Skip to main content

Development and Functional Differentiation of Tissue-Resident Versus Monocyte-Derived Macrophages in Inflammatory Reactions

  • Chapter
  • First Online:
Macrophages

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 62))

Abstract

Mononuclear phagocytes are key cells in tissue integrity and defense. Tissue-resident macrophages are abundantly present in all tissues of the body and have a complex role in ensuring tissue functions and homeostatic balance. Circulating blood monocytes can enter tissue both in steady-state conditions, for helping in replenishing the tissue-resident macrophage pool and, in particular, for acting as potent effector cells during inflammatory events such as infections, traumas, and diseases. The heterogeneity of monocytes and macrophages depends on their ontogeny, their tissue location, and their functional programming, with both monocytes and macrophages able to exert distinct or similar functions depending on the tissue-specific and stimulus-specific microenvironment. In this short review, we will review the current hypotheses on tissue-resident macrophage ontogeny and functions, as compared to blood-derived monocytes, with a particular focus on inflammatory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aichele P, Zinke J, Grode L, Schwendener RA, Kaufmann SH, Seiler P (2003) Macrophages of the splenic marginal zone are essential for trapping of blood-borne particulate antigen but dispensable for induction of specific T cell responses. J Immunol 171:1148–1155

    Article  CAS  PubMed  Google Scholar 

  • Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543

    Article  CAS  PubMed  Google Scholar 

  • Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14:1142–1149

    Article  CAS  PubMed  Google Scholar 

  • Amit I, Winter DR, Jung S (2016) The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis. Nat Immunol 17:18–25

    Article  CAS  PubMed  Google Scholar 

  • Aschoff L (1924) Das reticulo-endotheliale system. Ergeb Inn Med Kinderheilkd 26:1–118

    Google Scholar 

  • Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S et al (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317:666–670

    Article  CAS  PubMed  Google Scholar 

  • Bain CC, Bravo-Blas A, Scott CL, Gomez Perdiguero E, Geissmann F, Henri S et al (2014) Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol 15:929–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bain CC, Hawley CA, Garner H, Scott CL, Schridde A, Steers NJ et al (2016) Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities. Nat Commun 7:11852. doi:10.1038/ncomms11852

    Article  CAS  Google Scholar 

  • Beattie L, Sawtell A, Mann J, Frame TCM, Teal B, de Labastida RF et al (2016) Bone marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions. J Hepatol 65:758–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11:889–896

    Article  CAS  PubMed  Google Scholar 

  • Blériot C, Dupuis T, Jouvion G, Eberl G, Disson O, Lecuit M (2015) Liver-resident macrophage necroptosis orchestrates type-1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 42:145–158

    Article  PubMed  CAS  Google Scholar 

  • Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  CAS  PubMed  Google Scholar 

  • Bruttger J, Karram K, Wörtge S, Regen T, Marini F, Hoppmann N et al (2015) Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity 43:92–106

    Article  CAS  PubMed  Google Scholar 

  • Calderon B, Carrero JA, Ferris ST, Sojka DK, Moore L, Epelman S et al (2015) The pancreas anatomy conditions the origin and properties of resident macrophages. J Exp Med 212:1497–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Careau E, Bissonnette EY (2004) Adoptive transfer of alveolar macrophages abrogates bronchial hyper-responsiveness. Am J Respir Cell Mol Biol 31:22–27

    Article  CAS  PubMed  Google Scholar 

  • Chorro L, Sarde A, Li M, Woollard KJ, Chambon P, Malissen B et al (2009) Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J Exp Med 206:3089–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow A, Lucas D, Hidalgo A, Méndez-Ferrer S, Hashimoto D, Scheiermann C et al (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitors cells in the mesenchymal stem cell niche. J Exp Med 208:261–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collin M, Milne P (2016) Langerhans cell origin and regulation. Curr Opin Hematol 23:28–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies LC, Rosas M, Jenkins SJ, Liao C-T, Scurr MJ, Brombacher F et al (2013) Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat Commun 4:1886. doi:10.1038/ncomms2877

    Article  PubMed  CAS  Google Scholar 

  • De Kleer I, Willems F, Lambrecht B, Goriely S (2014) Ontogeny of myeloid cells. Front Immunol 5:423. doi:10.3389/fimmu.2014.00423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • dos Anjos Cassado A (2017) F4/80 as a major macrophage marker: the case of the peritoneum and spleen. In: Kloc M (ed) Macrophages. Springer, Cham

    Google Scholar 

  • Duan M, Li WC, Vlahos R, Maxwell MJ, Anderson GP, Hibbs ML (2012) Distinct macrophage subpopulations characterize acute infection and chronic inflammatory lung disease. J Immunol 189:946–955

    Article  CAS  PubMed  Google Scholar 

  • Eckert C, Klein N, Kornek M, Lukacs-Kornek V (2015) The complex myeloid network of the liver with diverse functional capacity at steady state and in inflammation. Front Immunol 6:179. doi:10.3389/fimmu.2015.00179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ensan S, Li A, Besla R, Degousee N, Cosme J, Roufaiel M et al (2016) Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and circulating monocytes immediately after birth. Nat Immunol 17:159–168

    Article  CAS  PubMed  Google Scholar 

  • Epelman S, Lavine KJ, Randolph GJ (2014a) Origin and functions of tissue macrophages. Immunity 41:21–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B et al (2014b) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:91–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fingerle G, Pforte A, Passlick B, Blumenstein M, Strobel M, Ziegler-Heitbrock HWL (1993) The novel sub set of CD14+/CD16+ blood monocytes is expanded in sepsis patients. Blood 82:3170–3176

    CAS  PubMed  Google Scholar 

  • Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K et al (2014) The cellular and molecular origin of tumor-associated macrophages. Science 344:921–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ (2010) Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol 10:453–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentek R, Molawi K, Sieweke MH (2014) Tissue macrophage identity and self-renewal. Immunol Rev 262:56–73

    Article  CAS  PubMed  Google Scholar 

  • Gibbings SL, Goyal R, Desch NA, Leach SM, Prabagar M, Atif SM et al (2015) Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages. Blood 126:1357–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginhoux F, Guilliams M (2016) Tissue-resident macrophage ontogeny and homeostasis. Immunity 44:439–449

    Article  CAS  PubMed  Google Scholar 

  • Ginhoux F, Jung S (2014) Monocytes and macrophages: development pathways and tissue homeostasis. Nat Rev Immunol 14:392–404

    Article  CAS  PubMed  Google Scholar 

  • Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M, Dai XM et al (2006) Langerhans cells arise from monocytes in vivo. Nat Immunol 7:265–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginhoux F, Lim S, Hoeffel G, Low D, Huber T (2013) Origin and differentiation of microglia. Front Cell Neurosci 7:45. doi:10.3389/fncel.2013.00045

    Article  PubMed  PubMed Central  Google Scholar 

  • Glass KC, Natoli G (2016) Molecular control of activation and priming in macrophages. Nat Immunol 17:26–33

    Article  CAS  PubMed  Google Scholar 

  • Gomez Perdiguero E, Geissmann F (2013) Myb-independent macrophages: a family of cells that develops with their tissue of residence and is involved in its homeostasis. Cold Spring Harb Symp Quant Boil 78:91–100

    Article  Google Scholar 

  • Gomez Perdiguero E, Geissmann F (2016) The development and maintenance of resident macrophages. Nat Immunol 17:2–8

    Article  CAS  Google Scholar 

  • Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L et al (2015a) Tissue-resident macrophages originate from yolk-sac-derived erythromyeloid progenitors. Nature 518:547–551

    Article  PubMed  CAS  Google Scholar 

  • Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, de Bruijn M, Rodewald H-R et al (2015b) The origin of tissue-resident macrophages. When an erythro-myeloid progenitor is an erythro-myeloid progenitor. Immunity 43:1023

    Article  CAS  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Plüddemann A, Martinez Estrada F (2014) Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev 262:36–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ et al (2014) Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greter M, Lelios I, Croxford AL (2015) Microglia versus myeloid cell nomenclature during brain inflammation. Front Immunol 6:249. doi:10.3389/fimmu.2015.00249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L, De Prijck S et al (2013) Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med 210:1977–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schrami BU et al (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14:571–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutknecht MF, Bouton AH (2014) Functional significance of mononuclear phagocyte populations generated through adult hematopoiesis. J Leukoc Biol 96:969–980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haldar M, Murphy KM (2014) Origin, development, and homeostasis of tissue-resident macrophages. Immunol Rev 262:25–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haldar M, Kohyama M, So AY, Kc W, Wu X, Briseño CG et al (2014) Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages. Cell 156:1223–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M et al (2013) Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38:792–804

    Article  CAS  PubMed  Google Scholar 

  • Hettinger J, Richards DM, Hansson J, Barra MM, Joschko AC, Krijgsveld J et al (2013) Origin of monocytes and macrophages in a committed progenitor. Nat Immunol 14:821–830

    Article  CAS  PubMed  Google Scholar 

  • Hoeffel G, Ginhoux F (2015) Ontogeny of tissue-resident macrophages. Front Immunol 6:486. doi:10.3389/fimmu.2015.00486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoeffel G, Chen J, Lavin Y, Low D, Almeida FF, See P et al (2015) C-myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42:665–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoidal JR, Schmeling D, Peterson PK (1981) Phagocytosis, bacterial killing, and metabolism of purified human lung phagocytes. J Infect Dis 144:61–71

    Article  CAS  PubMed  Google Scholar 

  • Holt PG, Oliver J, Bilyk N, McMenamin C, McMenamin PG, Kraal G, Thepen T (1993) Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J Exp Med 177:397–407

    Article  CAS  PubMed  Google Scholar 

  • Hume DA (2008) Macrophages as APC and the dendritic cell myth. J Immunol 181:5829–5835

    Article  CAS  PubMed  Google Scholar 

  • Hussell T, Bell TJ (2014) Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol 14:81–93

    Article  CAS  PubMed  Google Scholar 

  • Italiani P, Boraschi D (2014) From monocytes to M1/M2 macrophages: phenotypical vs functional differentiation. Front Immunol 5:514. doi:10.3389/fimmu.2014.00514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N et al (2011) Local macrophage proliferation, rather than recruitment from the blood, is a signature of Th2 inflammation. Science 332:1284–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins SJ, Ruckerl D, Thomas GD, Hewitson JP, Duncan S, Brombacher F et al (2013) IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J Exp Med 210:2477–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Jiang JX, Zhang GX (2014) Macrophages: a double edged sword in experimental autoimmune encephalomyelitis. Immunol Lett 160:17–22

    Article  CAS  PubMed  Google Scholar 

  • Ju C, Tacke F (2016) Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell Mol Immunol 13:316–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson MC, Guinamard R, Bolland S, Sankala M, Steinman RM, Ravetch JV (2003) Macrophages control the retention and trafficking of B lymphocytes in the splenic marginal zone. J Exp Med 198:333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohyama M, Ise W, Edelson BT, Wilker PR, Hildner K, Mejia C et al (2009) Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 457:318–321

    Article  CAS  PubMed  Google Scholar 

  • Lahmar Q, Keirsse J, Laoui D, Movahedi K, Van Overmeire E, Van Ginderachter JA (2016) Tissue-resident versus monocyte-derived macrophages in the tumor microenvironment. Biochim Biophys Acta 1865:23–34

    CAS  PubMed  Google Scholar 

  • Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M et al (2014) Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavin Y, Mortha A, Rahman A, Merad M (2015) Regulation of macrophage development and function in peripheral tissues. Nat Rev Immunol 15:731–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WY, Moriarty TJ, Wong CH, Zhou H, Strieter RM, Van Rooijen N et al (2010) An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat Immunol 11:295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Yoder MC, Yoshimoto M (2014) Lymphoid progenitor emerge in the murine embryo and yolk sac precedes stem cell detection. Stem Cells Dev 23:1168–1177

    Article  Google Scholar 

  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokines system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  CAS  PubMed  Google Scholar 

  • McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H et al (1996) Targeted disruption of the PU.1 gene results in multiple hematopoiesic abnormalities. EMBO J 15:5647–5658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miró-Mur F, Pérez-de-Puig I, Ferrer-Ferrer M, Urra X, Justicia C, Angel Chamorro A et al (2016) Immature monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of alternative activation. Brain Behav Immun 53:18–33

    Article  PubMed  CAS  Google Scholar 

  • Molawi K, Wolf Y, Kandalla PK, Favret J, Hagemeyer N, Frenzel K et al (2014) Progressive replacement of embryo-derived cardiac macrophages with age. J Exp Med 211:2151–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mossadegh-Keller N, Sarrazin S, Kandalla PK, Espinosa L, Stanley ER, Nutt SL et al (2013) M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 497:239–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller PA, Koscsó B, Rajani GM, Stevanovic K, Berres ML, Hashimoto D et al (2014) Crosstalk between muscularis macrophages end enteric neurons regulates gastrointestinal motility. Cell 158:300–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray PJ (2017) Macrophage polarization. Ann Rev Physiol 79:541–566

    Google Scholar 

  • Nerlov C, Graf T (1998) PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Gene Dev 12:2403–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Netea MG, Latz E, Mills KH, O’Neill LA (2015) Innate immune memory: a paradigm shift in understanding host defense. Nat Immunol 16:675–679

    Article  CAS  PubMed  Google Scholar 

  • Noy R, Pollard WJ (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okabe Y, Medzhitov R (2016) Tissue biology perspective on macrophages. Nat Immunol 17:9–17

    Article  CAS  PubMed  Google Scholar 

  • Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR, Lafaille JJ et al (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds G, Haniffa M (2015) Human and mouse mononuclear phagocyte networks: a tale of two species? Front Immunol 6:330. doi:10.3389/fimmu.2015.00330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robbins CS, Hilgendorf I, Weber GF, Theurl I, Iwamoto Y, Figueiredo JL et al (2013) Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med 19:1166–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogacev KS, Cremers B, Zawada AM, Seiler S, Binder N, Ege P et al (2012) CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. J Am Coll Cardiol 60:1512–1520

    Article  CAS  PubMed  Google Scholar 

  • Romanoski CE, Link VM, Heinz S, Glass CK (2015) Exploiting genomics and natural genetic variation to decode macrophage enhancers. Trends Immunol 36:507–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarrazin S, Mossadegh-Keller N, Fukao T, Aziz A, Mourcin F, Vanhille L et al (2009) MafB restrics M-CSF-dependent myeloid commitment divisions of hematopoietic stem cells. Cell 138:300–313

    Article  CAS  PubMed  Google Scholar 

  • Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kier-dorf K et al (2012) A lineage of myeloid cells independent of myb and hematopoietic stem cells. Science 336:86–90

    Article  CAS  PubMed  Google Scholar 

  • Scott CL, Zheng F, De Baetselier P, Martens L, Saeys Y, De Prijck S et al (2016) Bone marrow derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun 7:10321. doi:10.1038/ncomms10321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sere K, Baek JH, Ober-Blöbaum J, Müller-Newen G, Tacke F, Yokota Y et al (2012) Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity 37:905–916

    Article  CAS  PubMed  Google Scholar 

  • Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G et al (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6:e1000113. doi:10.1371/journal.pmed.1000113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shemer A, Jung S (2015) Differential roles of resident microglia and infiltrating monocytes in murine CNS autoimmunity. Semin Immunopathol 37:613–623

    Article  CAS  PubMed  Google Scholar 

  • Sheng J, Ruedl C, Karjalainen K (2015a) Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 43:382–393

    Article  CAS  PubMed  Google Scholar 

  • Sheng J, Ruedl C, Karjalainen K (2015b) Fetal HSCs versus EMPs. Immunity 43:1025

    Article  CAS  PubMed  Google Scholar 

  • Sieweke MH, Allen JE (2013) Beyond stem cells: self-renewal of differentiated macrophages. Science 342:1242974. doi:10.1126/science.1242974

    Article  PubMed  CAS  Google Scholar 

  • Sprangers S, de Vries TJ, Everts V (2016) Monocyte heterogeneity: consequences for monocyte-derived immune cells. J Immunol Res 2016:1475435. doi:10.1155/2016/1475435

    Article  PubMed  PubMed Central  Google Scholar 

  • Sumagin R, Prizant H, Lomakina E, Waugh RE, Sarelius IH (2010) LFA-1 and Mac-1 define characteristically different intralumenal crawling and emigration patterns for monocytes and neutrophils in situ. J Immunol 185:7057–7066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J et al (2007) Monocyte subsets differentially employ CCR2 CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117:185–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D, Malosse C et al (2013) Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39:925–938

    Article  CAS  PubMed  Google Scholar 

  • Tarling DJ, Lin HS, Hsu S (1987) Self-renewal of pulmonary alveolar macrophages: evidence from radiation chimera studies. J Leukoc Biol 42:443–446

    CAS  PubMed  Google Scholar 

  • Thomas ED, Ramberg RE, Sale GE, Sparkes RS, Golde DW (1976) Direct evidence for a bone marrow origin of the alveolar macrophages in man. Science 192:1016–1018

    Article  CAS  PubMed  Google Scholar 

  • Thomson AW, Knolle PA (2010) Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 10:753–766

    Article  CAS  PubMed  Google Scholar 

  • Udalova IA, Mantovani A, Feldmann M (2016) Macrophage heterogeneity in the context of rheumatoid arthritis. Nat Rev Rheumatol 12:472–485

    Article  CAS  PubMed  Google Scholar 

  • Upham JW, Strickland DH, Bilyk N, Robinson BW, Holt PG (1995) Alveolar macrophages from humans and rodents selectively inhibit T-cell proliferation but permit T-cell activation and cytokine secretion. Immunology 84:142–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • van de Laar L, Saelens W, De Prijck S, Martens L, Scott CL, Van Isterdael G et al (2016) Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages. Immunity 44:755–768

    Article  PubMed  CAS  Google Scholar 

  • van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL (1972) The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ 46:845–852

    PubMed  PubMed Central  Google Scholar 

  • van Gassen N, Van Overmeire E, Leuckx G, Heremans Y, De Groef S, Cai Y et al (2015) Macrophage dynamics are regulated by local macrophage proliferation and monocyte recruitment in injured pancreas. Eur J Immunol 45:1482–1493

    Article  PubMed  CAS  Google Scholar 

  • Varol C, Mildner A, Jung S (2015) Macrophages: development and tissue specialization. Ann Rev Immunol 33:643–675

    Article  CAS  Google Scholar 

  • Vlahos R, Bozinovski S (2014) Role of alveolar macrophages in chronic obstructive pulmonary disease. Front Immunol 5:188–194

    Article  CAS  Google Scholar 

  • Waisman A, Ginhoux F, Greter M, Bruttger J (2015) Homeostasis of microglia in the adult brain: review of novel microglia depletion systems. Trends Immunol 36:625–636

    Article  CAS  PubMed  Google Scholar 

  • Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM et al (2004) C-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 18:2747–2763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wlodarczyk A, Cédile O, Nolling Jensen K, Jasson A, Thyagabhavan Mony J, Khorooshi R et al (2015) Pathologic and protective roles for microglial subsets and bone marrow and blood-derived myeloid cells in central nervous system inflammation. Front Immunol 6:463. doi:10.3389/fimmu.2015.00463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wong KL, Yeap WH, Tai JJ, Ong SM, Dang TM, Wong SC (2012) The three human monocyte subsets: implications for health and disease. Immunol Res 53:41–57

    Article  CAS  PubMed  Google Scholar 

  • Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis, and disease. Nature 496:445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R et al (2014) Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 211:1533–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M et al (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91

    Article  CAS  PubMed  Google Scholar 

  • ZasÅ‚ona Z, Przybranowski S, Wilke C, van Rooijen N, Teitz-Tennenbaum S, Osterholzer JJ et al (2014) Resident alveolar macrophages suppress, whereas recruited monocytes promote, allergic lung inflammation in murine models of asthma. J Immunol 193:4245–4253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziegler-Heitbrock L (2007) The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol 81:584–592

    Article  CAS  PubMed  Google Scholar 

  • Ziegler-Heitbrock L (2014) Monocyte subsets in man and other species. Cell Immunol 289:135–139

    Article  CAS  PubMed  Google Scholar 

  • Ziegler-Heitbrock L (2015) Blood monocytes and their subsets: established features and open questions. Front Immunol 6:423. doi:10.3389/fimmu.2015.00423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zigmond E, Samia-Grinberg S, Pasmanik-Chor M, Brazowski E, Shibolet O, Halpern Z et al (2014) Infiltrating monocyte-derived macrophages and resident kupffer cells display different ontogeny and function in acute liver injury. J Immunol 193:344–353

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Italiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Italiani, P., Boraschi, D. (2017). Development and Functional Differentiation of Tissue-Resident Versus Monocyte-Derived Macrophages in Inflammatory Reactions. In: Kloc, M. (eds) Macrophages. Results and Problems in Cell Differentiation, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-319-54090-0_2

Download citation

Publish with us

Policies and ethics