Skip to main content

Zusammenfassung

Das Blutvolumen bezeichnet die Gesamtmenge des zirkulierenden Blutes und unterliegt normalerweise nur geringen Schwankungen. Es wird durch verschiedenste Regulationsmechanismen beeinflusst. Als Grundlage dient hier die optimale Anpassung des Volumens und der Zusammensetzung des Blutes an die speziellen Erfordernisse des Kreislaufes. Die Hauptaufgaben des Blutes sind die Versorgung des Gewebes mit Sauerstoff und Nährstoffen, der Abtransport von Stoffwechselprodukten und Giftstoffen, die Abwehr von Infektionserregern, die Reparatur von Läsionen sowie die Aufrechterhaltung eines konstanten inneren Milieus (Homöostase). Die dafür notwendigen Anpassungsvorgänge zielen besonders auf das Verhalten des Blutes in der Endstrombahn (Mikrozirkulation) ab, da hier die »Kommunikation « der freien Zellen des Blutes mit den residenten Zellen des Gewebes stattfindet. Ist dieses Zusammenwirken gestört, kommt es zur Organdysfunktion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Bannon MP, O’Neill CM, Martin M, Ilstrup DM, Fish NM, Barrett J (1995) Central venous oxygen saturation, arterial base deficit, and lactate concentration in trauma patients. Am Surg 61:738–745

    PubMed  CAS  Google Scholar 

  2. Chaplin H Jr, Mollison PL, Vetter H (1953) The body/venous hematocrit ratio: its constancy over a wide hematocrit range. J Clin Invest 32:1309–1316

    Article  PubMed  Google Scholar 

  3. Crawford J, Cox EB, Cohen HJ (1985) Evaluation of hyperviscosity in monoclonal gammopathies. Am J Med 79:13–22

    Article  PubMed  CAS  Google Scholar 

  4. Cruz K, Franklin C (2001) The pulmonary artery catheter: uses and controversies. Crit Care Clin 17:271–291

    Article  PubMed  CAS  Google Scholar 

  5. Garby L, Vuille JC (1961) The amount of trapped plasma in a high speed micro-capillary hematocrit centrifuge. Scand J Clin Lab Invest 13:642–645

    Article  PubMed  CAS  Google Scholar 

  6. Hamzaoui O, Monnet X, Richard C, Osman D, Chemla D, Teboul JL (2008) Effects of changes in vascular tone on the agreement between pulse contour and transpulmonary thermodilution cardiac output measurements within an up to 6-hour calibration-free period. Crit Care Med 36:434–440

    Article  PubMed  Google Scholar 

  7. Holme S, Elfath MD, Heaton A, Whitley P, McNeil D (2008) Prediction of red cell and blood volumes distribution by various nomograms: do current nomograms overestimate? Transfusion 48:910–916

    Article  PubMed  Google Scholar 

  8. Iberti TJ, Fischer EP, Leibowitz AB, Panacek EA, Silverstein JH, Albertson TE (1990) A multicenter study of physicians’ knowledge of the pulmo- nary artery catheter. Pulmonary Artery Catheter Study Group. JAMA 264:2928–2932

    Article  PubMed  CAS  Google Scholar 

  9. Ince C, Sinaasappel M (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27:1369–1377

    Article  PubMed  CAS  Google Scholar 

  10. International Committee for Standardization in Haematology (1980) Recommended methods for measurement of red-cell and plasma volume. J Nucl Med 21:793–800

    Google Scholar 

  11. Kirchheim H, Ehmke H, Persson P (1990) Role of blood pressure in the control of renin release. Acta Physiol Scand (Suppl) 591:40–47

    CAS  Google Scholar 

  12. Lauermann I, Wilhelm G, Kirchner E (1994) Blood volume determination with sodium fluorescein and radioactive chromium – a clinical comparison of methods. Infusionsther Transfusionsmed 21:138–142

    PubMed  CAS  Google Scholar 

  13. Lechleuthner A, Lefering R, Bouillon B, Lentke E, Vorweg M, Tiling T (1994) Prehospital detection of uncontrolled haemorrhage in blunt trauma. Eur J Emerg Med 1:13–18

    Article  PubMed  CAS  Google Scholar 

  14. Leonhardt H, Bungert HJ (1973) Plasmaviskosität und portale Hypertension bei Lebercirrhosekranken. Klin Wochenschr 21:1043–1049

    Article  PubMed  CAS  Google Scholar 

  15. Lichtwarck-Aschoff M, Zeravik J, Pfeiffer UJ (1992) Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intensive Care Med 18:142–147

    Article  PubMed  CAS  Google Scholar 

  16. Lisy O, Redfield MM, Jovanovic S, Jougasaki M, Jovanovic A, Leskinen H, Terzic A, Burnett JC Jr. (2000) Mechanical unloading versus neurohumoral stimulation on myocardial structure and endocrine function In vivo. Circulation 102:338–343

    Article  PubMed  CAS  Google Scholar 

  17. Martini J, Cabrales P, Tsai AG, Intaglietta M (2006) Mechanotransduction and the homeostatic significance of maintaining blood viscosity in hypotension, hypertension and haemorrhage. J Intern Med 259:364–372

    Article  PubMed  CAS  Google Scholar 

  18. Mazzoni MC, Tsai AG, Intaglietta M (2002) Blood and plasma viscosity and microvascular function in hemodilution. A perspective from La Jolla, California. Eur Surg Res 34:101–105

    Article  PubMed  Google Scholar 

  19. Messmer K, Kreimeier U, Intaglietta M (1986) Present state of intentional hemodilution. Eur Surg Res 18:254–263

    Article  PubMed  CAS  Google Scholar 

  20. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138

    PubMed  CAS  Google Scholar 

  21. Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL (2003) Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest 124:1900–1908

    Article  PubMed  Google Scholar 

  22. Orth VH, Rehm M, Thiel M, Kreimeier U, Haller M, Brechtelsbauer H, Finsterer U (1998) First clinical implications of perioperative red cell volume measurement with a nonradioactive marker (sodium fluorescein). Anesth Analg 87:1234–1238

    PubMed  CAS  Google Scholar 

  23. Orth VH, Rehm M, Haller M, Thiel M, Finsterer U (2001) Die Messung des Blutvolumens aktueller Stand. Anaesthesist 50:562–568

    Article  PubMed  CAS  Google Scholar 

  24. Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C, Teboul JL (2007) Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 35:64–68

    Article  PubMed  Google Scholar 

  25. Rao RM, Yang L, Garcia-Cardena G, Luscinskas FW (2007) Endothelialdependent mechanisms of leukocyte recruitment to the vascular wall. Circ Res 101:234–247

    Article  PubMed  CAS  Google Scholar 

  26. Rauchenzauner M, Haberlandt E, Ortler M, Tatarczyk T, Laimer M, Trinka E, Luef G (2008) N-terminal pro-brain natriuretic peptide (NTproBNP) release in children with vagus nerve stimulation. A prospective case series. J Neurol 255:980–985

    Article  PubMed  CAS  Google Scholar 

  27. Renkin EM (1986) Some consequences of capillary permeability to macromolecules: Starling’s hypothesis reconsidered. Am J Physiol 250:H706–710

    PubMed  CAS  Google Scholar 

  28. Reuter DA, Goetz AE, Peter K (2003) Einschätzung der Volumenreagibilität beim beatmeten Patienten. Anaesthesist 52:1005–1007, 1010–1013

    Google Scholar 

  29. Rice L, Alfrey CP (2005) The negative regulation of red cell mass by neocytolysis: physiologic and pathophysiologic manifestations. Cell Physiol Biochem 15:245–250

    Article  PubMed  CAS  Google Scholar 

  30. Rixen D, Raum M, Bouillon B, Lefering R, Neugebauer E (2001) Base deficit development and its prognostic significance in posttrauma critical illness: an analysis by the trauma registry of the Deutsche Gesellschaft für Unfallchirurgie. Shock 15:83–89

    Article  PubMed  CAS  Google Scholar 

  31. Sakka SG, Klein M, Reinhart K, Meier-Hellmann A (2002) Prognostic value of extravascular lung water in critically ill patients. Chest 122:2080–2086

    Article  PubMed  Google Scholar 

  32. Sandham JD, Hull RD, Brant RF, Knox L, Pineo GF, Doig CJ, Laporta Viner S, Passerini L, Devitt H, Kirby A, Jacka M (2003) A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 348:5–14

    Article  PubMed  Google Scholar 

  33. Schmid-Schönbein H (1981) Blood rheology and physiology of microcirculation Ric Clin Lab 11 (Suppl 1):13–33

    PubMed  Google Scholar 

  34. Schmidt D (1973) Blutvolumenbestimmung. Z Exp Chir 6:78–102

    PubMed  CAS  Google Scholar 

  35. Shah MR, Hasselblad V, Stevenson LW, Binanay C, O’Connor CM, Sopko G, Califf RM (2005) Impact of the pulmonary artery catheter critically ill patients: meta-analysis of randomized clinical trials. JAMA 294:1664–1670

    Article  PubMed  CAS  Google Scholar 

  36. Shippy CR, Appel PL, Shoemaker WC (1984) Reliability of clinical monitoring to assess blood volume in critically ill patients. Crit Care Med 12:107–112

    Article  PubMed  CAS  Google Scholar 

  37. Simon SI, Goldsmith HL (2002) Leukocyte adhesion dynamics in shear flow. Ann Biomed Eng 30:315–332

    Article  PubMed  Google Scholar 

  38. Takata K, Matsuzaki T, Tajika Y, Ablimit A, Hasegawa T (2008) Localization and trafficking of aquaporin 2 in the kidney. Histochem Cell Biol 130:197–209

    Article  PubMed  CAS  Google Scholar 

  39. Volpe M, Savoia C, De Paolis P, Ostrowska B, Tarasi D, Rubattu S (2002) The renin-angiotensin system as a risk factor and therapeutic target for cardiovascular and renal disease. J Am Soc Nephrol 13 (Suppl 3):S173–178

    Article  Google Scholar 

  40. Yedgar S, Koshkaryev A, Barshtein G (2002) The red blood cell in vascular occlusion. Pathophysiol Haemost Thromb 32:263–268

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scheeren, T., Hergert, S.M., Nöldge-Schomburg, G. (2010). Kreislaufphysiologische Grundlagen. In: Kiefel, V., Mueller-Eckhardt, C. (eds) Transfusionsmedizin und Immunhämatologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12765-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12765-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12764-9

  • Online ISBN: 978-3-642-12765-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics