

  • Strauß A, Solmsdorff K, Pech R, Jacob J (2008) Rats on the run: removal of alien terrestrial predators affects bush rat behaviour. Behav Ecol Sociobiol 62:1551–1558

    Google Scholar 

  • Stutt AD, Willmer P (1998) Territorial defence in speckled wood butterflies: do the hottest males always win? Anim Behav 55:1341–1347

    PubMed  Google Scholar 

  • Suarez RK, Gass CL (2002) Hummingbird foraging and the relation between bioenergetics and behaviour. Comp Biochem Physiol 133:335–343

    Google Scholar 

  • Switzer PV, Stamps JA, Mangel M (2001) When should a territory resident attack? Anim Behav 62:749–759

    Google Scholar 

  • Tilman D, Mattson M, Langer S (1981) Competition and nutrient kinetics along a temperature gradient: an experimental test of a mechanistic approach to niche theory. Linol Oceanogr 26:1020–1033

    Google Scholar 

  • Tonnis B, Grant PR, Grant BR, Petren K (2005) Habitat selection and ecological speciation in Galápagos warbler finches (Certhidea olivacea and Certhidea fusca). Proc R Soc Lond B 272:819–826

    CAS  Google Scholar 

  • Travisano M, Rainey PB (2000) Studies of adaptive radiation using model microbial systems. Am Nat 156:S35–S44

    Google Scholar 

  • van Buskirk J, McCollum SA (2000) Functional mechanisms of an inducible defence in tadpoles: morphology and behaviour influence mortality risk from predation. J Evol Biol 13:336–347

    Google Scholar 

  • Vander Wall SB (2010) How plants manipulate the scatter-hoarding behaviour of seed-dispersing animals. Philos Trans R Soc Lond B 365:989–997

    Google Scholar 

  • von Helversen D, von Helversen O (2003) Object recognition by echolocation: a nectar-feeding bat exploiting the flowers of a rain forest vine. J Comp Physiol A 189:327–336

    Google Scholar 

  • Wallace MP (2000) Retaining natural behaviour in captivity for re-introduction programmes. In: Gosling ML, Sutherland WJ (eds) Behaviour and Conservation. Cambridge Univ Press, Cambridge, pp 300–314

    Google Scholar 

  • Weidinger K (2000) The breeding performance of blackcap Sylvia atricapilla in two types of forest habitat. Ardea 88:225–233

    Google Scholar 

  • Werner EE, Hall DJ (1974) Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology 55:1042–1052

    Google Scholar 

  • Whiting M (1999) When to be neighbourly: differential agonistic responses in the lizard Platysaurus broadleyi. Behav Ecol Sociobiol 46:210–214

    Google Scholar 

  • Widemo F (1998) Competition for females on leks when male competitive abilities differ: empirical tests of a model. Behav Ecol 9:427–431

    Google Scholar 

  • Zalucki MP, Malcolm SB (1999) Plant latex and first-instar monarch larval growth and survival on three North-American milkweed species. J Chem Ecol 25:1827–1842

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kappeler, P. (2012). Habitat- und Nahrungswahl. In: Verhaltensbiologie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20653-5_5

Download citation

Publish with us

Policies and ethics