Skip to main content

Zusammenfassung

Als Folge der chronischen Lungenüberblähung kommt es bei COPD-Patienten zu einer Verkürzung der Atemmuskeln. Diese hat eine Absenkung und Abflachung des Zwerchfells zur Folge. Smith et al. weisen darauf hin, dass die resultierende Kraftentwicklung bei Verkürzung der Muskulatur vermindert ist [39]. Bei chronischer Verkürzung werden die seriell verknüpften Sarkomere zur Anpassung an die erhöhte Belastung zurückgebildet. Die Adaptation der Sarkomere kann die Verkürzung der Zwerchfellmuskulatur nur teilweise kompensieren, da die Veränderung der Geometrie und der Interaktion zwischen Zwerchfell und Thorax nur unzureichend ausgeglichen wird. Die Atemarbeit wird durch erhöhte Atemwegswiderstände, erhöhte Atemfrequenz und ungünstige Faserlänge der Atemmuskulatur, bedingt durch die Überblähung mit Abflachung des Zwerchfells und Verkürzung der Muskelfasern, negativ beeinflusst [40]. Die zusätzliche Rekrutierung der Atemmuskeln ist bei COPD-Patienten durch eine vermehrte Totraumventilation, Malnutrition, steroidinduzierte Muskelatrophie, erhöhte Atemwegswiderstände, reduzierte Elastizität des Lungenparenchyms (Compliance) und Retraktionskraft des Thorax mit hoher Atemarbeit und hohem Energieaufwand verbunden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. De Troyer A, Peche R, Yernault JC, Estenne M (1994) Neck muscle activity in patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 150: 41–47

    PubMed  Google Scholar 

  2. Decramer M, De Troyer A (1984) Respiratory changes in parasternal intercostal length. J Appl Physiol 57: 1254–1260

    CAS  PubMed  Google Scholar 

  3. Decramer M (1993) Respiratory muscle interaction during acute and chronic hyperinflation. Monaldi Arch Chest Dis 48: 483–488

    CAS  PubMed  Google Scholar 

  4. Decramer M (1997) Hyperinflation and respiratory muscle Interaction. Eur Respir J 10: 934–941

    CAS  PubMed  Google Scholar 

  5. Decramer M (1989) Effects of hyperinflation on the respiratory muscles. Eur Respir J 2: 299–302

    CAS  PubMed  Google Scholar 

  6. Decramer M, Jiang TX, Reid MB et al. (1986) Relationship between diaphragm length and abdominal dimensions. J Appl Physiol 61: 1815–1820

    CAS  PubMed  Google Scholar 

  7. Farkas G, Decramer M, Rochester DF, De Troyer A (1985) Contractile properties of intercostal muscles and their functional significance. J Appl Physiol 59: 528–535

    CAS  PubMed  Google Scholar 

  8. Farkas GA, Roussos CS (1982) Adaptability of the hamster diaphragm to exercise and/or emphysema. J Appl Physiol 1982; 53: 1263–72

    CAS  Google Scholar 

  9. Farkas GA, Roussos C (1983) Diaphragm in emphysematous hamsters: sarcomer adaptability. J Appl Physiol 54: 1635–1640

    CAS  PubMed  Google Scholar 

  10. Farkas G (1991) Functional characteristics of the respiratory muscles. Semin Respir Med 12: 247–257

    Article  Google Scholar 

  11. Jiang TX, Deschepper K, Demedts M, Decramer M (1989) Effects of acute hyperinflation on the mechanical effectiveness of the parasternal intercostals. Am Rev Respir Dis 139: 522–528

    CAS  PubMed  Google Scholar 

  12. Gandevia SC, Leeper JB, McKenzie DK (1996) Discharge frequencies of parasternal intercostal and scalene motor units during breathing in normal and COPD subjects. Am J Respir Crit Care Med 153: 622–608

    CAS  PubMed  Google Scholar 

  13. De Troyer A, Legrand A (1995) Inhomogeneous activation of the parasternal intercostals during breathing. J Appl Physiol 79: 55–62

    PubMed  Google Scholar 

  14. Ninane V, Rypens F, Yernault JC, De Troyer A (1992) Abdominal muscle use during breathing in patients with chronic airflow obstruction. Am Rev Respir Dis 146: 16–21

    CAS  PubMed  Google Scholar 

  15. Peche R, Estenne M, Gevenois PA et al. (1996) Sternomastoid muscle size and strength in patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 153: 422–425

    CAS  PubMed  Google Scholar 

  16. Hodges PW, Gandevia SC (2000) Changes in intra-abdominal pressure during postural and respiratory activation of the human diaphragm. J Appl Physiol 89: 967–976

    CAS  PubMed  Google Scholar 

  17. Bruzek R, Bieber-Zschau M, Herz A (1995) Die Bauchmuskulatur als ventrales Aufrichtsystem. Manuelle Medizin 33: 115–120

    Google Scholar 

  18. Hodges PW, Butler JE, McKenzie DK, Gandevia SC (1997) Contraction of the human diaphragm during rapid postural adjustments. J Physiol 505(2): 539–548

    Article  CAS  PubMed  Google Scholar 

  19. Grimby G, Goldman M, Mead J (1976) Respiratory muscle action inferred from rib cage and abdominal V-P partitioning. J Appl Physiol 41: 739–751

    CAS  PubMed  Google Scholar 

  20. Gorini M, Misuri G, Duranti R et al. (1997) Abdominal muscle recruitment and PEEPi during bronchoconstriction in chronic obstructive pulmonary disease. Thorax 52: 355–61

    Article  CAS  PubMed  Google Scholar 

  21. Misuri G, Colagrande S, Gorini M (1997) In vivo ultrasound assessment of respiratory function of abdominal muscles in normal subjects. Eur Respir J 10: 2861–2867

    Article  CAS  PubMed  Google Scholar 

  22. Yan S, Sinderby C, Bieen P et al. (2000) Expiratory muscle pressure and breathing mechanics in chronic obstructive pulmonary disease. Eur Respir J 16: 684–690

    Article  CAS  PubMed  Google Scholar 

  23. Gorman R, McKenzie DK, Pride NB, Tolman JF, Gandevia SC (2002) Diaphragm length during tidal breathing in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166: 1461–1469

    Article  PubMed  Google Scholar 

  24. Hodges PW, Heijnen I, Gandevia SC (2001) Postural activity of the diaphragm is reduced in humans when respiratory demand increased. J Physiol 537(2): 999–1008

    Article  CAS  PubMed  Google Scholar 

  25. Comerford MJ, Mottram SL (2001) Movement and stability dysfunction-contemporary development. Manual Therapy 6(1): 15–26

    Article  CAS  PubMed  Google Scholar 

  26. Comerford MJ, Mottram SL (2001) Functional stability re-training: principles and strategies for managing mechanical dysfunction. Manual Therapy 6(1): 3–14

    Article  CAS  PubMed  Google Scholar 

  27. Dodd DS, Brancatisano T, Engel LA (1984) Chest wall mechanics during exercise in patients with severe chronic airflow obstruction. Am J Respir Crit Care Med 129: 33–38

    CAS  Google Scholar 

  28. Richardson CA, Jull GA (1995) Muscle control-pain control. What exercise would you prescribe? Manual Therapy 1: 2–10

    Article  CAS  PubMed  Google Scholar 

  29. De Troyer A, Leeper JB, McKenzie DK, Grandevia SC. Neural drive to the diaphragm in patients with severe COPD. Am J Respir Crit Care Med 155: 1335–1340

    Google Scholar 

  30. Rutte R, Sturm S (2002) Atemtherapie. Springer, Heidelberg

    Google Scholar 

  31. Lindel K (2006) Muskeldehnung. Springer, Heidelberg

    Google Scholar 

  32. Sharp JT, Danon J, Druz WS (1976) Respiratory muscle function in patients with chronic obstructive pulmonary disease: Its relationship to disability and to respiratory therapy. Am Rev Respir Dis 110: 154

    Google Scholar 

  33. Druz WS, Danon J, Fiskman HC (1979) Approaches to assessing respiratory muscle function in respiratory disease. Am Rev Respir Dis 119: 145–149

    CAS  PubMed  Google Scholar 

  34. Gosselink R, Decramer M (2003) Revalidatie bij chronisch obstructive longziekte. Elsevier, Gezondheiszorg Maarssen

    Google Scholar 

  35. De Troyer A, Kelly S, Zin WA (1983) Mechanical action of the intercostal muscle on the ribs. Science 220: 87–88

    Article  PubMed  Google Scholar 

  36. De Troyer A, Kelly S, Macklem PT (1985) Mechanics of intercostal space and actions of external and internal muscles. J Clin Invest 75: 850–857

    Article  PubMed  Google Scholar 

  37. Duron B (1981) Intercostal and diaphragmatic muscle endings and afferents. In: Hornbein TF (ed) Regulation of breathing. Marcel Dekker, New York; pp 473–540

    Google Scholar 

  38. White AA, Panjabi MM (1990) Clinical Biomechanics of the Spine, 2nd ed. JB Lippencott Company, Philadelphia, Pennsylvania

    Google Scholar 

  39. Smith J, Bellemare F (1987) Effect of lung volume on in vivo contraction characteristics of human diaphragm. J Appl Physiol 62: 1893–1900

    CAS  PubMed  Google Scholar 

  40. Ogno A, Domenighetti G (2007) Die nichtinvasive Beatmung als Therapie der akut respiratorischen Insuffizienz. Kardiovaskuläre Medizin 10: 21–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Gestel, A.J.R., Steier, J., Teschler, H. (2010). Primäre und sekundäre Atemmuskeln. In: Physiotherapie bei chronischen Atemwegs- und Lungenerkrankungen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01435-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01435-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01434-5

  • Online ISBN: 978-3-642-01435-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics