Skip to main content

Blood Coagulation During Sepsis and Septic Shock: Is There Still Room for Anticoagulants?

  • Chapter
  • First Online:
Practical Trends in Anesthesia and Intensive Care 2017
  • 1003 Accesses

Abstract

Up to nowadays, Sepsis has been considered as a dynamic and systemic host answer to a serious infection. In 2016, Sepsis has been redefined as a life-threatening organ dysfunction caused by a disorderly host answer to the infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vincent JL, et al. Sepsis definitions: time for change. Lancet. 2013;381:774–5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Singer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Funk DJ, et al. Sepsis and septic shock: a history. Crit Care Clin. 2009;25:83–101.

    Article  PubMed  Google Scholar 

  4. Gaieski DF, et al. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med. 2013;41:1167–74.

    Article  PubMed  Google Scholar 

  5. Angus DC, Van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369:840–51.

    Article  CAS  PubMed  Google Scholar 

  6. Mayr FB, et al. Epidemiology of severe sepsis. Virulence. 2014;5:4–11.

    Article  PubMed  Google Scholar 

  7. Brun-Buisson C, et al. EPISEPSIS: a reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units. Intensive Care Med. 2004;30:580–8.

    Article  CAS  PubMed  Google Scholar 

  8. Iskander KN, et al. Sepsis: multiple abnormalities, heterogeneous responses and evolving understanding. Physiol Rev. 2013;93:1247–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dhainaut JF, et al. Dynamic evolution of coagulopathy in the first day of severe sepsis: relationship with mortality and organ failure. Crit Care Med. 2005;33:341–8.

    Article  CAS  PubMed  Google Scholar 

  10. Wiersing WJ, et al. Host innate immune responses to sepsis. Virulence. 2014;5:36–44.

    Article  Google Scholar 

  11. Salomao R, et al. Bacterial sensing, cell signaling and modulation of the immune response during sepsis. Shock. 2012;38:227–42.

    Article  CAS  PubMed  Google Scholar 

  12. Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hansen JD, et al. Sensing disease and danger: a survey of vertebrate PRRs and their origins. Dev Comp Immunol. 2011;35:886–97.

    Article  CAS  PubMed  Google Scholar 

  14. Barreiro LB, Quintana-Murci L. From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat Rev Genet. 2010;11:17–30.

    Article  CAS  PubMed  Google Scholar 

  15. Quach H, et al. Different selective pressures shapes the evolution of toll-like receptors in human and african great ape populations. Hum Mol Genet. 2013;22:4829–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laayouni H, et al. Convergent evolution in European and Roma populations reveals pressure exerted by plague on toll-like receptors. Proc Natl Acad Sci U S A. 2014;111:2668–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pino-Yanes M, et al. Common variants of TLR1 associate with organ dysfunction and sustained pro-inflammatory responses during sepsis. PLoS One. 2010;5:e13759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Levi M, et al. Sepsis and thrombosis. Semin Thromb Hemost. 2013;39:559–66.

    Article  CAS  PubMed  Google Scholar 

  19. Seeley EJ, et al. Inflection points in sepsis biology: from local defense to sistemi organ injury. Am J Physiol Lung Cell Mol Physiol. 2012;303:L355–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoffman M, Monroe DM. A cell based model of hemostasis. Thromb Haemost. 2001;85:958–65.

    CAS  PubMed  Google Scholar 

  21. Muller MC, et al. Utility of thromboelastography and/or thromboelastometry in adults with sepsis: a systematic review. Crit Care. 2014;18:R30.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Daudel F, et al. Thromboelastometry for the assessment of coagulation abnormalities in early and established adult sepsis: a prospective color study. Crit Care. 2009;13:R42.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Johansson PI, et al. Hypocoagulability, as evacuate by thromboelastrography, at admission to the ICU, is associated with increased 30 day mortality. Blood Coagul Fibrinolysis. 2010;21:168–74.

    Article  PubMed  Google Scholar 

  24. Adamzik M, et al. Comparison of thromboelastometry with SAPS II and SOFA scores for the prediction of 30 day serviva: a color study. Shock. 2011;35:339–42.

    Article  PubMed  Google Scholar 

  25. Ostrowski SR, et al. Consecutive Thromboelastrography clot strength profiles in patients with severe sepsis and their association with 28 day mortality: a prospective study. J Crit Care. 2013;28:317.e1–317.e11.

    Google Scholar 

  26. Brenner T, et al. Viscoelastic and aggregometric point of care testing in patients with sepsis shock-cross links between inflammation and haemostasis. Acta Anaesthesiol Scand. 2012;56:1277–90.

    Article  CAS  PubMed  Google Scholar 

  27. Levi M, Lowenberg EC. Thrombocytopenia in critically ill patients. Semin Thromb Hemost. 2008;34:417–24.

    Article  PubMed  Google Scholar 

  28. Angstwurm MW, et al. New DIC score: a useful tool to predict mortality in comparison with APACHE II and LOD scores. Crit Care Med. 2006;34:314–20.

    Article  PubMed  Google Scholar 

  29. Gando S, et al. A multicenter prospective validation study of the Japanese Association for Acute Medicine disseminate intravascular coagulation scoring system in patients with severe sepsis. Crit Care. 2013;17:R111.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tromp M, et al. The effects of implementation of the surviving sepsis campaign. Neth J Med. 2011;69:292–8.

    CAS  PubMed  Google Scholar 

  31. Cavaillon JM, et al. Cytokine cascade in sepsis. Scand J Infect Dis. 2003;35:535–44.

    Article  CAS  PubMed  Google Scholar 

  32. Semeraro N, et al. Sepsis associated DIC and thromboembolic disease. Mediterr J Hematol Infect Dis. 2010;2:e2010024.

    Article  PubMed  PubMed Central  Google Scholar 

  33. O’Brien M. The reciprocal relationship between inflammation and coagulation. Top Companion Anim Med. 2012;27:46–52.

    Article  PubMed  Google Scholar 

  34. Chu AJ. Tissue Factor, blood coagulation and beyond: an overview. Int J Inflamm. 2011;2011:367284.

    Article  CAS  Google Scholar 

  35. Pawlinski R, Mackman N. Cellular sources of tissue factor in endotoxemia and sepsis. Thromb Res. 2010;125:570–3.

    Article  CAS  Google Scholar 

  36. Kidokoro A, et al. Role of DIC in multiple organ failure. Int J Surg Investig. 2000;2:73–80.

    CAS  PubMed  Google Scholar 

  37. Emonts M, et al. Thombin activable fibrinolysis inhibitor is associated with severity and outcome severe meningococcal infection in children. J Thromb Haemost. 2008;6:268–76.

    Article  CAS  PubMed  Google Scholar 

  38. Jourdain M, et al. Effects of interalpha inhibitor in experimental endotoxic shock and DIC. Am J Respir Crit Care Med. 1997;156:1825–33.

    Article  CAS  PubMed  Google Scholar 

  39. Shimamura K, et al. Distribution patterns of microthrombiin DIC. Arch Pathol Lab Med. 1983;107:543–7.

    CAS  PubMed  Google Scholar 

  40. Creasey AA, et al. Tissue factor pathway inhibitor reduces mortality from Escherichia coli septic shock. J Clin Invest. 1993;91:2850–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Taylor FB, et al. Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody. Circ Shock. 1991;33:127–34.

    PubMed  Google Scholar 

  42. Dahinaut JF, et al. Treatment effects of drotrecogin alpha activated in patients with severe sepsis with or without overt disseminated intravascular coagulation. J Thromb Haemost. 2004;2:1924–33.

    Article  Google Scholar 

  43. Van der Poll T, et al. Attivation of coagulation after administration of TNF to normal subjects. N Engl J Med. 1990;322:1622–7.

    Article  PubMed  Google Scholar 

  44. Van Deventer SJ, et al. Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolysis and complement pathways. Blood. 1990;76:2520–6.

    PubMed  Google Scholar 

  45. Leclerc J, et al. A single enoli injection in the rabbit causes prolonged blood vessel dysfunction and a procoagulant state. Crit Care Med. 2000;28:3672–8.

    Article  CAS  PubMed  Google Scholar 

  46. Biemond BJ, et al. Complete inhibition of endotoxin induced coagulation activation in chimpanzees with a monoclonal Fab fragment against factor VII/VIIa. Thromb Haemost. 1995;73:223–30.

    CAS  PubMed  Google Scholar 

  47. Levi M. The coagulant response in sepsis. Clin Chest Med. 2008;29:627–42.

    Article  PubMed  Google Scholar 

  48. Wang JG, et al. Levels of microparticle tissue factor activity correlate with coagulation activation in endotoxemic mice. J Thromb Haemost. 2009;7:1092–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Levi M. The coagulant response in sepsis and inflammation. Hemostaseologie. 2010;30:10–2. 14–16

    CAS  Google Scholar 

  50. Zimmerman GA, et al. The platelet-activating factor signaling system and its regulators in syndrome of inflammation and Thrombosis. Crit Care Med. 2002;30(5 Suppl):S294–301.

    Article  CAS  PubMed  Google Scholar 

  51. Mosad E, et al. Tissue factor pathway inhibitor and P-selectin as markers of sepsis induced nonovert disseminated intravascular coagulopathy. Clin Appl Thomb Hemost. 2011;17:80–7.

    Article  CAS  Google Scholar 

  52. Semeraro F, et al. Extracellular histones promote thrombin generation through platelet-dependent mechnisms: involvement of platelet TLR 2 and TLR4. Blood. 2011;118:1952–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Aird WC. Sepsis and coagulation. Crit Care Clin. 2005;21:417–31.

    Article  CAS  PubMed  Google Scholar 

  54. Asakura H, et al. Decreased plasma activity of antithrombin or protein C is not due to consumption coagulopathy in septic patients with DIC. Eur J Haematol. 2001;67:170–5.

    Article  CAS  PubMed  Google Scholar 

  55. Tang H, et al. Sepsis induced coagulation in the baboon lung is associated with decreased tissue factor pathway inhibitor. Am J Pathol. 2007;171:1066–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shorr AF, et al. Protein C concentrations in severe sepsis: an early directional change in plasma levels predicts outcome. Crit Care. 2006;10:R92.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Semeraro N, et al. Sepsis, thrombosis and organ dysfunction. Thromb Res. 2012;129:290–5.

    Article  CAS  PubMed  Google Scholar 

  58. Lwaleed BA, Bass PS. Tissue factor pathway inhibitor: structure, biology and involvment in disease. J Pathol. 2006;208:327–39.

    Article  CAS  PubMed  Google Scholar 

  59. Esmon CT. The endothelial cell protein C receptor. Thromb Haemost. 2000;83:639–43.

    CAS  PubMed  Google Scholar 

  60. Guitton C, et al. Early rise in circulating endothelial protein C receptor correlates with poor outcome in severe sepsis. Intensive Care Med. 2011;37:950–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Levi M, et al. Bidirectional relation between inflammation and coagulation. Circulation. 2004;109:2698–704.

    Article  PubMed  Google Scholar 

  62. Kobayashi M, et al. Human recombinant interleukin-1 beta and tumor necrosis factor alpha mediated suppression of heparin like compounds on cultured porcine aortic endothelial cells. J Cell Physiol. 1990;144:383–90.

    Article  CAS  PubMed  Google Scholar 

  63. Mutch NJ, et al. Polyphosphate modifies the fibrin network and down regulates fibrinolysis by attenuating binding of tPA and plasminogen to fibrin. Blood. 2010;115:3980–8.

    Article  CAS  PubMed  Google Scholar 

  64. Campbell RA, et al. Contributions of extravascular and vascular cells to fibrin network formation, structure and stability. Blood. 2009;114:4886–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dubin G, et al. Bacterial proteases in disease-role in intracellular survival, evasion of coagulation/fibrinolysis innate defenses, toxicoses and viral infections. Curr Pharmaceut Des. 2013;19:1090–113.

    Article  CAS  Google Scholar 

  66. Ait-Oufella H, et al. The endothelium: physiological functions and role in microcirculatory failure during severe sepsis. Intensive Care Med. 2010;36:1286–98.

    Article  CAS  PubMed  Google Scholar 

  67. Lee WL, Slutsky AS. Sepsis and endothelial permeability. N Engl J Med. 2010;363:689–91.

    Article  CAS  PubMed  Google Scholar 

  68. David S, et al. Mending leaky blood vessels: the angiopoietin-Tie2 pathway in sepsis. J Pharmacol Exp Ther. 2013;345:2–6.

    Article  CAS  PubMed  Google Scholar 

  69. Levi M, Van der Poll T. Thrombomodulin in sepsis. Minerva Anestesiol. 2013;79:294–8.

    CAS  PubMed  Google Scholar 

  70. Gleeson EM, et al. The endothelial cell protein C receptor: cell surface conductor of cytoprotective coagulation factor signaling. Cell Mol Life Sci. 2012;69:717–26.

    Article  CAS  PubMed  Google Scholar 

  71. Schouten M, et al. Effect of the factor V Leiden mutation on the incidence and outcome of severe infection and sepsis. Neth J Med. 2012;70:306–10.

    CAS  PubMed  Google Scholar 

  72. Sunden-Cullberg J, et al. The role of high mobility group box 1 protein in severe sepsis. Curr Opin Infect Dis. 2006;19:231–6.

    Article  CAS  PubMed  Google Scholar 

  73. Ammollo CT, et al. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin- dependent protein C activation. J Thromb Haemost. 2011;9:1795–803.

    Article  CAS  PubMed  Google Scholar 

  74. Fuchs TA, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107:15880–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dellinger RP, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and sepsis shock 2012. Intensive Care Med. 2013;39:165–228.

    Article  CAS  PubMed  Google Scholar 

  76. Taylor FB Jr, et al. Scientific subcommittee on disseminated intravascular coagulation of the international society on thrombosis and haemostasis. Towards definition, clinical and laboratori criteria and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001;86:1327–30.

    CAS  PubMed  Google Scholar 

  77. Gando S, et al. Multicenter prospective validation of disseminated intravascular coagulation diagnostic criteria for critically ill patients: comparing current criteria. Crit Care Med. 2006;34:625–31.

    Article  PubMed  Google Scholar 

  78. Wada H, et al. Disseminated intravascular coagulation: testing and diagnosis. Clin Chim Acta. 2014;436:130–4.

    Article  CAS  PubMed  Google Scholar 

  79. Tsai HJ, et al. Application of thromboelastography in liver injury induced by endotoxin in rat. Blood Coagul Fibrinolysis. 2012;23:118–26.

    Article  PubMed  Google Scholar 

  80. Spiel AO, et al. Validation of rotation thromboelastrography in a model of sistemi activation of fibrinolysis and coagulation in humans. J Thromb Haemost. 2006;4:411–6.

    Article  CAS  PubMed  Google Scholar 

  81. Opal SM. Phylogenetic and functionionships between coagulation and innate immune response. Crit Care Med. 2000;28:577–80.

    Article  Google Scholar 

  82. Van der Poll T, Herwald H. The coagulation system and its function in early immune defense. Thromb Haemost. 2014;112:640–8.

    Article  PubMed  Google Scholar 

  83. Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013;13:34–45.

    Article  CAS  PubMed  Google Scholar 

  84. Ruf W. Protease activated receptor signaling in the regulation of inflammation. Crit Care Med. 2004;32:5287–92.

    Article  CAS  Google Scholar 

  85. Coughlin SR. Protease activated receptors in hemostasis, trombosi and vascular biology. J Thromb Haemost. 2005;3:1800–14.

    Article  CAS  PubMed  Google Scholar 

  86. Mackman N. The many faces of tissue factor. J Thromb Haemost. 2009;7:136–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nickel KF, Rennè T. Crosstalk of the plasma contact system with bacteria. Thromb Res. 2012;130(Suppl):578–83.

    Google Scholar 

  88. Cagliani R, et al. Evolutionary analysis of the contact system indicates that kininogen evolved adaptively in mammals and in human populations. Mol Biol Evol. 2013;30:1397–408.

    Article  CAS  PubMed  Google Scholar 

  89. Alcock J, Brainard AH. Hemostatic containment – an evolutionary hypotesis of injury by innate immune cells. Med Hypoteses. 2004;62:861–7.

    Article  Google Scholar 

  90. Mullarky IK, et al. Infection stimulated fibrin deposition controls hemorrhage and limits hepatic bacterial growth during listeriosis. Infect Immun. 2005;73:3888–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Luo D, et al. Protective roles for fibrin, tissue factor, plasminogen activator inhibitor-1 and thrombin activable fibrinolysis inhibitor, but not Factor XI, during defense against the gram-negative bacterium Yersinia enterocolitica. J Immunol. 2011;187:1866–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sun H, et al. Reduced thrombin generation increases host susceptibility to group streptococcal infection. Blood. 2009;113:1358–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Loof TG, et al. Coagulation systems of invertebrates and vertebrates and their roles in innate immunity: the same side of two coins? J Innate Immun. 2011;3:34–40.

    Article  CAS  PubMed  Google Scholar 

  94. Loof TG, et al. Coagulation, an ancestral serine protease cascade, exerts a novel function in early immuno defense. Blood. 2011;118:2589–98.

    Article  CAS  PubMed  Google Scholar 

  95. Biemond BJ, et al. Plasminogen activator and plasminogen actor inhibitor release ng experimental endotoxaemia in chimpanzees: effect of interventions in the cytokine and coagulation cascades. Clin Sci. 1995;88:587–94.

    Article  CAS  PubMed  Google Scholar 

  96. Kager LM, et al. Endogenous tissue type plasminogen activator impairs host defence during severe experimental Gram negative sepsis (melioidosis). Crit Care Med. 2012;40:2168–75.

    Article  CAS  PubMed  Google Scholar 

  97. Kager LM, et al. Plasminogen activator inhibitor type 1 contributes to protective immunity during experimental gram negative sepsis (melioidosis). J Thromb Haemost. 2011;9:2020–8.

    Article  CAS  PubMed  Google Scholar 

  98. Lim JH, et al. Critical role of type one plasminogen activator inhibitor (PAI-1) in early host defense against non typeable Haemophilus influenzae (NTHi) infection. Biochem Biophys Res Commun. 2011;414:67–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kager LM, et al. Endogenous alpha 2 antiplasmin is prove during severe gram negative sepsis (meliodosis). Am J Respir Crit Care Med. 2013;188:967–75.

    Article  CAS  PubMed  Google Scholar 

  100. Lathem WW, et al. A plasminogen activating protease spfically controls the development in primary pneumonic plague. Science. 2007;315:509–13.

    Article  CAS  PubMed  Google Scholar 

  101. Sodeinde OA, et al. A surface protease and the invasive character of plague. Science. 1992;258:1004–7.

    Article  CAS  PubMed  Google Scholar 

  102. Enz Hubert RM, et al. Association of immature platelet fraction with sepsis diagnosis and severity. Sci Rep. 2015;5:8019.

    Article  PubMed  CAS  Google Scholar 

  103. Wong CHY, et al. Nucleation of platelets with blood ne pathogens on Kupffer cells precedes other in immunity and contibutes to bacterial clearance. Nat Immunol. 2013;14:785–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. De Stoppelaar SF, et al. Thrombocytopenia impairs host defense in gram negative pneumonia derived sepsis. Blood. 2014;124:3781–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Martinod K, Wagner DD, et al. Thrombosis: tanglet up in NETs. Blood. 2013;123:2768–76.

    Article  PubMed  CAS  Google Scholar 

  106. Yipp BG, Kubes P. NETosis: how vital is it? Blood. 2013;122:2784–94.

    Article  CAS  PubMed  Google Scholar 

  107. Clark SR, et al. Platelet-TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13:463–9.

    Article  CAS  PubMed  Google Scholar 

  108. Luo D, et al. Factor XI deficient mice display reduced inflammation, coagulopathy and bacterial growth during listeriosis. Infect Immun. 2012;80:91–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tucker EI, et al. Survival advantage of coagulation factor XI deficient mice during peritoneal sepsis. J Infect Dis. 2008;198:271–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Flick MJ, et al. Genetic elimination of the binding motif on fibrinogen for the S. aureus virulence factor ClfA improves host serviva in septicemia. Blood. 2013;121:1783–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Abraham E, et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controller trial. JAMA. 2003;290:238–47.

    Article  CAS  PubMed  Google Scholar 

  112. Warren BL, et al. Caring for the critically ill patients. High dose antithrombin III in severe sepsis: a randomized controller trial. JAMA. 2001;286:1869–78.

    Article  CAS  PubMed  Google Scholar 

  113. Ranieri VM, et al. Drotrecogin alpha activated in adults with septic shock. N Engl J Med. 2012;366:2055–64.

    Article  CAS  PubMed  Google Scholar 

  114. Kerlin BA, et al. Survival advantage associated with heterozygous factor V Leiden mutation in patients with severe sepsis and in mouse endotoxemia. Blood. 2003;102:3085–92.

    Article  CAS  PubMed  Google Scholar 

  115. Van Mens TE, et al. Evolution of factor V Leiden. Thromb Haemost. 2013;110:23–30.

    Article  PubMed  CAS  Google Scholar 

  116. De Backer D, et al. Effects of drotrecogin alfa activated on microcirculatory alterations in patients with severe sepsis. Crit Care Med. 2006;34:1918–24.

    Article  PubMed  CAS  Google Scholar 

  117. Donati A, et al. The aPC treatment improves microcirculation in severe sepsis/septic shock syndrome. BMC Anesthesiol. 2013;13:25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Kalil AC, LaRosa SP. Effectiveness and safety of drotrecogin alfa activated for severe sepsis: a meta-analysis and meta-regression. Lancet Infect Dis. 2012;12:678–86.

    Article  CAS  PubMed  Google Scholar 

  119. Iba T, et al. Efficacy and bleeding risk of antithrombin supplementation in septic disseminated intravascular coagulation: a secondary survey. Crit Care. 2014;18:497.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Jiang L, et al. The efficacy and safety of different anticoagulant on patients with severe sepsis and derangment of coagulation: a protocol for network meta-analysis of randomized controlled trials. BMJ Open. 2014;4:e006770.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Copeland S, et al. Acute inflammatory response to endotoxin in mice and humans. Clin Diagn Lab Immunol. 2005;12:60–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Remik DG, Ward PA. Evaluation of endotoxin models for the study of sepsis. Shock. 2005;24(Suppl 1):7–11.

    Article  CAS  Google Scholar 

  123. Levi M, et al. Factor V Leiden mutation in severe infection and sepsis. Semin Thromb Hemost. 2011;37:955–60.

    Article  CAS  PubMed  Google Scholar 

  124. Niessen RW, et al. Antithrombin acts as a negative acute phase protein as established with studies on HepG2 cells and in baboons. Thromb Haemost. 1997;78:1088–92.

    CAS  PubMed  Google Scholar 

  125. Hayakawa M, et al. The response of antithrombin III activity after supplementation decreases in proportion to the severity of sepsis and liver dysfunction. Shock. 2008;30:649–52.

    Article  CAS  PubMed  Google Scholar 

  126. Bergmann S, Hammerschmidt S. Fibrinolysis and host response in bacterial infections. Thromb Haemost. 2007;98:512–20.

    CAS  PubMed  Google Scholar 

  127. Kipnis E, et al. Massive alveolar thrombin activation in Pseudomonas aeruginosa induced acute lung injury. Shock. 2004;21:444–51.

    Article  CAS  PubMed  Google Scholar 

  128. Robriquet I, et al. Intravenous administration of activated protein C in Pseudomonas induced lung injury: impact on lung fluid balance and the inflammatory response. Respir Res. 2006;7:41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Opal SM, et al. The next generation of sepsis clinical trial designs: what is next after the demise of recombinant human activated protein C? Crit Care Med. 2014;42:1714–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Levi M, et al. Infection and inflammation and the coagulation system. Cardiovasc Res. 2003;60:26–39.

    Article  CAS  PubMed  Google Scholar 

  131. Pawlinski R, et al. Role of tissue factor and protease activated receptors in a mouse model of endotoxemia. Blood. 2004;103:1342–7.

    Article  CAS  PubMed  Google Scholar 

  132. Xu H, et al. A coagulation factor VII deficiency protects against acute inflammatory responses in mice. J Pathol. 2006;210:488–96.

    Article  CAS  PubMed  Google Scholar 

  133. Kojima M, et al. A historical study on microthrombi in autopsy cases of DIC. Bibl Haematol. 1983;49:95–106.

    Google Scholar 

  134. Tajiri T, et al. Autopsy cases of fulminant bacterial infection in adults: clinical onset depends on the virulence of bacteria and patient immune status. J Infect Chemother. 2012;18:637–45.

    Article  PubMed  Google Scholar 

  135. Tajiri T, et al. Clinicopathological findings in fulminant type pneumococcal infection: report of three autopsy cases. Pathol Int. 2007;57:606–12.

    Article  PubMed  Google Scholar 

  136. Donzè JD, et al. Impact of sepsis on risk of postoperative arterial and venous thromboses: large prospective color study. BMJ. 2014;349:g5334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Ribeiro DD, et al. Pneumonia and risk of venous thrombosis results from the MEGA study. J Thromb Haemost. 2012;10:1179–82.

    Article  CAS  PubMed  Google Scholar 

  138. Picoli-Quaino SK, et al. Impairment of thrombin generation in the early phases of the host response in sepsis. J Crit Care. 2014;29:31–6.

    Article  CAS  PubMed  Google Scholar 

  139. Massion PB, et al. Persistent hypocoagulability in patients with septic shock predicts greater hospital mortality: impact of impaired thrombin generation. Intensive Care Med. 2012;38:1326–35.

    Article  CAS  PubMed  Google Scholar 

  140. Brune M, Hochberg Z. Evolutionary medicine – the quest for a better under standing of health, disease and prevention. BMC Med. 2013;11:116.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Ziegler EJ, et al. Tretment of gram negative bacteremia and septic shock with HA-1° human monoclonal antibody against endotoxin. A randomized, double blind, placebo controller trial. The HA-1° Sepsis Study Group. N Engl J Med. 1991;324:429–36.

    Article  CAS  PubMed  Google Scholar 

  142. Fisher CJ, et al. Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein. The soluble TNF Receptor Sepsis Study Group. N Engl J Med. 1996;334:1697–702.

    Article  CAS  PubMed  Google Scholar 

  143. Wunderink RG, et al. Recombinant tissue factor pathway inhibitor in severe community acquired pneumonia: a randomized trial. Am J Respir Crit Care Med. 2011;183:1561–8.

    Article  CAS  PubMed  Google Scholar 

  144. de Jonge E, et al. Tissue factor pathway inhibitor dose-dependently inhibits coagulation activation without influencing the fibrinolyrtic and cytokine response during human endotoxemia. Blood. 2000;95:1124–9.

    PubMed  Google Scholar 

  145. Laterre PF, et al. A clinical evaluation committee assessment of recombinant human tissue factor pathway inhibitior (tifacogin) in patients with sevvere community acquired pneumonia. Crit Care. 2009;13:R36.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Roemisch J, et al. Antithrombin: a new look at the actions of a serine protease inhibitor. Blood Coagul Fibrinolysis. 2002;13:657–70.

    Article  CAS  PubMed  Google Scholar 

  147. Gando S, et al. A randomized controller multi center trial of the effects of antithrombin on DIC in patients with sepsis. Crit Care. 2013;17:R297.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Iba T, et al. Efficacy and bleeding risk of antithrombin supplement in septic DIC: a prospective multi center survey. Thromb Res. 2012;130:e129–33.

    Article  CAS  PubMed  Google Scholar 

  149. Neviere R, et al. Antithrombin reduces mesenteric venular leokocyte interaction and small intestine injury in endotoxemic rats. Shock. 2001;15:220–5.

    Article  CAS  PubMed  Google Scholar 

  150. Yamashiro K, et al. Inhibitory effects of antithrombin III agaist leukocyte rolling and infiltration during endotoxin induced uveitis in rats. Invest Ophtalmol Vis Sci. 2001;42:1553–60.

    CAS  Google Scholar 

  151. Oelschlager C, et al. Antithrombin III inhibits nuclear factor kB activation in human monocytes and vascular endothelial cells. Blood. 2002;99:4015–20.

    Article  CAS  PubMed  Google Scholar 

  152. Souter PJ, et al. Antithrombin inhibits lipopolysaccharide induced tissue factor and interleukin 6 production by mononuclear cells, human ombelical vein endothelial cells and whole blood. Crit Care Med. 2001;29:134–9.

    Article  CAS  PubMed  Google Scholar 

  153. van der Poll T, Opal SM. Host-pathogen interactions in sepsis. Lancet Infect Dis. 2008;8:32–43.

    Article  PubMed  CAS  Google Scholar 

  154. Minnema MC, et al. Recombinant human antithrombin III improves serviva and attenuates inflammatory responses in baboons lethally challenged with Escherichia coli. Blood. 2000;95:1117–23.

    CAS  PubMed  Google Scholar 

  155. Tagami T, et al. Antithrombin and mortality in severe pneumonia patients with sepsis associated disseminated intravascular coagulation: an observational nationwide study. J Thromb Haemost. 2014;12:1470–9.

    Article  CAS  PubMed  Google Scholar 

  156. Eisele B, et al. Antithrombin III in patients with severe sepsis. A randomized, placebo controller, double blind multi center trial plus a meta-analysis on all randomized, placebo controlled, double blind trials with antithrombin III in severe sepsis. Intensive Care Med. 1998;24:663–72.

    Article  CAS  PubMed  Google Scholar 

  157. Kienast J, et al. Treatment effects of high dose antithrombin without concomitant heparin in patients with severe sepsis with or without disseminated intravascular coagulation. J Thromb Haemost. 2006;4:90–7.

    Article  CAS  PubMed  Google Scholar 

  158. Casserly B, et al. Evaluating the use of recombinant human activated protein C in adult severe sepsis: results of the surviving sepsis campaign. Crit Care Med. 2012;40:1417–26.

    Article  CAS  PubMed  Google Scholar 

  159. Griffin JH, et al. Activated protein C. J Thromb Haemost. 2007;5:73–80.

    Article  CAS  PubMed  Google Scholar 

  160. Mosnier LO, et al. The cytoprotective protein C pathway. Blood. 2007;109:3161–72.

    Article  CAS  PubMed  Google Scholar 

  161. Feistritzer C, Riewald M. Endothelial barrier protection by activated protein C through PAR 1 dependent sphingosine 1-phosphatase receptor 1 cross activation. Blood. 2005;105:3178–84.

    Article  CAS  PubMed  Google Scholar 

  162. Joyce DE, et al. Leukocyte and endothelial cell interactions in sepsis: relevance of the protein C pathway. Crit Care Med. 2004;32:5280–6.

    Article  Google Scholar 

  163. Rezaie AR. Regulation of the protein C anticoagulant and antiinflammatory pathways. Curr Med Chem. 2010;17:2059–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chaput C, Zychlinsky A. The dark side of histones. Nat Med. 2009;15:1245–6.

    Article  CAS  PubMed  Google Scholar 

  165. Bernard GR, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344:699–709.

    Article  CAS  PubMed  Google Scholar 

  166. Dellinger RP, et al. Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004;32:858–73.

    Article  PubMed  Google Scholar 

  167. Wiedermann CJ. When a single pivotal trial should be not enough- the case of drotrecogin alfa (activated). Intensive Care Med. 2006;32:604.

    Article  PubMed  Google Scholar 

  168. Hoppensteadt D, et al. Thrombin generation mediators and markers in sepsis associated coagulopathy and their modulation by recombinant thrombomodulin. Clin Appl Thromb Hemost. 2014;20:129–35.

    Article  CAS  PubMed  Google Scholar 

  169. Saito H, et al. Efficacy and safety of recombinant human soluble thrombomodulin (ART 123) in disseminated intravascular coagulation: results of phase III, randomized, double blind clinical trial. J Thromb Haemost. 2007;5:31–41.

    Article  CAS  PubMed  Google Scholar 

  170. Ogawa Y, et al. Recombinant human soluble thrombomodulin improves mortality and respiratory dysfunction in patients with severe sepsis. J Trauma Acute Care Surg. 2012;72:1150–7.

    Article  CAS  PubMed  Google Scholar 

  171. Vincent JL, et al. A randomized double blind placebo controlled phase 2b study to evaluate the safety and efficacy of recombinant human soluble thrombomodulin ART 123 in patients with severe sepsis and suspected disseminated intravascular coagulation. Crit Care Med. 2013;41:2069–79.

    Article  CAS  PubMed  Google Scholar 

  172. Conway EM. Thrombomodulin and its role in inflammation. Semin Immunopathol. 2012;34:107–25.

    Article  CAS  PubMed  Google Scholar 

  173. Iba T, et al. Recombinant thrombomodulin improves the microcirculation by attenuating the leukocyte-endothelial interaction in the rat LPS model. Thromb Res. 2013;131:295–9.

    Article  CAS  PubMed  Google Scholar 

  174. Shi CS, et al. The Lectin like domain of thrombomodulin binds to its specific ligand lewis y antigen and neutralizes lipopolysaccharide induced inflammatory response. Blood. 2008;112:3661–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fourrier F, et al. Double blind, placebo controller trial of antithrombin III concentrates in septic shock with disseminated intravascular coagulation. Chest. 1993;104:882–8.

    Article  CAS  PubMed  Google Scholar 

  176. Yamakawa K, et al. Treatment effects of recombinant human soluble thrombomodulin in patients with severe sepsis: a historical control study. Crit Care. 2011;15:R123.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Polderman KH, Girbes AR. Drug intervention trials in sepsis: divergent results. Lancet. 2004;363:1721–3.

    Article  CAS  PubMed  Google Scholar 

  178. Liu XL, et al. Low dose heparin as treatment for early disseminated intravascular coagulation during sepsis: a prospective clinical study. Exp Ther Med. 2014;7:604–8.

    CAS  PubMed  Google Scholar 

  179. Wang C, et al. Heparin therapy reduces 28 day mortality in adults severe sepsis patients: a systematic review and meta-analysis. Crit Care. 2014;18:563.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Kasten KR, et al. Interleukin 7 (IL-7) treatment accelerates neutrophil recruitment through gamma delta T cell IL-7 production in a murine model of sepsis. Infect Immun. 2010;78:4714–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Unsinger J, et al. Ipromotes cell viability trafficking, and functionality and improves surrvival in sepsis. J Immunol. 2010;184:3768–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Chang K, et al. Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell eustion in patients with sepsis. Crit Care. 2014;18:R3.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Venet F, et al. IL-7 restores lymphocytes functions in septic patients. J Immunol. 2012;189:5073–81.

    Article  CAS  PubMed  Google Scholar 

  184. Schouten M, et al. Inflammation, endothelium and coagulation in sepsis. J Leukoc Biol. 2008;83:536–45.

    Article  CAS  PubMed  Google Scholar 

  185. Faust SN, et al. Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N Engl J Med. 2001;345:408–16.

    Article  CAS  PubMed  Google Scholar 

  186. De Kleijn ED, et al. Activation of protein C following infusion of protein C concentrate in children with severe meningococcal sepsis and purpura fulminans: a randomized double blinded, placebo controller, dose-finding study. Crit Care Med. 2003;31:1839–47.

    Article  PubMed  Google Scholar 

  187. Dhainaut JF, et al. PROWESS study group: Drotrecogin alpha (activated) in the treatment of severe sepsis patients with multiple organ dysfunction: data fron the PROWESS trial. Intensive Care Med. 2003;29:894–903.

    Article  PubMed  Google Scholar 

  188. Ely EW, PROWESS Investigators, et al. Drotrecogin alpha (activated) administration across clinically important subgroups of patients with severe sepsis. Crit Care Med. 2003;31:12–9.

    Article  CAS  PubMed  Google Scholar 

  189. Wiederman CJ, Kaneider NC. A systematic review of antithrombin concentrate use in patients with disseminated intravascular coagulation of severe sepsis. Blood Coagul Fibrinolysis. 2006;17:521–6.

    Article  CAS  Google Scholar 

  190. Nadel S, A global Perspective (RESOLVE) Study Group, et al. Drotrecogin alpha (activated) in children with severe sepsis: a multicentre phase III randomized controller trial. Lancet. 2007;369:836–43.

    Article  CAS  PubMed  Google Scholar 

  191. Johanson PI, et al. Hypocoagulability, as evacuate by thromboelastography, at admission to the ICU is associated with increased 30 day mortality. Blood Coagul Fibrinolysis. 2010;21:168–74.

    Article  Google Scholar 

  192. Park MS, et al. Thromboelastography as a better indicator of hypercoagulable state after injury than prothrombin time or activated partial thromboplastin time. J Trauma. 2009;67:266–75.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Collins PW, et al. Global tests of haemostasis in critically ill patients with severe sepsis syndrome compared to controls. Br J Haematol. 2006;135:220–7.

    Article  PubMed  Google Scholar 

  194. Levi M. Another step in improving the diagnosis of disseminated intravascular coagulation in sepsis. Crit Care. 2013;17:448.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Tulli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Tulli, G. (2018). Blood Coagulation During Sepsis and Septic Shock: Is There Still Room for Anticoagulants?. In: Chiumello, D. (eds) Practical Trends in Anesthesia and Intensive Care 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-61325-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61325-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61324-6

  • Online ISBN: 978-3-319-61325-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics