Skip to main content

Biologische Grundlagen von Geschlechtsunterschieden

  • Chapter
Gehirn und Geschlecht

Auszug

Wir gehen von der Annahme aus, dass es zwei Geschlechter gibt. Für viele Menschen scheint diese Tatsache auf der Hand zu liegen. Die Angelegenheit ist jedoch komplizierter, als man meinen könnte. Wenn man männlich und weiblich anhand der sozialen Rollen des Individuums definieren müsste, könnte man zu der Ansicht gelangen, dass man männlich und weiblich kaum als klare Dichotomie sehen kann. Man kann Individuen begegnen (und das sind möglicherweise viele), die in ihrer sozialen Rolle in der Mitte zwischen dem typischen Mann und der typischen Frau liegen. Die meisten Menschen zeigen im Sozialverhalten eine Mischung aus maskulinen und femininen Merkmalen. Wenn man dieser Auffassung folgt, kann man »Mann« und »Frau« lediglich als die zwei Endpunkte eines Kontinuums betrachten, nicht aber als getrennt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Agate RJ, Grisham W, Wade J, Mann S, Wingfield J, Schanen C et al. (2003) Neural not gonadal origin of brain sex differences in a gynandromorphic finch. Proceedings of the National Academy of Sciences USA 100:4873–4878

    Article  Google Scholar 

  • Armstrong JF, Kaufman MH, Harrison DJ, Clarke AR (1995) High-frequency developmental abnormalities in p53-deficient mice. Current Biology 5:931–936

    Article  PubMed  Google Scholar 

  • Arnold AP, Burgoyne PS (2004) Are XX and XY brain cells intrinsically different? Trends in Endocrinology and Metabolism 15:6–11

    Article  PubMed  Google Scholar 

  • Arnold AP, Gorski RA (1994) Gonadal steroid induction of structural sex differences in the CNS. Annu Rev Neurosci 7:413–4142

    Article  Google Scholar 

  • Arnold AP, Schlinger BA (1993) Sexual differentiation of brain and behavior: the zebra finch is not Just a flying rat. Brain Behav Evol 42:231–241

    PubMed  Google Scholar 

  • Arnold AP (1975) The effects of castration and androgen replacement on song, courtship, and aggression in zebra finches (Poephila guttata). J Exp Zool 191:309–326

    Article  PubMed  Google Scholar 

  • Arnold AP (1980) Sexual differences in the brain. Am Sci 68:165–173

    PubMed  Google Scholar 

  • Arnold LE (1996) Sex differences in ADHD: Conference summary. J Abnorm Child Psychol 24:555–569

    Article  PubMed  Google Scholar 

  • Arnold AP (1997) Sexual differentiation of the Zebra Finch song system: Positive evidence, negative evidence, null hypotheses, and a paradigm shift. J Neurobiol 33:572–584

    Article  PubMed  Google Scholar 

  • Bartolomei MS, Tilghman SM (1997)Genomic imprinting in mammals. Annu Rev Genet 31:493–525

    Article  PubMed  Google Scholar 

  • Becker JB, Arnold AP, Berkley KJ, Blaustein JD, Eckel LA, Hampson E et al. (2005) Strategies and methods for research on sex differences in brain and behavior. Endocrinol 146:1650–1673

    Article  Google Scholar 

  • Breedlove SM, Arnold AP (1980) Hormone accumulation in a sexually dimorphic motor nucleus of the rat spinal cord. Science 210:564–566

    Article  PubMed  Google Scholar 

  • Breedlove SM, Arnold AP (1983) Hormonal control of a developing neuromuscular system: I. Complete demasculinization of the male rat spinal nucleus of the bulbocavernosus using the antiandrogen flutamide. J Neurosci 3:417–423

    PubMed  Google Scholar 

  • Carrel L, Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434:400–404

    Article  PubMed  Google Scholar 

  • Carroll ME, Lynch WJ, Roth ME, Morgan AD, Cosgrove KP (2004) Sex and estrogen influence drug abuse. Trends Pharmacol Sci 2004, 25:273–279

    Article  PubMed  Google Scholar 

  • Carruth LL, Reisert I, Arnold AP (2002) Sex chromosome genes directly affect brain sexual differentiation. Nat Neurosci 5:933–934

    Article  PubMed  Google Scholar 

  • Chen XQ, Agate RJ, Itoh Y, Arnold AP (2005) Sexually dimorphic expression of trkB, a Z-linked gene, in early posthatch zebra finch brain. Proc Natl Acad Sci USA 102:7730–7735

    Article  PubMed  Google Scholar 

  • Cooper DW (1993) The evolution of sex determination, sex chromosome dimorphism, adn X-inactivation in therian mammals: A comparison of metatherians (marsupials) and eutherians (»placentals«). In: Reed KC, Graves JAM (eds) Sex chromosomes and sex determining genes. Harwood Academic Publishers, pp. 183–200

    Google Scholar 

  • Davies W, Isles AR, Burgoyne PS, Wilkinson LS (2006) X-linked imprinting: effects on brain and behaviour. BioEssays 28:35–44

    Article  PubMed  Google Scholar 

  • DeVries GJ, Panzica GC (2006) Sexual differentiation of central vasopressin and vasotocin systems in vertebrates: Different mechanisms, similar endpoints. Neurosci 138:947–955

    Article  Google Scholar 

  • De Vries GJ, Simerly RB (2002) Anatomy, development, and function of sexually dimorphic neural circuits in the mammalian brain. In: Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT (eds) Hormones, brain, and behavior. Academic Press, San Diego, pp. 137–191

    Google Scholar 

  • De Vries GJ, Rissman EF, Simerly RB, Yang LY, Scordalakes EM, Auger CJ et al. (2002) A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. J Neurosci 22:9005–9014

    PubMed  Google Scholar 

  • Dewing P, Shi T, Horvath S, Vilain E (2003) Sexually dimorphic gene expression in mouse brain precedes gonadal differentiation. Brain Res Mol Brain Res 118:82–90

    Article  PubMed  Google Scholar 

  • Dewing P, Chiang CW, Sinchak K, Sim H, Fernagut PO, Kelly S et al. (2006) Direct regulation of adult brain function by the male-specific factor SRY. Curr Biol 16:415–420

    Article  PubMed  Google Scholar 

  • Dittrich F, Feng Y, Metzdorf R, Gahr M (1999) Estrogen-inducible, sex-specific expression of brain-derived neurotrophic factor mRNA in a forebrain song control nucleus of the juvenile zebra finch. Proc Natl Acad Sci USA, 96:7986–7991

    Article  Google Scholar 

  • Eastwood JA, Doering LV (2005) Gender differences in coronary artery disease. J Cardiovasc Nurs 20:340–351

    PubMed  Google Scholar 

  • Elbaz A, Bower JH, Maraganore DM, McDonnell SK, Peterson BJ, Ahlskog JE et al. (2002) Risk tables for parkinsonism and Parkinson’s disease. J Clin Epidemiol 55:25–31

    Article  PubMed  Google Scholar 

  • Ford CE, Jones KW, Polani PE, de Almeida JC, Briggs JH (1959) A sex chromosome anomaly in a case of gonadal dysgenesis (Turner’s syndrome). Lancet 1:711–713

    Article  PubMed  Google Scholar 

  • Forger NG, Hodges LL, Roberts SL, Breedlove SM (1992) Regulation of motoneuron death in the spinal nucleus of the bulbocavernosus. J Neurobiol 23:1192–1203

    Article  PubMed  Google Scholar 

  • Gahr M, Metzdorf R (1999) The sexually dimorphic expression of androgen receptors in the song nucleus hyperstriatalis ventrale pars caudale of the zebra finch develops independently of gonadal steroids. J Neurosci 19:2628–2636

    PubMed  Google Scholar 

  • Gatewood JD, Wills A, Shetty S, Xu J, Arnold AP, Burgoyne PS et al. (2006) Sex chromosome complement and gonadal sex influence aggressive and parental behaviors in mice. J Neurosci 26:2335–2342

    Article  PubMed  Google Scholar 

  • Goodfellow PN, Lovell-Badge R (1993) SRY and sex determination in mammals. Annu Rev Genet 27:71–92

    Article  PubMed  Google Scholar 

  • Gorski RA, Gordon JH, Shryne JE, Southam AM (1978) Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res 148:333–346

    Article  PubMed  Google Scholar 

  • Goy RW, McEwen BS (1980) Sexual differentiation of the brain. MIT Press, Cambridge 1980

    Google Scholar 

  • Gurney ME, Konishi M (1980) Hormone-induced sexual differentiation of brain and behavior in zebra finches. Science 208:1380–1382

    Article  PubMed  Google Scholar 

  • Holloway CC, Clayton DF (2001) Estrogen synthesis in the male brain triggers development of the avian song control pathway in vitro. Nature Neuroscience 4:1–7

    Article  Google Scholar 

  • Hughes RL, Pearse A, Cooper DW, Joss JMP, Johnston PG, Jones MK (1993) The genetic basis of marsupial gonadogenesis and sexual phenytype. In: Reed KC, Graves JAM (eds) Sex chromosomes and sex determining genes. Harwood Academic Publishers, pp. 17–48

    Google Scholar 

  • Immelmann K (1969) Song development in the zebra finch and other estrildid finches. In Hinde RE (ed) Bird vocalizations. University Press, Cambridge, pp. 61–74

    Google Scholar 

  • Jacobs EC, Grisham W, Arnold AP (1995) Lack of a synergistic effect between estradiol and dihydrotestosterone in the masculinization of the zebra finch song system. J Neurobiol 27:513–519

    Article  PubMed  Google Scholar 

  • Jacobs PA, Strong JA (1959) A case of human intersexuality having a possible XXY sex-determining mechanism. Nature 183:302–303

    Article  PubMed  Google Scholar 

  • Jost A (1947) Reserches sur la différenciation sexuelle de l’embryon de lapin. Arch Anat Microsc Morphol Exp 36:271–315

    Google Scholar 

  • Jost A, Vigier B, Prepin J, Perchellet JP (1973) Studies on sex differentiation in mammals. Rec Prog Horm Res 29:1–441

    PubMed  Google Scholar 

  • Juraska JM (1991) Sex differences in»cognitive« regions of the rat brain. Psychoneuroendocrinol 16:105–119

    Article  Google Scholar 

  • Keller K, Tandler J (1916) Über des Verhalten der Eihäute bei der Zwillingssträchtigkeit des Rindes. Untersuchungen über die Entstehungsursache der geschlectlichen Unterentwicklung von weiblichen Zwillingskälbern, welche neben einem männlichen Kalbe zur Entwicklung gelangen. Wien Tierärztliche Wehnscrift 3:513

    Google Scholar 

  • Kim YH, Perlman WR, Arnold AP (2004) Expression of androgen receptor mRNA in zebra finch song system: Developmental regulation by estrogen. J Comp Neurol469:535–547

    Article  PubMed  Google Scholar 

  • Lillie FR (1916) The theory of the freemartin. Science 43:611–613

    Google Scholar 

  • Lillie FR (1917) The freemartin: a study of the action of sex hormones in the fetal life of cattle. J Exp Zool 23:371–452

    Article  Google Scholar 

  • Luders E, Narr KL, Thompson PM, Rex DE, Jancke L, Steinmetz H et al. (2004) Gender differences in cortical complexity. Nat Neurosci 7:799–800

    Article  PubMed  Google Scholar 

  • MacLusky NJ, Naftolin F (1981) Sexual differentiation of the central nervous system. Science 211:1294–1303

    Article  PubMed  Google Scholar 

  • Maxson SC, Didier-Erickson A, Ogawa S (1989) The Y-chromosome, social signals, and offense in mice. Behav Neural Biol 52:251–259

    Article  PubMed  Google Scholar 

  • Mogil JS, Chanda ML (2005) The case for the inclusion of female subjects in basic science studies of pain. Pain 117:1–5

    Article  PubMed  Google Scholar 

  • Nguyen DK, Disteche CM (2006) Dosage compensation of the active X chromosome in mammals. Nat Genet 38:47–53

    Article  PubMed  Google Scholar 

  • Nottebohm F, Arnold AP (1976) Sexual dimorphism in vocal control areas of the song bird brain. Science 194:211–213

    Article  PubMed  Google Scholar 

  • Nunez JL, Sodhi J, Juraska JM (2002) Ovarian hormones after postnatal day 20 reduce neuron number in the rat primary visual cortex. J Neurobiol 52:312–321

    Article  PubMed  Google Scholar 

  • Palaszynski KM, Smith DL, Kamrava S, Burgoyne PS, Arnold AP, Voskuhl RR (2005) A Yin-Yang effect between sex chromosome complement and sex hormones on the immune response. Endocrinol 146:3280–3285

    Article  Google Scholar 

  • Pauls DL, Cohen DJ, Heimbuch R, Detlor J, Kidd KK (1981) Familial pattern and transmission of Gilles de la Tourette syndrome and multiple tics. Arch Gen Psychiatry 38:1091–1093

    PubMed  Google Scholar 

  • Phoenix CH, Goy RW, Gerall AA, Young WC (1959) Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinol 65:369–382

    Article  Google Scholar 

  • Raisman G, Field PM (1973) Sexual dimorphism in the neuropil of the preoptic area of the rat and its dependence on neonatal androgen. Brain Res 54:1–29

    Article  PubMed  Google Scholar 

  • Raisman G, Field PM(1971) Sexual dimorphism in the preoptic area of the rat. Science 173:731–733

    Article  PubMed  Google Scholar 

  • Renfree MB, Short RV (1988) Sex determination in marsupials: evidence for a marsupial-eutherian dichotomy. Philosophical Transactions of the Royal Society of London Biological Sciences 322:41–53

    Article  Google Scholar 

  • Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T (1995) A subset of p53-deficient embryos exhibit exencephaly. Nature Genetics 10:175–180

    Article  PubMed  Google Scholar 

  • Seller MJ (1995) Sex, neural tube defects, and multisite closure of the human neural tube. Am J Med Genet 58:332–336

    Article  PubMed  Google Scholar 

  • Sharman GB (1990) The chromosomal basis of sex differentiation in marsupials. Australian Journal of Zoology 37:451–466

    Article  Google Scholar 

  • Sisk CL, Schulz KM, Zehr JL (2003) Puberty: A finishing school for male social behavior. Steroids and the Nervous System 1007:189–198

    Google Scholar 

  • Sturtevant AH (1965) A history of genetics. Harper & Row, New York

    Google Scholar 

  • Wade J, Arnold AP (1996) Functional testicular tissue does not masculinize development of the zebra finch song system. Proc Natl Acad Sci USA 93:5264–5268

    Article  PubMed  Google Scholar 

  • Wade J, Arnold AP (2004) Sexual differentiation of the zebra finch song system. Behavioral neurobiology of birdsong. Ann NY Acad Sci 1016:540–559

    Article  PubMed  Google Scholar 

  • Watson CM, Johnston PG, Rodger KA, McKenzie LM, O’Neill RJW, Cooper DW (1997) SRY and karyotypic status of one abnormal and two intersexual marsupials. Reprod Fertil Dev 9:233–241

    Article  PubMed  Google Scholar 

  • Welshons WJ, Russell LB (1959) The Y chromosome as the bearer of male determining factors in the mouse. Proc Natl Acad Sci USA 45:560–566

    Article  PubMed  Google Scholar 

  • Whitacre CC, Reingold SC, O’Looney PA (1999) A gender gap in autoimmunity. Science 283:1277–1278

    Article  PubMed  Google Scholar 

  • Yang X, Schadt EE, Wang S, Ingram-Drake L, Arnold AP, Drake TA et al. (2005) Thousands of sex differences in transcript levels in mouse somatic tissues relevant to common diseases. submitted

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Arnold, A.P. (2007). Biologische Grundlagen von Geschlechtsunterschieden. In: Lautenbacher, S., Güntürkün, O., Hausmann, M. (eds) Gehirn und Geschlecht. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71628-0_2

Download citation

Publish with us

Policies and ethics