Skip to main content

Kardiovaskuläres “tissue engineering”

  • Chapter
Herzchirurgie
  • 8912 Accesses

Zusammenfassung

Organerkrankungen im Endstadium sowie der Verlust gesunder, funktionsfähiger Organe und Organ strukturen konfrontieren Medizin und Gesellschaft mit therapeutisch wie sozioökonomisch immensen Problemen. Durch Identifizierung neuer und Verbesserung bestehender Therapieoptionen und hier insbesondere auch der Transplantation von Geweben und Organen konnten im Laufe der letzten Jahre vielfach deutliche therapeutische Fortschritte erzielt und dabei die Prognose einer Reihe von Erkrankungen deutlich verbessert werden. Beide Therapieansätze — rekonstruierend wie substituierend — sind jedoch auch heute noch mit Nachteilen behaftet, die ihre Anwendbarkeit limitieren. Beispiele hierfür sind insbesondere:

  • eine zunehmend große Diskrepanz zwischen Verfügbarkeit und Bedarf an Organen,

  • Entwicklung sekundärer Gesundheitsrisiken wie z. B. Ausbildung von Neoplasien durch notwendige und unabdingbare lebenslange immun suppressive Therapien nach Organtransplantation,

  • Mangel an Spendergeweben wie z. B. arterielle und venöse Blutgefäße allogenen, aber auch autologen Ursprungs,

  • gesteigertes Risiko für Infektionen und thromboembolische Komplikationen nach Implantation mechanischer und alloplastischer Prothesen,

  • gesteigertes Risiko für das Auftreten von Blutungskomplikationen unter antikoagulativer Therapie, die aufgrund einer gesteigerten intrinsischen Thrombogenität alloplastischer Implantate zumeist lebenslang aufrechterhalten werden muss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Akins RE, Byce RA, Madonna ML et al.(1999) Cardiac organogenesis in vitro: reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng 5: 103–118

    Article  CAS  PubMed  Google Scholar 

  • Asahara T, Murohara T, Sullivan A et al.(1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964–967

    Article  CAS  PubMed  Google Scholar 

  • Assmus B, Schainger V, Teupe C et al.(2002) Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation 106: 3009–3017

    Article  PubMed  Google Scholar 

  • AVID Clinical Trial Center (1997) A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resucitated from near-fatal ventricular arrhythmias. The Antiarrhythmics Versus Implantable Defibrillators (AVID) Investigators. N Engl J Med 337: 1576–1583

    Article  Google Scholar 

  • Badorff C, Brandes RP, Popp R et al.(2003) Transdifferentiaton of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 107: 1024–1032

    Article  PubMed  Google Scholar 

  • Barratt-Boyes BG (1965) A method for preparing and inserting a homograft aortic valve. B J Surg 52: 847–856

    Article  CAS  Google Scholar 

  • Bechtel JFM, Schmidtke C, Mueller-Steinhardt M et al.(2003) Evaluation of a decellularized homograft valve for reconstruction of the right ventricular outflow tract in the Ross-procedure. Second Biennal Meeting of the Society for Heart Valve Disease 2003. 28.06.–01.07.2003. Palais des Congres — Porte Maillot, Paris, 347

    Google Scholar 

  • Beltrami CA, Finato N, Rocco M et al.(1994) Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 89: 101–163

    Google Scholar 

  • Bishop SP, Anderson PG, Tucker DC (1990) Morphological development of the rat heart growing in oculo in the abscence of hemodynamic work load. Circ Res 66: 84–102

    CAS  PubMed  Google Scholar 

  • Campbell JH, Efendy JL, Campbell GR (1999) Novel vascular graft grown within recipient’s own peritoneal cavity. Circ Res 85: 1173–1178

    CAS  PubMed  Google Scholar 

  • Carrel A (1902) La technique opératoire des anastomoses vascularies et le transplantation des viscères. Lyon Med 89

    Google Scholar 

  • Carrier RL, Papadaki M, Rupnick M et al, (1999) Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng 64: 580–589

    Article  CAS  PubMed  Google Scholar 

  • Carrier RL, Rupnick M, Langer R et al.(2002) Effects of oxygen on engineered cardiac muscle. Biotechol Bioeng 78: 617–625

    Article  CAS  Google Scholar 

  • Cebotari S, Lichtenberg A, Tudorache I et al.(2006) Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114 (1 Suppl): I132–I137

    PubMed  Google Scholar 

  • Cebotari S, Mertsching H, Kallenbach K et al.(2002) Construction of autologous human heart valves based on an acellular allograft matrix. Circulation 106 (12 Suppl 1): 163–168

    Google Scholar 

  • Chambard M, Gabrion J, Mauchamp J (1981) Influence of collagen gel on the orientation of epithelial cell polarity: follicle formation from isolated thyroid cells and from preformed monolayers. J Cell Biol 91: 157–166

    Article  CAS  PubMed  Google Scholar 

  • Condorelli G, Borelli UV, DeAngelis L et al.(2001) Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration. Proc Natl Acad Sci USA 98: 10733–10738

    Article  CAS  PubMed  Google Scholar 

  • Crawford ES, De Bakey ME, Morris GC Jr et al.(1960) Evaluation of late failures after reconstructive operations for occlusive lesions of the aorta and iliac, femoral, and popliteal arteries. Surgery 47: 79–104

    CAS  PubMed  Google Scholar 

  • Dardik H (1995) The second decade of experience with the umbilical vein graft for lower-limb revascularization. Cardiovasc Surg 3: 265–269

    Article  CAS  PubMed  Google Scholar 

  • Dardik H, Miller N, Dardik A et al.(1988) A decade of experience with the glutaraldehyde-tanned human umbilical cord vein graft for revascularization of the lower limb. J Vase Surg 7: 336–346

    Article  CAS  Google Scholar 

  • Dardik I, Darkik H (1973) Vascular heterograft: human umbilical cord vein as an aortic substitute in baboon. A preliminary report. J Med Primatol 2: 296–301

    CAS  PubMed  Google Scholar 

  • DeBakey ME, Cooley DA, Crawford ES (1958a) Surgical consideration of occlusive disease of the abdominal aorta and iliac and femoral arteries: Analysis of 803 cases. Ann Surg 148: 306–324

    Article  CAS  Google Scholar 

  • DeBakey ME, Cooley DA, Crawford ES (1958b) Clinical application of a new flexible knitted Dacron arterial substitute. Arch Surg 77: 213–224

    Google Scholar 

  • DeLaurentis DA, Friedmann P (1972) Sequential femoropopliteal bypasses: another approach to the inadequate saphenous vein problem. Surgery 71: 400–404

    CAS  PubMed  Google Scholar 

  • Deutsch M, Meinhart J, Fischlein T et al.(1999) Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients: a 9-year experience. Surgery 126: 847–855

    CAS  PubMed  Google Scholar 

  • Dohmen PM, Lembcke A, Hotz H et al.(2002a) Ross operation with a tissue-engineered heart valve. Ann Thorac Surg 74: 1438–1442

    Article  PubMed  Google Scholar 

  • Dohmen PM, Ozaki S, Verbeken E et al.(2002b) Tissue engineering of an auto-xenograft pulmonary heart valve. Asian Cardiovasc Thoracic Ann 10: 25–30

    Google Scholar 

  • Dubost C, Allary M, Oeconomos N (1952) Resection of an aneurysm of the abdominal aorta: Restablishment of the continuity by a preserved human arterial graft, with result after five months. Arch Surg 64: 405–408

    CAS  Google Scholar 

  • Echt DS, Liebson PR, Mitchell LB et al.(1991) Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med 324: 781–788

    CAS  PubMed  Google Scholar 

  • Edelman ER (1999) Vascular tissue engineering: designer arteries. Circ Res 85: 1115–1117

    CAS  PubMed  Google Scholar 

  • Edwards WS, Tapp JS (1955) Chemically treated nylon tubes as arterial grafts. Surgery 38: 61–70

    CAS  PubMed  Google Scholar 

  • Eschenhagen T, Fink C, Remmers U et al.(1997) Three-dimensional reconstruction of embryonic cardiomyocytes on a collagen matrix: a new heart muscle model system. Faseb J 11: 683–694

    CAS  PubMed  Google Scholar 

  • Eschenhagen T, Zimmermann WH (2005) Engineering myocardial tissue. Circ Res 97: 1220–1231

    Article  CAS  PubMed  Google Scholar 

  • Fast VG, Darrow BJ, Saffitz JE et al.(1996) Anisotropic activation spread in heart cell monolayers assessed by high-resolution optical mapping. Role of tissue discontinuities. Circ Res 105: 115–127

    Google Scholar 

  • Feld Y, Melamed-Frank M, Kehat I et al.(2002) Electrophysiological modulation of cardiomyocytic tissue by transfected fibroblasts expressing potassium channels: a novel stragety to manipulate excitability. Circulation 105: 522–529

    Article  CAS  PubMed  Google Scholar 

  • Ferber D (1999) Lab-grown organs begin to take shape. Science 284: 422–423, 425

    Article  CAS  PubMed  Google Scholar 

  • Fink C, Ergun S, Kralisch D et al.(2000) Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. Faseb J 14: 669–679

    CAS  PubMed  Google Scholar 

  • Flinn WR, McDaniel MD, Yao JST, Fahey VA, Green D (1984) Antithrombin III deficiency as a reflection of dynamic protein metabolism in patients undergoing vascular reconstruction. J Vasc Surg 1: 888–895

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: the rapeutic implications. N Engl J Med 285: 1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Fuster V, Badimon L, Badimon JJ et al.(1992) The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 326: 242–250

    CAS  PubMed  Google Scholar 

  • Gaudesius G, Miragoli M, Thomas SP et al.(2003) Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ Res 93: 421–428

    Article  CAS  PubMed  Google Scholar 

  • Gepstein L (2003) Derivation and potential applications of human embryonic stem cells. Circ Res 91: 866–876

    Article  Google Scholar 

  • Gepstein L, Feld Y, Yankelson L (2004) Somatic gene and cell therapy strategies for the treatment of cardiac arrhythmias. Am J Physiol Heart Circ Physiol 286: 815–822

    Article  Google Scholar 

  • Ginalska G, Kowalczuk D, Osinska M (2005) A chemical method of gentamicin bonding to gelatine-sealed prosthetic vascular grafts. Int J Pharm 288: 131–140

    Article  CAS  PubMed  Google Scholar 

  • Ginalska G, Osinska M, Uryniak A et al.(2005) Antibacterial activity of gentamicin-bonded gelatin-sealed polyethylene terephthalate vascular prostheses. Eur J Vasc Endovasc Surg 29: 419–424

    CAS  PubMed  Google Scholar 

  • Goldstein S, Clarke DR, Walsh SP et al.(2000) Transpecies heart valve transplant: advanced studies of a bioengineered xeno-autograft. Ann Thorac Surg 70: 1962–1969

    Article  CAS  PubMed  Google Scholar 

  • Goyanes J (1906) Nuevos trabajos de cirurgia vascular. Siglo Med 53: 446–561

    Google Scholar 

  • Gross RE, Bill AH (1948) Preliminary observations on the use of the human arterial grafts in the treatment of certain cardiovascular defects. N Engl J Med 239: 578–591

    Article  CAS  PubMed  Google Scholar 

  • Gross RE, Bill AH, Preice EC (1949) Methods for preservation and transplantation of arterial grafts: Observations on arterial grafts in dogs; Report on transplantation of preserved arterial grafts in nine human cases. Surg Gynecol Obstet 88: 68–71

    Google Scholar 

  • Guido S, Tranquillo RT (1993) A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels. Correlation of fibroblast orientation and gel birefringence. J Cell Sci 105: 317–331

    PubMed  Google Scholar 

  • Gulbins H, Goldemund A, Uhlig A et al.(2003) Implantation of an autologously endothelialized homo graft. J Thorac Cardiovasc Surg 126: 890–891

    Article  PubMed  Google Scholar 

  • Hajjar RJ, del Monte F, Matsui T et al.(2000) Prospects for gene therapy for heart failure. Circ Res 86: 616–621

    CAS  PubMed  Google Scholar 

  • Hall HG, Farson DA, Bissell MJ (1982) Lumen formation by epithelial cell lines in response to collagen overlay: a morphogenetic model in culture. Proc Natl Acad Sci USA 79: 4672–4676

    Article  CAS  PubMed  Google Scholar 

  • Harrison JH (1958) Synthetic materia Is as vascular prostheses: 2. A comparative study of Nylon, Dacron, Orion, IvaIon sponge and Teflon in large vessels with tensile strength studies. Am J Surg 95: 16–24

    Article  CAS  PubMed  Google Scholar 

  • Hill JM, Syed MA, Arai AE et al.(2005) Outcomes and risks of granulocyte colony-stimulating factor in patients with coronary artery disease. J Am Coll Cardiol 46: 1643–1648

    Article  CAS  PubMed  Google Scholar 

  • Hoerstrup SP, Sodian R, Sperling JS et al.(2000) New pulsatile bio reactor for in vitro formation of tissue engineered heart valves. Tissue Eng 6: 75–79

    Article  CAS  PubMed  Google Scholar 

  • Hubbell JA, Massia SP, Desai NP et al.(1991) Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Biotechnology (NY) 9: 568–572

    Article  CAS  Google Scholar 

  • Hufnagel CA (1947) Preserved homologous arterial transplants. Bull Am Coll Surg 32: 231

    Google Scholar 

  • Huynh T, Abraham G, Murray J et al.(1999) Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nat Biotechnol 17: 1083–1086

    Article  CAS  PubMed  Google Scholar 

  • Isner JM (2002) Myocardial gene therapy. Nature 415: 234–239

    Article  CAS  PubMed  Google Scholar 

  • Isomatsu Y, Shin’oka T, Matsumura G et al.(2003) Extracardiac total cavo pulmo nary connection using a tissue-engineered graft. J Thorac Cardiovasc Surg 126: 1958–1962

    Article  PubMed  Google Scholar 

  • Kang HJ, Kim HS, Zhang SY et al.(2004) Effects of intracoronary infusion of peripheral blood stem-cells mobilized with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 363: 751–756

    Article  CAS  PubMed  Google Scholar 

  • Kehat I, Amit M, Gepstein A et al.(2001a) Functional integration of human embryonicstem cell derived cardiomyocytes with preexisting cardiac tissue: Implication for myocardial repair. Circulation 104 (Suppl II): 618

    Google Scholar 

  • Kehat I, Kenyagin-Karsenti D, Snir M et al.(2001b) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108: 407–414

    CAS  PubMed  Google Scholar 

  • Kofidis T, Akhyari P, Boublik J et al.(2002) In vitro engineering of heart muscle: artificial myocardial tissue. J Thorac Cardiovasc Surg 124: 63–69

    Article  CAS  PubMed  Google Scholar 

  • Kofidis T, de Bruin JL, Hoyt G et al.(2005) Myocardial restoration with embryonic stem cell bioartificial tissue transplantation. J Heart Lung Transplant 24: 737–744

    Article  PubMed  Google Scholar 

  • Kofidis T, Lenz A, Boublik J et al.(2003) Pulsatile perfusion and cardiomyocyte viability in a solid three-dimensional matrix. Biomaterials 24: 5009–5014

    Article  CAS  PubMed  Google Scholar 

  • Kolodney MS, Elson EL (1993) Correlation of myosin light chain phosphorylation with isometric contraction of fibroblasts. J Biol Chem 268: 23850–23855

    CAS  PubMed  Google Scholar 

  • Korecky B, Hai CM, Rakusan K (1982) Functional capillary density in normal and transplanted rat hearts. Can J Physiol Pharmacol 60: 23–32

    CAS  PubMed  Google Scholar 

  • Kunlin J (1949) Le traitement de L’ischémie oblitérante par la greffe veineuse longue. Arch Mal de Couer 42: 371–372

    Google Scholar 

  • Kuo MD, Waugh JM, Yuksel E et al.(1998) 1998 ARRS President’s Award. The potential of in vivo vascular tissue engineering for the treatment of vascular thrombosis: a preliminary report. American Roentgen Ray Society. AJR Am J Roentgenol 171: 553–558

    CAS  PubMed  Google Scholar 

  • Lachapelle K, Graham AM, Symes JF (1994) Antibacterial activity, antibiotic retention, and infection resistance of a rifam pin-impregnated gelatin-sealed Dacron graft. J Vasc Surg 19: 675–682

    CAS  PubMed  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260: 910–926

    Article  Google Scholar 

  • Laube HR, Duwe J, Rutsch W et al.(2000) Clinical experience with autologous endothelial cell-seeded polytetrafluoroethylene coronary artery by pass grafts. J Thoracic Cardiovasc Surg 120: 134–141

    Article  CAS  Google Scholar 

  • Leor J, Aboulafia-Etzion S, Dar A et al.(2000) Bioengineered cardiac grafts: A new approach to repair the infarcted myocardium? Circulation 102: III56–III61.

    CAS  PubMed  Google Scholar 

  • L’Heureux N, Dussere N, Konig G et al.(2006) Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 12: 361–365

    Article  PubMed  CAS  Google Scholar 

  • L’Heureux N, Paquet S, Labbe R et al.(1998) A completely biological tissue-engineered human blood vessel. Faseb J 12: 47–56

    PubMed  Google Scholar 

  • Li RK, Jia ZQ, Weisel RD et al.(1999) Survival and function of bioengineered cardiac grafts. Circulation 100: 1163–1169

    Google Scholar 

  • Linton RR, Darling RC (1962) Autogenous saphenous vein bypass grafts in femorapopliteal obliterative arterial disease. Surgery 51: 62–73

    CAS  PubMed  Google Scholar 

  • Makino S, Fukuda K, Miyoshi A et al.(1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103: 697–705

    Article  CAS  PubMed  Google Scholar 

  • Martin Y, Vermette P (2005) Bioreactors for tissue mass culture: design, characterization, and recent advances. Biomaterials 26: 7481–7503

    Article  CAS  PubMed  Google Scholar 

  • McDonald TF, Sachs HG, De Haan RL (1972) Development of sensitivity to tetrodotoxin in beating chick embryo hearts, single cells, and aggregates. Science 176: 1248–1250

    Article  CAS  PubMed  Google Scholar 

  • Menasche P, Hagege AA, Scorsin M et al.(2001) Myoblast transplantation for heart failure. Lancet 357: 279–280

    Google Scholar 

  • Menasche P, Hagege AA, Vilquin JT et al.(2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41: 1078–1083

    Article  PubMed  Google Scholar 

  • Miller JH, Foreman RK, Ferguson L et al.(1984) Interposition vein cuff for anastomosis of prosthesis to small artery. Aust N Z J Surg 54: 283–285

    Article  CAS  PubMed  Google Scholar 

  • Miwa H, Matsuda T (1994) An integrated approach to the design and engineering of hybrid arterial prostheses. J Vasc Surg 19: 658–667

    CAS  PubMed  Google Scholar 

  • Moscona AA (1959) Tissues from dissociated cells. Contrib Embryol Carnegie Inst 200: 132–134

    CAS  Google Scholar 

  • Moss AJ, Zarebe W, Hall WJ et al.(2002a) Multicenter Automatic Defibrillator Implantation Trial II Investigators. N Engl J Med 346: 877–883

    Article  PubMed  Google Scholar 

  • Moss AJ, Zarebe W, Hall WJ et al.(2002b) Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med 346: 877–883

    Article  PubMed  Google Scholar 

  • Muller-Ehmsen J, Peterson KL, Kedes L et al.(2002) Rebuilding a damaged heart: long-term survival of transplanted neonatal rat cardio-myocytes after myocardial infarction and effect on cardiac function. Circulation 105: 1720–1726

    Article  PubMed  Google Scholar 

  • Mummery C, van Oostwaard D, Doevendans P et al.(2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107: 2733–2740

    Article  CAS  PubMed  Google Scholar 

  • Murphy JB (1897) Resection of arteries and veins injured in continuity — end-to-end suture: Experimental results and clinical research. Med Res 31: 73–88

    Google Scholar 

  • Murugesan G, Ruegsegger MA, Kligman F et al.(2002) Integrin-dependent interaction of human vascular endothelial cells on biomimetic peptide surfactant polymers. Cell Commun Adhes 9: 59–73

    Article  CAS  PubMed  Google Scholar 

  • Nerem RM (1992) Tissue engineering in the USA. Med Biol Eng Comput 30: CE8–CE12

    Article  CAS  PubMed  Google Scholar 

  • Niklason LE, Gao J, Abbott WM et al.(1999) Functional arteries grown in vitro. Science 284: 489–493

    Article  CAS  PubMed  Google Scholar 

  • O’Brien MF, Goldstein S, Walsh S et al.(1999) The SynerGraft valve: a new acellular (nonglutaraldehyde-fixed) tissue heart valve for autologous recellularization: first experimental studies before clinical implantation. Semin Thorac Cardiovasc Surg 11: 194–200

    PubMed  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S et al.(2001) Bone marrow cells regenerate infarcted myocardium. Nature 410: 701–705

    Article  CAS  PubMed  Google Scholar 

  • Outdot J (1951) La greffe vasculaire dans les thromboses du Carrefour aortique. Presse Med 59: 234

    Google Scholar 

  • Outdot J, Beaconsfield P (1953) Thromboses of the aortic bifurcation treated by resection and homograft replacement. Arch Surg 66: 365–374

    Google Scholar 

  • Ozawa T, Mickle DA, Weisel RD et al.(2004) Tissue-engineered grafts matured in the right ventricular outflow tract. Cell Transplant 13: 169–177

    PubMed  Google Scholar 

  • Pavcnik D, Uchida BT, Timmermans HA et al.(2002) Percutaneous bio-prosthetic venous valve: A long-term study in sheep. J Vase Surg 35: 598–602

    Article  Google Scholar 

  • Pittenger MF, Mackay AM, Becks SC et al.(1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147

    Article  CAS  PubMed  Google Scholar 

  • Radisic M, Deen W, Langer R et al.(2005) Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am J Physiol Heart Circ Physiol 288: H1278–H1289

    Article  CAS  PubMed  Google Scholar 

  • Radisic M, Park H, Shing H et al.(2004) Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci USA 101: 18129–18134

    Article  CAS  PubMed  Google Scholar 

  • Rahlf G, Urban P, Bohle RM (1986) Morphology of healing in vascular prostheses. Thorac Cardiovasc Surg 34: 43–48

    Article  CAS  PubMed  Google Scholar 

  • Rakusan K, Flanagan MF, Geva T et al.(1992) Morphometry of human coronary capillaries during normal growth and the effect of age in left ventricular pressure-overlaod hypertrophy. Circulation 86: 38–46

    CAS  PubMed  Google Scholar 

  • Ratajska A, Ciszek B, Sowinska A (2003) Embryonic development of coronary vasculature in rats: corrosion casting studies. Anat Rec Discov Mol Cell Evol Biol 270: 109–116

    Article  Google Scholar 

  • Reinlib L, Field L (2000) Cell transplantation as future therapy for cardiovascular disease? A workshop of the National Heart, Lung, and Blood Institute. Circulation 101: E182–E187

    CAS  PubMed  Google Scholar 

  • Rook MB, van Ginneken AC, de Jonge B et al.(1992) Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs. Am J Physiol Cell Physiol 263: C959–C977

    CAS  Google Scholar 

  • Rosenberg N (1976) The bovine arterial graft and its several applications. Surg Gynecol Obstet 142: 104–108

    CAS  PubMed  Google Scholar 

  • Rosenberg NG, Henderson J (1956) The use of segmental arterial implants prepared by enzymatic modification of heterologous blood vessels. Surg Forum 6: 242

    PubMed  Google Scholar 

  • Ross D (1967) Homograft replacement of the aortic valve. B J Surg 54: 842–843

    Article  CAS  Google Scholar 

  • Sagnella S, Anderson E, Sanabria N et al.(2005) Human endothelial cell interaction with biomimetic surfactant polymers containing peptide ligands from the heparin binding domain of fibronectin. Tissue Eng 11: 226–236

    Article  CAS  PubMed  Google Scholar 

  • Sagnella S, Kligman F, Marchant RE et al.(2003) Biometrie surfactant polymers designed for shear-stable endothelialization on biomaterials. J Biomed Mater Res A 67: 689–701

    Article  PubMed  CAS  Google Scholar 

  • Sauvage LR, Berger KE, Mansfield PB et al.(1974) Future directions in the development of arterial prostheses for small and medium caliber arteries. Surg Clin North Am 54: 213–228

    CAS  PubMed  Google Scholar 

  • Schaner PJ, Martin ND, Tulenko TN et al.(2004) Decellularized vein as a potential scaffold for vascular tissue engineering. J Vase Surg 40: 146–153

    Article  Google Scholar 

  • Scheinman MM (1995) NASPE survey on catheter ablation. Pacing Clin Electrophysiol 18: 1474–1478

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CE, Baier JM (2000) Acellular vascular tissues: natural bio materia Is for tissue repair and tissue engineering. Biomaterials 21: 2215–2231

    Article  CAS  PubMed  Google Scholar 

  • Schram G, Pourrier M, Melnyk P et al.(2002) Differential distribution of cardiacion channel expression as a basis for regional specialization in electrical function. Circ Res 90: 939–950

    Article  CAS  PubMed  Google Scholar 

  • Seifalian AM, Tiwari A, Hamilton G et al.(2002) Improving the clinical patency of prosthetic vascular and coronary bypass g rafts: the role of seeding and tissue engineering. Artif Organs 26: 307–320

    Article  PubMed  Google Scholar 

  • Shimizu T, Sekine H, Isoi Y et al.(2006) Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng 12: 499–507

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Yamato M, Isoi Y et al.(2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90: e40

    Article  CAS  PubMed  Google Scholar 

  • Shinoka T, Breuer CK, Tanel RE (2002) Tissue engineered heart valves: autologous cell seeding on biodegradable polymer scaffold. Artif Organs 26: 402–406

    Article  PubMed  Google Scholar 

  • Shinoka T, Breuer CK, tanel RE et al.(1995) Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg 60: S513–S516

    Article  CAS  PubMed  Google Scholar 

  • Shinoka T, Shum-Tim D, Ma PX et al.(1998) Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg 115: 536–545; discussion: 545–546

    Article  CAS  PubMed  Google Scholar 

  • Shumaker HB, King H (1954) The use of pliable tubes as aortic substitutes in man, Surg Gynecol Obstet 94: 287–294

    Google Scholar 

  • Shum-Tim D, Stock U, Hrkach J et al.(1999) Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg 68: 2298–2304

    Article  CAS  PubMed  Google Scholar 

  • Siegman FA (1979) Use of the venous cuff for graft anastomosis. Surg Gynecol Obstet 148: 930

    CAS  PubMed  Google Scholar 

  • Simon P, Kasimir MT, Seebacher G et al.(2003) Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J Cardiothorac Surg 23: 1002–1006; discussion: 1006

    Article  CAS  PubMed  Google Scholar 

  • Simpson DG, Terracio L, Terracio M et al.(1994) Modulation of cardiac myocyte phenotype in vitro by the compositon and orientation of the extracellular matrix. J Cell Physiol 161: 89–105

    Article  CAS  PubMed  Google Scholar 

  • Skalak R, Fox C (1988) Tissue engineering. In: Skalak R, Fox C (eds) Workshop on tissue engineering, 26.–29.02.1988. Granlibakken, Lake Tahoe; Liss, New York

    Google Scholar 

  • Sodian R, Hoerstrup SP, Sperling JS et al.(2000) Early In vivo experience with tissue-engineered trileaflet heart valves. Circulation 102: III22–III29

    CAS  PubMed  Google Scholar 

  • Souren JE, Schneijdenberg C, Verkleij AJ et al.(1992) Factors controlling the rhythmic contraction of collagen gels by neonatal heart cells. In Vitro Cell Dev Biol 28a: 199–204

    Article  Google Scholar 

  • Sparks CH (1973) Silicone mandril method for growing reinforced autogenous femoro-popliteal artery grafts in situ. Ann Surg 177: 293–300

    Article  CAS  PubMed  Google Scholar 

  • Steinhoff G, Stock U, Karim N et al.(2000) Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: In vivo restoration of valve tissue. Circulation 102: III50–III55

    CAS  PubMed  Google Scholar 

  • Stock UA, Nagashima M, KhaliI PN et al.(2000) Tissue-engineered valved conduits in the pulmonary circulation. J Thorac Cardiovasc Surg 119: 732–740

    Article  CAS  PubMed  Google Scholar 

  • Sys SU, Pellegrino D, Mazza R et al.(1997) Endocardial endothelium in the avascular heart of the frog: morphology and role of nitric oxide. J Exp Biol 200: 3109–3118

    CAS  PubMed  Google Scholar 

  • Szilagyi DE, France LC, Smith RF (1958) Clinical use of an elastic Dacron prosthesis. Arch Surg 77: 538–551

    CAS  Google Scholar 

  • Szilagyi DE, McDonald RT, Smith RF (1957) Biologic fate of human arterial homografts. Arch Surg 75: 506–529

    CAS  Google Scholar 

  • Taylor DA, Atkins BZ, Hungspreugs P et al.(1998) Regenerating functional myocardium; improved performance after skeletal myoblast transplantation. Nat Med 4: 929–933

    Article  CAS  PubMed  Google Scholar 

  • Taylor RS, Loh A, McFarland RJ et al.(1992) Improved technique for polytetrafluoroethylene bypass grafting; long-term results using anastomotic vein patches. Br J Surg 79: 348–354

    Article  CAS  PubMed  Google Scholar 

  • Teebken OE, Haverich A (2002) Tissue engineering of small diameter vascular grafts. Eur J Vasc Endovasc Surg 23: 475–485

    Article  PubMed  Google Scholar 

  • Teebken OE, Wilhelmi M, Haverich A (2005) Tissue Engineering für Herzklappen und Gefäße. Der Chirurg 5: 453–466

    Article  Google Scholar 

  • Teebken OE, Bader A, Steinhoff G et al.(2000) Tissue engineering of vascular grafts: human cell seeding of decellularised porcine matrix. Eur J Vasc Endovasc Surg 19: 381–286

    Article  CAS  PubMed  Google Scholar 

  • Terracio L, Miller B, Borg TK (1988) Effects of cyclic mechanical stimulation of the cellular components of the heart: in vitro. In Vitro Cell Dev Biol 24: 53–58

    Article  CAS  PubMed  Google Scholar 

  • Torbert J, Ronziere MC (1984) Magnetic alignment of collagen during self-assembly. Biochem J 219: 1057–1059

    Google Scholar 

  • Tranquillo RT, Girton TS, Bromberek BA et al.(1996) Magnetically orientated tissue-equivalent tubes: application to a circumferentially orientated media-equivalent. Biomaterials 17: 349–357

    Article  CAS  PubMed  Google Scholar 

  • Tucker OP, Syburra T, Augstburger M et al.(2002) Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. Small intestine without mucosa as a growing vascular conduit: a porcine experimental study. J Thorac Cardiovasc Surg 124: 1165–1175

    Article  PubMed  Google Scholar 

  • Tyrrell MR, Wolfe JH (1991) New prosthetic venous collar anastomotic technique: combining the best of other procedures. Br J Surg 78: 1016–1017

    Article  CAS  PubMed  Google Scholar 

  • Vacanti JP (1988) Beyond transplantation. Third annual Samuel Jason Mixter lecture. Arch Surg 123: 545–549

    CAS  PubMed  Google Scholar 

  • Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354 (Suppl 1): SI32–SI34

    PubMed  Google Scholar 

  • Vandenburgh HH, Karlisch P, Farr L (1988) Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro Cell Dev Biol 24: 166–174

    Article  CAS  PubMed  Google Scholar 

  • Vandenburgh HH, Swasdison S, Karlisch P (1991) Computer-aided mechanogenesis of skeletal muscle organs from single cells in vitro. Faseb J 5: 2860–2867

    CAS  PubMed  Google Scholar 

  • Vara DS, Salacinski HJ, Kannan RY et al.(2005) Cardiovascular tissue engineering: state of t he art. Pathol Biol (Paris) 53: 599–612

    Google Scholar 

  • Vogt PR, Stallmach T, Niederhauser U et al.(1999) Explanted cryopre-served allografts: a morphological and immunohistochemical comparison between arterial allografts and allograft heart valves from infants and adults. Eur J Cardiothorac Surg 15: 639–644; discussion: 644–645

    Article  CAS  PubMed  Google Scholar 

  • Voorhees AB, Jaretzki A, Blakemore AH (1952) The use of tube constructed from Vinyon “n” cloth in bridging arterial defects. Ann Surg 135: 332–336

    Article  PubMed  Google Scholar 

  • Weinberg CB, Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231: 397–400

    Article  CAS  PubMed  Google Scholar 

  • Wilhelmi MH, Mertsching H, Wilhelmi M et al.(2003a) Role of inflammation in allogeneic and xenogeneic heart valve degeneration: immunohistochemical evaluation of inflammatory endothelial cell activation. J Heart Valve Dis 12: 520–526

    PubMed  Google Scholar 

  • Wilhelmi MH, Rebe P, Leyh R et al.(2003b) Role of inflammation and ischemia after implantation of xenogeneic pulmonary valve conduits: histological evaluation after 6 to 12 months in sheep. Int J Art if Organs 26: 411–420

    CAS  Google Scholar 

  • Williams SK (1995) Endothelial cell transplantation. Cell Transplant 4: 401–410

    Article  CAS  PubMed  Google Scholar 

  • Wilson GJ, Courtman DW, Klement P et al.(1995) Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement. Ann Thorac Surg 60: S353–S358

    Article  CAS  PubMed  Google Scholar 

  • Wollert KC, Meyer GP, Lotz J et al, (2004) Intracoronary autologous bonemarrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364: 141–148

    Article  PubMed  Google Scholar 

  • Yoon YS, Park JS, Tkebuchava T et al.(2004) Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation 109: 3154–3157

    Article  PubMed  Google Scholar 

  • Zehr KJ, Yagubyan M, Connolly HM et al.(2005) Aortic root replacement with a novel decellularized cryopreserved aortic homograft: ostoperative immunoreactivity and early results. J Thorac Cardiovasc Surg 130: 1010–1015

    Article  PubMed  Google Scholar 

  • Zimmermann WH, Eschenhagen T (2003) Cardiac tissue engineering for replacement therapy. Heart Fail Rev 8: 259–269

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann WH, Fink C, Kralisch D et al.(2000) Three-dimensional engineerined heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng 68: 106–114

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann WH, Schneiderbanger K, Schubert P et al.(2002) Tissue engineering of a differentiated cardiac muscle construct. Circ Res 90: 223–230

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H et al.(2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7: 211–228

    Article  CAS  PubMed  Google Scholar 

  • Zund G et al.(1998) Tissue engineering: a new approach in cardiovascular surgery: Seeding of human fibroblasts followed by human endothelial cells on resorbable mesh. Eur J Cardiothorac Surg 13: 160–164

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haverich, A., Wilhelmi, M. (2010). Kardiovaskuläres “tissue engineering”. In: Herzchirurgie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79713-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79713-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79712-8

  • Online ISBN: 978-3-540-79713-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics