Skip to main content

Funktionelle Bildgebung bei Schmerz

  • Chapter
Praktische Schmerztherapie

Zusammenfassung

In den letzten Jahren ist die Anzahl funktionell-bildgebender Studien im Allgemeinen sowie bei klinischen und experimentellen Schmerzzuständen im Besonderen deutlich angewachsen. Während vor nur einem Jahrzehnt das Wissen über die Schmerzverarbeitung bzw. die funktionelle Anatomie v. a. aus molekularbiologischen und elektrophysiologischen Studien ([Penfield et al. 1937]; [Stowell et al. 1984]), Tierversuchen und Läsionsstudien stammte ([Head et al. 1911]; [Folz et al. 1962]; [Berthier et al. 1988]), sind heute mit den modernen bildgebenden Verfahren Instrumente hinzugekommen, die nichtinvasive Untersuchungen in vivo und bei vollem Bewusstsein erlauben. Es werden nun völlig neue Einblicke in die Schmerzverarbeitung, zeitliche Dynamik sowie Modulation möglich.

Vor allem zur Aufklärung der Verarbeitungsmechanismen von akuten Schmerzen konnte so bereits ein wichtiger Beitrag geleistet werden.

Eine große Aufgabe an zukünftige Forschungsprojekte stellen allerdings nach wie vor chronische Schmerzzustände bzw. die Abläufe, die zu deren Entwicklung führen, dar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Afridi SK Giffin NJ Kaube H Friston KJ Ward NS Frackowiak RS Goadsby PJ (2005) A positron emission tomographic study in spontaneous migraine. Arch Neurol 62:1270–1275

    Article  PubMed  Google Scholar 

  • Ametamey SM, Samnick S, Leenders KL et al. (1998) Fluorine-18 radiolabelling biodistribution studies and preliminary PET evaluation of a new memantine derivative for imaging the NMDA receptor. J Recept Signal Transduct Res 19:129–141

    Google Scholar 

  • Ametamey SM, Bruehlmeier M, Kneifel S et al. (2002) PET studies of 18F-memantine in healthy volunteers. Nucl Med Biol 29:227–231

    Article  PubMed  CAS  Google Scholar 

  • Andersson JL, Lilja A, Hartvig P et al. (1997) Somatotopic organization along the central sulcus for pain localization in humans as revealed by positron emission tomography. Exp Brain Res 117:192–198

    Article  PubMed  CAS  Google Scholar 

  • Apkarian AV, Bushnell MC, Treede R-D, Zubieta J-K (2005) Human brain mechanisms of pain perception and regulation in health and disease. EurJ Pain 9:463–484

    Article  Google Scholar 

  • Ashburner J, Friston K (2000) Voxel-based morphometry — the methods. Neuroimage 11:805–821

    Article  PubMed  CAS  Google Scholar 

  • Bahra A, Matharu MS, Buchel C, Frackowiak RS, Goadsby PJ (2001) Brainstem activation specific to migraine headache. Lancet 357:1016–1017

    Article  PubMed  CAS  Google Scholar 

  • Bencherif B, Fuchs PN, Sheth R et al. (2002) Pain activation of human supraspinal opioid pathways as demonstrated by [11C]-carfentanil and positron emission tomography (PET). Pain 99:589–598

    Article  PubMed  CAS  Google Scholar 

  • Berthier M, Starkstein S, Leiguarda R (1988) Asymbolia for pain: a sensory-limbic disconnection syndrome. Ann Neurol 24:41–48

    Article  PubMed  CAS  Google Scholar 

  • Bingel U, Quante M, Knab R, Bromm B, Weiller C, Buchel C (2002) Subcortical structures involved in pain processing: evidence from single-trial fMRI. Pain 99:313–321

    Article  PubMed  CAS  Google Scholar 

  • Bornhovd K, Quante M, Glauche V et al. (2002) Pain ful stimuli evoke different stimulus-response functions in the amygdala prefrontal insula and somatosensory cortex: a single-trial fMRI study. Brain 125: 1326–1336

    Article  PubMed  CAS  Google Scholar 

  • Buchel C, Bornhovd K, Quante M et al. (2002) Dissociable neural responses related to pain intensity stimulus intensity and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J Neurosci 22: 970–976

    PubMed  CAS  Google Scholar 

  • Coghill RC, Sang CN, Berman KF, Bennett GJ, Iadarola MJ (1998) Global cerebral blood flow decreases during pain. J Cereb Blood Flow Metab 18:141–147

    Article  PubMed  CAS  Google Scholar 

  • Coghill RC Gilron I, Iadarola MJ (2001) Hemispheric lateralization of somatosensory processing. J Neurophysiol 85:2602–2612

    PubMed  CAS  Google Scholar 

  • Coull J, Nobre A (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci 18: 7426–7435

    PubMed  CAS  Google Scholar 

  • Craig A, Reiman E, Evans A, Bushnell M (1996) Functional imaging of an illusion of pain. Nature 384:258–260

    Article  PubMed  CAS  Google Scholar 

  • Derbyshire SW (1998) Meta-analysis of thirty-four independent samples studied using pet reveals a significantly attenuated central response to noxious stimulation in clinical pain patients. Curr Rev Pain 3: 265–280

    Google Scholar 

  • Duncan JS (1998) Positron emission tomography receptor studies. Adv Neurol 79:893–898

    Google Scholar 

  • Folz E, White L (1962) Pain ‘relief’ by frontal cingulumotomy. J Neurosurg 19:89–100

    Article  Google Scholar 

  • Frost JJ (1993) Receptor imaging by PET and SPECT: focus on the opiate receptor. J Recept Res 13:39–53

    PubMed  CAS  Google Scholar 

  • Head H, Holmes G (1911) Sensory disturbances from cerebral lesions. Brain 34:102–254

    Article  Google Scholar 

  • Hofbauer RK, Rainville P, Duncan GH, Bushnell MC (2001) Cortical representation of the sensory dimension of pain. J Neurophysiol 86: 402–411

    PubMed  CAS  Google Scholar 

  • Hsieh JC, Belfrage M, Stone-Elander S, Hansson P, Ingvar M (1995) Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain 63:225–236

    Article  PubMed  CAS  Google Scholar 

  • Hsieh JC, Meyerson BA, Ingvar M (1998) PET study on central processing of pain in trigeminal neuropathy. Eur J Pain 3:51–65

    Article  Google Scholar 

  • Jaaskelainen SK, Rinne JO, Forssell H et al. (2001) Role of the dopaminergic system in chronic pain — a fluorodopa-PET study. Pain 90: 257–260

    Article  PubMed  CAS  Google Scholar 

  • Jones AK, Luthra SK, Maziere B et al. (1988) Regional cerebral opioid receptor studies with [11C]diprenorphine in normal volunteers. J Neurosci Meth 23:121–128

    Article  CAS  Google Scholar 

  • Jones AK, Qi LY, Fujirawa T et al. (1991) In vivo distribution of opioid receptors in man in relation to the cortical projections of the medial and lateral pain systems measured with positron emission tomography. Neurosci Lett 126:25–28

    Article  PubMed  CAS  Google Scholar 

  • Jones AK, Cunningham VJ, HaKawa S et al. (1994) Changes in central opioid receptor binding in relation to inflammation and pain in patients with rheumatoid arthritis. Br J Rheumatol 33:909–916

    Article  PubMed  CAS  Google Scholar 

  • Jones AK, Kitchen ND, Watabe H et al. (1998) Measurement of changes in opioid receptor binding in vivo during trigeminal neuralgic pain using [11C] diprenorphine and positron emission tomography. J Cereb Blood Flow Metab 19:803–808

    Google Scholar 

  • Leone M, Franzini A, Bussone G (2001) Stereotactic stimulation of posterior hypothalamic gray matter in a patient with intractable cluster headache. N Engl J Med 345:1428–1428

    Article  PubMed  CAS  Google Scholar 

  • Leone M, Franzini A, Felisati G et al. (2005) Deep brain stimulation and cluster headache. Neurol Sci 26Suppl 2: s138–139

    Article  PubMed  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  PubMed  CAS  Google Scholar 

  • May A, Ashburner J, Buchel C, McGonigle DJ et al. (1998a) Correlation between structural and functional changes in brain in an idiopathic headache syndrome. Nat Med 5:836–838

    Google Scholar 

  • May A, Bahra A, Buchel C, Frackowiak RS, Goadsby PJ (1998b) Hypothalamic activation in cluster headache attacks. Lancet 352:275–278

    Article  PubMed  CAS  Google Scholar 

  • May A, Bahra A, Buchel C, Frackowiak RS, Goadsby PJ (2000) PET and MRA findings in cluster headache and MRA in experimental pain. Neurology 55:1328–1335

    PubMed  CAS  Google Scholar 

  • Melzack R, Casey K (1968) Sensory motivational and central control determinants of pain. Thomas Springfield IL

    Google Scholar 

  • Moonen CTW, Bandettini PA (2000) Functional MRI. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Paulson PE, Minoshima S, Morrow TJ, Casey KL (1998) Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain 76:223–228

    Article  PubMed  CAS  Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Article  Google Scholar 

  • Petrovic P, Kalso E, Petersson KM, Ingvar M (2002) Placebo and opioid analgesia-imaging a shared neuronal network. Science 295:1737–1740

    Article  PubMed  CAS  Google Scholar 

  • Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to painA review and meta-analysis (2000). Neurophysiol Clin 30:263–288

    Article  PubMed  CAS  Google Scholar 

  • Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277:968–971

    Article  PubMed  CAS  Google Scholar 

  • Rees G, Howseman A, Josephs O, Frith C, Friston K, Frackowiak R (1997) Characterizing the relationship between BOLD contrast and regional cerebral blood flow measurements by varying the stimulus presentation rate. Neuroimage 6:270–278

    Article  PubMed  CAS  Google Scholar 

  • Riley JL 3rd, Robinson ME, Wise EA, Myers CD, Fillingim R B (1998) Sex differences in the perception of noxious experimental stimuli: a meta-analysis. Pain 74:181–187

    Article  PubMed  Google Scholar 

  • Sadato N, Yonekura Y, Yamada H, Nakamura S, Waki A, Ishii Y (1998) Activation patterns of covert word generation detected by fMRI: comparison with 3D PET. J Comput Assist Tomogr 22:945–952

    Article  PubMed  CAS  Google Scholar 

  • Shiue CY, Vallabhahosula S, Wolf AP et al. (1997) Carbon-11 labelled ketamine-synthesis distribution in mice and PET studies in baboons. Nucl Med Biol 24:145–150

    Article  PubMed  CAS  Google Scholar 

  • Sprenger T, Boecker H, Tolle T et al. (2004) Specific hypothalamic activation during a spontaneous cluster headache attack. Neurology 62: 516–517

    PubMed  CAS  Google Scholar 

  • Stowell H (1984) Event related brain potentials and human pain: a first objective overview. Int J Psychophysiol 1:137–151

    Article  PubMed  CAS  Google Scholar 

  • Tölle T, Kaufmann T, Siessmeier T et al. (1999) Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Ann Neurol 45: 40–47

    Article  PubMed  Google Scholar 

  • Valet M, Sprenger T, Boecker H et al. (2004) Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain — an fMRI analysis. Pain 109:399–408

    Article  PubMed  Google Scholar 

  • Vogt BA, Finch DM, Olson CR (1992) Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb Cortex 2:435–443

    PubMed  CAS  Google Scholar 

  • Vogt B, Derbyshire S, Jones A (1996) Pain processing in four regions of human cingulate cortex localized with co-registered PET and MR imaging. Eur J Neurosci 8:1461–1473

    Article  PubMed  CAS  Google Scholar 

  • Wagner K, Willoch F, Kochs E et al. (2001) Dose-dependent regional cerebral blood flow changes during remifentanil infusion in humans: a positron emission tomography study. Anesthesiology 94: 732–738

    Article  PubMed  CAS  Google Scholar 

  • Weiller C, May A, Limmroth V, Juptner M et al. (1995) Brain stem activation in spontaneous human migraine attacks. Nat Med 1:658–660

    Article  PubMed  CAS  Google Scholar 

  • Wiech K, Preissl H, Birbaumer N (2001) [Neural networks and pain processing. New insights from imaging techniques]. Anaesthesist 50:2–12

    Article  PubMed  CAS  Google Scholar 

  • Willoch F, Wagner K, Schwaiger M, Tölle TR (2002) Funktionelle Bildgebung bei Schmerz: experimentelle und klinische Untersuchungen. In: Krause BJ, Müller-Gärtner HW (Hrsg) Bildgebung des Gehirns und Kognition. Ecomed, Landsberg, 240–252

    Google Scholar 

  • Willoch F, Schindler F, Wester H et al. (2004) Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a 11 C-diprenorphine PET study. Pain 108(3): 213–220

    Article  PubMed  CAS  Google Scholar 

  • Winder DG, Egli RE, Schramm NL, Matthews RT (2002) Synaptic plasticity in drug reward circuitry. Curr Mol Med 2:667–676

    Article  PubMed  CAS  Google Scholar 

  • Zubieta JK, Dannals RF, Frost JJ (1998) Gender and age influences on human brain μ-opioid receptor binding measured by PET. Am J Psychiat 156:842–848

    Google Scholar 

  • Zubieta J, Smith Y, Bueller J et al. (2001) Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 13: 311–315

    Article  Google Scholar 

  • Zubieta J, Smith Y, Bueller J et al. (2002) μ-opioid receptor-mediated antinociceptive responses differ in men and women. J Neurosci 22: 5100–5107

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Sprenger, T., Valet, M., Tölle, T.R. (2007). Funktionelle Bildgebung bei Schmerz. In: Baron, R., Strumpf, M. (eds) Praktische Schmerztherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49663-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49663-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23091-5

  • Online ISBN: 978-3-540-49663-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics