Skip to main content

Modern Epidemiologic Study Designs

  • Chapter
Handbook of Epidemiology

Abstract

A fundamental challenge pervasive to all experimental and nonexperimental (observational) research is valid inference of causal effects. Although actions (through undefined mechanisms, but conventionally denoted by treatment, exposure, etc.) and reactions (e.g., disease, remission, cure) must occur by definition in individuals, the realm of epidemiology principally lies in the study of individuals in the aggregate, such as patients enrolled in clinical trials, participants in cohorts, and populations. Until recently, advancements in epidemiological methods developed in the last half-century have hence largely fallen into the domain of the two major observational study designs used: cohort and case-control studies (cf. Chap. I.5 and I.6 of this handbook).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlow WE, Ichikawa L, Rosner D, Izumi S (1999) Analysis of case-cohort designs. J Clin Epidemiol 52:1165–1172

    Article  Google Scholar 

  • Begg CB, Zhang ZF (1994) Statistical analysis of molecular epidemiology studies employing case series. Cancer Epidemiol Biomarkers Prev 3:173–175

    Google Scholar 

  • Cornfield J (1951) A method of estimating comparative rates from clinical data. JNCI 11:1269–1275

    Google Scholar 

  • Ellsworth DL, Manolio TA (1999) The emerging importance of genetics in epidemiologic research. I. Basic concepts in human genetics and laboratory technology. Ann Epidemiol 9:1–16

    Article  Google Scholar 

  • Garcia-Closas M, Thompson WD, Robins JM (1998) Differential misclassification and the assessment of gene-environment interactions in case-control studies. Am J Epidemiol 147:426–433

    Google Scholar 

  • Greenland S (1982) The effect of misclassification in matched-pair case-control studies. Am J Epidemiol 116:402–406

    Google Scholar 

  • Greenland S (1996) Confounding and exposure trends in case-crossover and case-time-control designs. Epidemiol 7:231–239

    Article  Google Scholar 

  • Greenland S (1999) A unified approach to the analysis of case-distribution (caseonly) studies. Stat Med 18:1–15

    Article  Google Scholar 

  • Greenland S, Thomas DC (1982) On the need for the rare disease assumption in case-control studies. Am J Epidemiol 116:547–553

    Google Scholar 

  • Greenland S, Robins JM (1985) Estimation of a common effect parameter from sparse follow-up data. Biometrics 41:55–68

    Article  MATH  MathSciNet  Google Scholar 

  • Kelsey JL, Whittemore AS, Evans AS, Thompson WD (1996) Methods in Observational Epidemiology, second edition. Oxford University Press, New York, pp 122–125

    Google Scholar 

  • Khoury MJ (1997) Genetic epidemiology and the future of disease prevention and public health. Epidemiol Rev 19:175–180

    Google Scholar 

  • Kupper LL, McMichael AJ, Spirtas R (1975) A hybrid epidemiologic study design useful for estimating relative risk. J Am Stat Assoc 70:524–528

    Article  Google Scholar 

  • Langholz B, Thomas DC (1990) Nested case-control and case-cohort methods of sampling from a cohort: a critical comparison. Am J Epidemiol 131:169–176

    Google Scholar 

  • Little RJ, Rubin DR (2000) Causal effects in clinical and epidemiological studies via potential outcomes: concepts and analytical approaches. Annu Rev Public Health 21:121–145

    Article  Google Scholar 

  • Maclure M (1991) The case-crossover design: a method for studying transient effects on the risk of acute events. Am J Epidemiol 133:144–153

    Google Scholar 

  • Maclure M, Mittleman MA (2000) Should we use a case-crossover design? Annu Rev Public Health 21:193–221

    Article  Google Scholar 

  • Miettinen OS (1976) Estimability and estimation in case-referent studies. Am J Epidemiol 103:226–235

    Google Scholar 

  • Miettinen OS (1982) Design options in epidemiologic research: an update. Scand J Work Environ Health 8(Suppl 1):7–14

    MathSciNet  Google Scholar 

  • Mittleman MA, Maclure M, Robins JM (1995) Control sampling strategies for case-crossover studies: an assessment of relative efficiency. Am J Epidemiol 142:91–98

    Google Scholar 

  • Navidi W (1998) Bidirectional case-crossover designs for exposures with time trends. Biometrics 54:596–605

    Article  MATH  Google Scholar 

  • Navidi W, Weinhandl E (2002) Risk set sampling for case-crossover designs. Epidemiol 13:100–105

    Article  Google Scholar 

  • Prentice RL (1986) A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika 73:1–11

    Article  MATH  MathSciNet  Google Scholar 

  • Redelmeier DA, Tibshirani RJ (1997) Interpretation and bias in case-crossover studies. J Clin Epidemiol 50:1281–1287

    Article  Google Scholar 

  • Sato T (1992a) Maximum likelihood estimation of the risk ratio in case-cohort studies. Biometrics 48:1215–1221

    Article  Google Scholar 

  • Sato T (1992b) Estimation of a common risk ratio in stratified case-cohort studies. Stat Med 11:1599–1605

    Article  Google Scholar 

  • Suissa S (1995) The case-time-control study. Epidemiol 6:248–253

    Article  Google Scholar 

  • Suissa S (1998) The case-time-control design: further assumptions and conditions. Epidemiol 9:441–445

    Article  Google Scholar 

  • Szklo M, Nieto J (2000) Epidemiology: Beyond the basics. Aspen Publishers, Gaithersburg, MD, pp 33–38

    Google Scholar 

  • Vines SK, Farrington CP (2001) Within-subject exposure dependency in case-crossover studies. Stat Med 20:3039–3049

    Article  Google Scholar 

  • Wacholder S (1991) Practical considerations in choosing between case-cohort and nested case-control designs. Epidemiol 2:155–158

    Article  Google Scholar 

  • Wacholder S, Boivin JF (1987) External comparisons with the case-cohort design. Am J Epidemiol 126:1198–1209

    Google Scholar 

  • Wertheimer N, Leeper E (1979) Electrical wiring configurations and childhood cancer. Am J Epidemiol 109:273–284

    Google Scholar 

  • Wilcox AJ, Weinberg CR, Lie RT (1998) Distinguishing the effects of maternal and offspring genes through studies of “case-parent triads”. Am J Epidemiol 148:893–901

    Google Scholar 

  • Yang Q, Khoury MJ (1997) Evolving methods in genetic epidemiology. III. Gene-environment interaction in epidemiologic research. Epidemiol Rev 19:33–43

    Google Scholar 

  • Yang Q, Khoury MJ, Flanders WD (1997) Sample size requirements in case-only designs to detect gene-environment interaction. Am J Epidemiol 146:713–720

    Google Scholar 

  • Zaffanella LE, Savitz DA, Greenland S, Ebi KL (1998) The residential case-specular method to study wire codes, magnetic fields, and disease. Epidemiol 9:16–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kass, P.H., Gold, E.B. (2005). Modern Epidemiologic Study Designs. In: Ahrens, W., Pigeot, I. (eds) Handbook of Epidemiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-26577-1_8

Download citation

Publish with us

Policies and ethics