Skip to main content
  • 8697 Accesses

Zusammenfassung

Die Substanzgruppe der Inhalationsanästhetika besteht physikochemisch aus Gasen oder Dämpfen, die über die Lungenatmung in den Körper aufgenommen werden. Man unterscheidet streng genommen die eigentlichen Gase wie das Lachgas (Distickstoffoxid, N2O) und das Edelgas Xenon sowie die sog. volatilen Anästhetika Isofluran, Desfluran und Sevofluran, die bei Raumtemperatur als Flüsigkeiten vorliegen und erst in den gasförmigen Zustand durch Verdunstung oder Verdampfung überführt werd.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Ausschuss für Gefahrstoffe (2005) Technische Regeln für Gefahrstoffe -TRGS 905. Bundesarbeitsblatt

    Google Scholar 

  2. Ausschuss für Gefahrstoffe (2006) Technische Regeln für Gefahrstoffe -TRGS 900. Bundesarbeitsblatt

    Google Scholar 

  3. Axelsson G, Ahlborg G, Bodin L (1996) Shift work, nitrous oxide exposure, and spontaneous abortion among Swedish midwives. Occup Environ Med 53:374–378

    Article  PubMed  CAS  Google Scholar 

  4. Baden JM, Rice SA (1994) Metabolism and Toxicity. In: Miller RD (ed), Anesthesia. Churchill Livingstone, New York, pp 157–183

    Google Scholar 

  5. Basler Af Rohrborn G (1981) Lack of mutagenic effects of halothane in mammals in vivo. Anesthesiology 55:143–147

    Article  PubMed  CAS  Google Scholar 

  6. Bassi A et al. (2008) Cochrane Database Syst Rev. CD 006313

    Google Scholar 

  7. Bedford RF, Ives HE (2000) The renal safety of sevoflurane. Anesth Analg 90:505–508

    Article  PubMed  CAS  Google Scholar 

  8. Bito H, Ikeuchi Y, Ikeda K (1997) Effects of low-flow sevoflurane anesthesia on renal function: comparison with high-flow sevoflurane anesthesia and low-flow isoflurane anesthesia. Anesthesiology 86:1231–1237

    Article  PubMed  CAS  Google Scholar 

  9. Bock M, Klippel K, Nitsche B et al. (2000) Rocuronium potency and recovery characteristics during steady-state desflurane, sevoflurane, isoflurane or propofol anaesthesia. Br J Anaesth 84: 43–47

    Article  PubMed  CAS  Google Scholar 

  10. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (1997) Vierter Bericht der Bundesregierung an den Deutschen Bundestag über Maßnahmen zum Schutz der Ozonschicht. 13/8273:1–63

    Google Scholar 

  11. Buring JE, Hennekens CH, Mayrent SL et al. (1985) Health experiences of operating room personnel. Anesthesiology 62:325–330

    Article  PubMed  CAS  Google Scholar 

  12. Cahalan MK, Weiskopf RB, Eger El et al. (1991) Hemodynamic effects of desflurane/nitrous oxide anesthesia in volunteers. Anesth Analg 73:157–164

    Article  PubMed  CAS  Google Scholar 

  13. Carpenter RL, Eger El, Johnson BH, Unadkat JD, Sheiner LB (1986) The extent of metabolism of inhaled anesthetics in humans. Anesthesiology 65:201–205

    Article  PubMed  CAS  Google Scholar 

  14. Carton EG, Housmans PR (1992) Role of transsarcolemmal Ca2+ entry in the negative inotropic effect of nitrous oxide in isolated ferret myocardium. Anesth Analg 74:575–579

    Article  PubMed  CAS  Google Scholar 

  15. Chang WP, Lee S, Tu J, Hseu S (1996) Increased micronucleus formation in nurses with occupational nitrous oxide exposure in operating theaters. Environ Mol Mutagen 27:93–97

    Article  PubMed  CAS  Google Scholar 

  16. Dale O, Husum B (1994) Nitrous oxide: at threat to personnel and global environment? Acta Anaesthesiol Scand 38:777–779

    Article  PubMed  CAS  Google Scholar 

  17. Daunderer M, Schwender D (2001) [Depth of anesthesia, awareness and EEG] Anaesthesist 50:231–241

    Google Scholar 

  18. De Hert SG, Cromheecke S, ten Broecke PW et al. (2003) Effects of propofol, desflurane, and sevoflurane on recovery of myocardial function after coronary surgery in elderly high-risk patients. Anesthesiology 99:314–323

    Article  PubMed  Google Scholar 

  19. Ebert TJ, Kampine JP (1989) Nitrous oxide augments sympathetic outflow: direct evidence from human peroneal nerve recordings. Anesth Analg 69:444–449

    Article  PubMed  CAS  Google Scholar 

  20. Ebert TJ, Messana LD, UhrichTD, Staacke TS (1998) Absence of renal and hepatic toxicity after four hours of 1.25 minimum alveolar anesthetic concentration sevoflurane anesthesia in volunteers. Anesth Analg 86: 662–667

    PubMed  CAS  Google Scholar 

  21. Eger EI (1974) Anesthetic Uptake and Action. Williams & Wilkins, Baltimore

    Google Scholar 

  22. Eger El, Eisenkraft JB, Weiskopf RB (2003) Pharmakokinetik, Die Pharmakologie der Inhalationsanästhesie. Baxter, Deutschland, S. 41–67

    Google Scholar 

  23. Engelhard K, Werner C, Reeker W et al. (1999) Desflurane and isoflurane improve neurological outcome after incomplete cerebral ischaemia in rats. Br J Anaesth 83:415–421

    Article  PubMed  CAS  Google Scholar 

  24. Frink EJ, Malan TP, Isner RJ et al. (1994) Renal concentrating function with prolonged sevoflurane or enflurane anesthesia in volunteers. Anesthesiology 80:1019–1025

    Article  PubMed  CAS  Google Scholar 

  25. Fröhlich D, Rothe G, Schwall B et al. (1997) Effects of volatile anaesthetics on human neutrophil oxidative response to the bacterial peptide FMLP1. Br J Anaesth 78:718–723

    Article  PubMed  Google Scholar 

  26. Fröhlich D, Rothe G, Wittmann S et al. (1998) Nitrous oxide impairs the neutrophil oxidative response. Anesthesiology 88: 1281–1290

    Article  PubMed  Google Scholar 

  27. Funk W, Gruber M, Wild K, Hobbhahn J (1999) Dry soda lime markedly degrades sevoflurane during simulated inhalation induction. Br J Anaesth 82:193–198

    Article  PubMed  CAS  Google Scholar 

  28. Funk W, Moldaschl J, Fujita Y, Taeger K, Hobbhahn J (1996) [Sevoflurane or halothane in inhalational anesthesia induction in childhood. Anesthesia quality and fluoride level]. Anaesthesist 45:22–30

    Article  PubMed  CAS  Google Scholar 

  29. Gueugniaud PY, Hanouz JL, Martino JM et al. (1990) Interaction of halogenated anesthetics with dobutamine in rat myocardium. Anesthesiology 90:1663–1670

    Article  Google Scholar 

  30. Habre W, Wildhaber JH, Sly PD (1997) Prevention of methacholine-induced changes in respiratory mechanics in piglets: a comparison of sevoflurane and halothane. Anesthesiology 87: 585–590

    Article  PubMed  CAS  Google Scholar 

  31. Hanouz JL, Vivien B, Gueugniaud PY et al. (1998) Interaction of isoflurane and sevoflurane with alpha- and beta-adrenoceptor stimulations in rat myocardium. Anesthesiology 88:1249–1258

    Article  PubMed  CAS  Google Scholar 

  32. Hettrick DA, Pagel PS, Warltier DC (1996) Desflurane, sevoflurane, and isoflurane impair canine left ventricular-arterial coupling and mechanical efficiency. Anesthesiology 85:403–413

    Article  PubMed  CAS  Google Scholar 

  33. Hoerauf K, Koller C, Fröhlich D,Taeger K, Hobbhahn J (1995) [Nitrous oxide exposure to personnel in a recovery room with modern climate control]. Anaesthesist 44:590–594

    Article  PubMed  CAS  Google Scholar 

  34. Husum B, Wulf HC, Mathiassen F, Niebuhr E (1986) Sister chromatid exchanges in lymphocytes of dentists and chairside assistants: no indication of a mutagenic effect of exposure to waste nitrous oxide. Community Dent Oral Epidemiol 14:148–151

    Article  PubMed  CAS  Google Scholar 

  35. Ishibe Y, Gui X, Uno H et al. (1993) Effect of sevoflurane on hypoxic pulmonary vasoconstriction in the perfused rabbit lung. Anesthesiology 79:1348–1353

    Article  PubMed  CAS  Google Scholar 

  36. Jin L, BaillieTA, Davis MR, Kharasch ED (1995) Nephrotoxicity of sevoflurane compound A [fluoromethyl-2,2-difluoro-1-(trifluoro-methyl)vinyl ether] in rats: evidence for glutathione and cysteine conjugate formation and the role of renal cysteine conjugate beta-Iyase. Biochem Biophys Res Commun 210:498–506

    Article  PubMed  CAS  Google Scholar 

  37. Julier K, da Silva R, Garcia C et al. (2003) Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: a double-blinded, placebo-controlled, multicenter study. Anesthesiology 98:1315–1327

    Article  PubMed  CAS  Google Scholar 

  38. Katoh T, Suguro Y, Ikeda T, Kazama T, Ikeda K (1993) Influence of age on awakening concentrations of sevoflurane and isoflurane. Anesth Analg 76:348–352

    PubMed  CAS  Google Scholar 

  39. Katoh T, Uchiyama T, Ikeda K (1994) Effect of fentanyl on awakening concentration of sevoflurane. Br J Anaesth 73:322–325

    Article  PubMed  CAS  Google Scholar 

  40. Kehl F, Krolikowski JG, Tessmer JP et al. (2002) Increases in coronary collateral blood flow produced by sevoflurane are mediated by calcium-activated potassium (BKCa) channels in vivo. Anesthesiology 97:725–731

    Article  PubMed  CAS  Google Scholar 

  41. Kehl F, Shen H, Moreno C et al. (2002) Isoflurane-induced cerebral hyperemia is partially mediated by nitric oxide and epoxyeicosatrienoic acids in mice in vivo. Anesthesiology 97: 1528–1533

    Article  PubMed  CAS  Google Scholar 

  42. Kehl F, Krolikowski JG, Mraovic B et al. (2002) Is isoflurane-induced preconditioning dose related? Anesthesiology 96:675–680

    Article  PubMed  CAS  Google Scholar 

  43. Kehl F, Payne RS, Roewer N, Schurr A (2004) Sevoflurane-induced preconditioning of rat brain in vitro and the role of KATP channels. Brain Res 1021:76–81

    Article  PubMed  CAS  Google Scholar 

  44. Kersten JR, Schmeling TJ, Hettrick DA et al. (1996) Mechanism of myocardial protection by isoflurane. Role of adenosine triphosphate-regulated potassium (KATP) channels. Anesthesiology 85: 794–807

    Article  PubMed  CAS  Google Scholar 

  45. Kharasch ED, Frink EJ, Zager R et al. (1997) Assessment of low-flow sevoflurane and isoflurane effects on renal function using sensitive markers of tubular toxicity. Anesthesiology 86: 1238–1253

    Article  PubMed  CAS  Google Scholar 

  46. Kharasch ED, Hankins DC,Thummel KE (1995) Human kidney methoxyflurane and sevoflurane metabolism. Intrarenal fluoride production as a possible mechanism of methoxyflurane nephrotoxicity. Anesthesiology 82:689–699

    Article  PubMed  CAS  Google Scholar 

  47. Kharasch ED,Thummel KE (1993) Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane. Anesthesiology 79:795–807

    Article  PubMed  CAS  Google Scholar 

  48. Lamberti L, Bigatti P, Ardito G, Armellino F (1989) Chromosome analysis in operating room personnel. Mutagenesis 4:95–97

    Article  PubMed  CAS  Google Scholar 

  49. Langbein T, Sonntag H, Trapp D (1999) Volatile anaesthetics and the atmosphere: atmospheric lifetimes and atmospheric effects of halothane, enflurane, isoflurane, desflurane and sevoflurane. Br J Anaesth 82:66–73

    Article  PubMed  CAS  Google Scholar 

  50. Lange M, Smul TM, Redel A (2008) Differential role of calcium/calmodulin-dependent protein kinase II in desflurane-induced preconditioning and cardioprotection by metoprolol: metoprolol blocks desflurane-induced preconditioning. Anesthesiology 109:72–80

    Article  PubMed  CAS  Google Scholar 

  51. Lesitsky MA, Davis S, Murray PA (1998) Preservation of hypoxic pulmonary vasoconstriction during sevoflurane and desflurane anesthesia compared to the conscious state in chronically instrumented dogs. Anesthesiology 89:1501–1508

    Article  PubMed  CAS  Google Scholar 

  52. Lischke V, Westphal K, Behne M et al. (1998) Thoracoscopic microsurgical technique for vertebral surgery-anesthetic considerations Acta Anaesthesiol Scand 42:1199–1204

    Article  PubMed  CAS  Google Scholar 

  53. Lowe D, Hettrick DA, Pagel PS, Warltier DC (1996) Influence of volatile anesthetics on left ventricular afterload in vivo. Differences between desflurane and sevoflurane. Anesthesiology 85: 112–120

    Article  PubMed  CAS  Google Scholar 

  54. Martin JL, Plevak DJ, Flannery KD (1995) Hepatotoxicity after desflurane anesthesia. Anesthesiology 83:1125–1129

    Article  PubMed  CAS  Google Scholar 

  55. Marx GF, Kim Yl, Lin CC, Halevy S, Schulman H (1978) Postpartum uterine pressures under halothane or enflurance anesthesia. Obstet Gynecol 51:695–698

    PubMed  CAS  Google Scholar 

  56. Mazze Rl, Callan CM, Galvez ST, Delgado-Herrera L, Mayer DB (2000) The effects of sevoflurane on serum creatinine and blood urea nitrogen concentrations: a retrospective, twenty-two-center, comparative evaluation of renal function in adult surgical patients. Anesth Analg 90: 683–688

    Article  PubMed  CAS  Google Scholar 

  57. Mazze Rl, Woodruff RE, Heerdt ME (1982) Isoniazid-induced enflurane defluorination in humans. Anesthesiology 57:5–8

    Article  PubMed  CAS  Google Scholar 

  58. Mielck F, Stephan H, Weyland A, Sonntag H (1999) Effects of one minimum alveolar anesthetic concentration sevoflurane on cerebral metabolism, blood flow, and CO2reactivity in cardiac patients. Anesth Analg 89:364–369

    PubMed  CAS  Google Scholar 

  59. Moir DD (1970) Anaesthesia for Caesarean section. An evaluation of a method using low concentrations of halothane and 50 per cent of oxygen. Br J Anaesth 42:136–142

    Article  PubMed  CAS  Google Scholar 

  60. Moon RE (1994) Cause of poisoning, relation to halogenated anesthetics still not clear. APSF Newsletter 9

    Google Scholar 

  61. Nunn JF (1987) Clinical aspects of the interaction between nitrous oxide and vitamin B12. Br J Anaesth; 59:3–13

    Article  PubMed  CAS  Google Scholar 

  62. Pagel PS, Hettrick DA, Lowe D, Tessmer JP, Warltier DC (1995) Desflurane and isoflurane exert modest beneficial actions on left ventricular diastolic function during myocardial ischemia in dogs. Anesthesiology 83:1021–1035

    Article  PubMed  CAS  Google Scholar 

  63. Pandit JJ, Manning-Fox J, Dorrington KL, Robbins PA (1999) Effects of subanaesthetic sevoflurane on ventilation. 2: Response to acute and sustained hypoxia in humans. Br J Anaesth 83: 210–216

    Article  PubMed  CAS  Google Scholar 

  64. Park KW, Dai HB, Lowenstein E, Sellke FW (1998) Epithelial dependence of the bronchodilatory effect of sevoflurane and desflurane in rat distal bronchi. Anesth Analg 86:646–651

    PubMed  CAS  Google Scholar 

  65. Payne RS, Akca O, Roewer N, Schurr A, Kehl F (2005) Sevoflura-ne-induced preconditioning protects against cerebral ischemic neuronal damage in rats. Brain Res 1034:147–152

    Article  PubMed  CAS  Google Scholar 

  66. Peduto VA, Peli S, Amicucci G et al. (1998) Maintenance of and recovery from anaesthesia in elderly patients. A clinical comparison between sevoflurane and isoflurane. Minerva Anestesiol 64:18–25

    PubMed  CAS  Google Scholar 

  67. Raucy JL, Lasker JM, Kraner JC et al. (1991) Induction of cytochrome P450IIE1 in the obese overfed rat. Mol Pharmacol 39:275–280

    PubMed  CAS  Google Scholar 

  68. Roissant R, Werner C, Zwissler B (2008) Die Anästhesiologie, 2.Auflg. Springer, Heidelberg Berlin

    Book  Google Scholar 

  69. Rowland AS, Baird DD, Shore DL et al. (1995) Nitrous oxide and spontaneous abortion in female dental assistants. Am J Epidemiol 141:531–538

    PubMed  CAS  Google Scholar 

  70. Scheller MS, Nakakimura K, Fleischer JE, Zornow MH (1990) Cerebral effects of sevoflurane in the dog: comparison with isoflurane and enflurane. Br J Anaesth 65:388–392

    Article  PubMed  CAS  Google Scholar 

  71. Spence AA (1987) Environmental pollution by inhalation anaesthetics 1. Br J Anaesth 59: 96–103

    Article  PubMed  CAS  Google Scholar 

  72. Stern RCT, owler SC, White PF, Evers AS (1990) Elimination kinetics of sevoflurane and halothane from blood, brain, and adipose tissue in the rat Anesth Analg 71:658–664

    Article  PubMed  CAS  Google Scholar 

  73. Taeger,K, G Rodig, U Finsterer (1994) Grundlagen der Anästhesiologie und Intensivmedizin für Fachpflegepersonal. Abbott

    Google Scholar 

  74. Wappler F, Rossaint R, Baumert J et al. (2007) Multicenter randomized comparison of xenon and isoflurane on left ventricular function in patients undergoing elective surgery. Anesthesiology 106:463–471

    Article  PubMed  CAS  Google Scholar 

  75. Watts AD, Luney SR, Lee D, Gelb AW (1998) Effect of nitrous oxide on cerebral blood flow velocity after induction of hypocapnia. J Nerrosueg ansstheiol 20:14–145

    Google Scholar 

  76. Weiskopf RB, Eger El, Noorani M, Daniel M (1994) Fentanyl, esmolol, and clonidine blunt the transient cardiovascular stimulation induced by desflurane in humans. Anesthesiology 81: 1350–1355

    Article  PubMed  CAS  Google Scholar 

  77. Weiskopf RB, Eger El, Daniel M, Noorani M (1995) Cardiovascular stimulation induced by rapid increases in desflurane concentration in humans results from activation of tracheopulmonary and systemic receptors. Anesthesiology 83:1173–1178

    Article  PubMed  CAS  Google Scholar 

  78. Wiesner G, Wild K, Schwurzer S, Merz M, Hobbhahn J (1996) [Serum fluoride concentrations and exocrine kidney function with sevoflurane and enflurane. An open, randomized, comparative phase 111 study of patients with healthy kidneys]. Anaesthesist 45:31–36

    Article  PubMed  CAS  Google Scholar 

  79. Wolf AR, Lawson RA, Dryden CM, Davies FW (1996) Recovery after desflurane anaesthesia in the infant: comparison with isoflurane. Br J Anaesth 76:362–364

    Article  PubMed  CAS  Google Scholar 

  80. Wulf H, Ledowski T, Linstedt U, Proppe D, Sitzlack D (1998) Neuromuscular blocking effects of rocuronium during desflurane, isoflurane, and sevoflurane anaesthesia. Can J Anaesth 45: 526–532

    Article  PubMed  CAS  Google Scholar 

  81. Yamada T,Takeda J, Koyama K et al. (1994) Effects of sevoflurane, isoflurane, enflurane, and halothane on left ventricular diastolic performance in dogs. J Cardiothorac Vase Anesth 8: 618–624

    Article  CAS  Google Scholar 

  82. Yamakage M, Hirshman CA, Croxton TL (1995) Volatile anesthetics inhibit voltage-dependent Ca2+ channels in porcine tracheal smooth muscle cells. Am J Physiol 268: L187-L191

    PubMed  CAS  Google Scholar 

  83. Zang, FX, Eger, El (1994) UCSF Research Shows CO Comes from CO2_Absorbent. APSF Newsletter 9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kehl, F. (2011). Inhalationsanästhetika. In: Tonner, P.H., Hein, L. (eds) Pharmakotherapie in der Anästhesie und Intensivmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79156-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79156-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79155-3

  • Online ISBN: 978-3-540-79156-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics