Skip to main content

Evolutionary Aspects of Macrophages Polarization

  • Chapter
  • First Online:
Macrophages

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 62))

Abstract

Macrophages constitute a heterogeneous population of myeloid cells that are essential for maintaining homeostasis and as a first line of innate responders controlling and organizing host defenses against pathogens. Monocyte–macrophage lineage cells are among the most functionally diverse and plastic cells of the immune system. They undergo specific activation into functionally distinct phenotypes in response to immune signals and microbial products. In mammals, macrophage functional heterogeneity is defined by two activation states, M1 and M2, which represent two polar ends of a continuum exhibiting pro-inflammatory and tissue repair activities, respectively. While the ancient evolutionary origin of macrophages as phagocytic defenders is well established, the evolutionary roots of the specialized division of macrophages into subsets with polarized activation phenotypes is less well defined. Accordingly, this chapter focuses on recent advances in the understanding of the evolution of macrophage polarization and functional heterogeneity with a focus on ectothermic vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DO (1976) The granulomatous inflammatory response. A review. Am J Pathol 84:164–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allavena P, Sica A, Garlanda C, Mantovani A (2008a) The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev 222:155–161

    Article  CAS  PubMed  Google Scholar 

  • Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008b) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66:1–9

    Article  PubMed  Google Scholar 

  • Arts JA, Tijhaar EJ, Chadzinska M, Savelkoul HF, Verburg-van Kemenade BM (2010) Functional analysis of carp interferon-gamma: evolutionary conservation of classical phagocyte activation. Fish Shellfish Immunol 29:793–802

    Article  CAS  PubMed  Google Scholar 

  • Badariotti F, Lelong C, Dubos MP, Favrel P (2007) Characterization of chitinase-like proteins (Cg-Clp1 and Cg-Clp2) involved in immune defence of the mollusc Crassostrea gigas. FEBS J 274:3646–3654

    Article  CAS  PubMed  Google Scholar 

  • Bayley AE, Hill BJ, Feist SW (2013) Susceptibility of the European common frog Rana temporaria to a panel of ranavirus isolates from fish and amphibian hosts. Dis Aquat Organ 103:171–183

    Article  PubMed  Google Scholar 

  • Beider K, Bitner H, Leiba M, Gutwein O, Koren-Michowitz M, Ostrovsky O, Abraham M, Wald H, Galun E, Peled A, Nagler A (2014) Multiple myeloma cells recruit tumor-supportive macrophages through the CXCR4/CXCL12 axis and promote their polarization toward the M2 phenotype. Oncotarget 5:11283–11296

    Article  PubMed  PubMed Central  Google Scholar 

  • Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11:889–896

    Article  CAS  PubMed  Google Scholar 

  • Bystrom J, Evans I, Newson J, Stables M, Toor I, van Rooijen N, Crawford M, Colville-Nash P, Farrow S, Gilroy DW (2008) Resolution-phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP. Blood 112:4117–4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cambier CJ, Takaki KK, Larson RP, Hernandez RE, Tobin DM, Urdahl KB, Cosma CL, Ramakrishnan L (2014) Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 505:218–222

    Article  CAS  PubMed  Google Scholar 

  • Cassetta L, Cassol E, Poli G (2011) Macrophage polarization in health and disease. ScientificWorldJournal 11:2391–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavez-Galan L, Olleros ML, Vesin D, Garcia I (2015) Much more than M1 and M2 macrophages, there are also CD169(+) and TCR(+) macrophages. Front Immunol 6:263

    PubMed  PubMed Central  Google Scholar 

  • Chihara T, Suzu S, Hassan R, Chutiwitoonchai N, Hiyoshi M, Motoyoshi K, Kimura F, Okada S (2010) IL-34 and M-CSF share the receptor Fms but are not identical in biological activity and signal activation. Cell Death Differ 17:1917–1927

    Article  CAS  PubMed  Google Scholar 

  • Chinchar VG, Yu KH, Jancovich JK (2011) The molecular biology of frog virus 3 and other iridoviruses infecting cold-blooded vertebrates. Viruses 3:1959–1985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cronan MR, Tobin DM (2014) Fit for consumption: zebrafish as a model for tuberculosis. Dis Model Mech 7:777–784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER (2002) Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99:111–120

    Article  CAS  PubMed  Google Scholar 

  • Davis JM, Ramakrishnan L (2009) The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136:37–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L (2002) Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17:693–702

    Article  CAS  PubMed  Google Scholar 

  • De Jesus Andino F, Chen G, Li Z, Grayfer L, Robert J (2012) Susceptibility of Xenopus laevis tadpoles to infection by the ranavirus Frog-Virus 3 correlates with a reduced and delayed innate immune response in comparison with adult frogs. Virology 432:435–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dzik JM (2014) Evolutionary roots of arginase expression and regulation. Front Immunol 5:544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edholm ES, Albertorio Saez LM, Gill AL, Gill SR, Grayfer L, Haynes N, Myers JR, Robert J (2013) Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians. Proc Natl Acad Sci U S A 110:14342–14347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edholm ES, Grayfer L, Robert J (2014) Evolution of nonclassical MHC-dependent invariant T cells. Cell Mol Life Sci 71:4763–4780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ (2011) mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 117(4):e49–e56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleetwood AJ, Lawrence T, Hamilton JA, Cook AD (2007) Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol 178:5245–5252

    Article  CAS  PubMed  Google Scholar 

  • Franchini A, Ottaviani E (2000) Repair of molluscan tissue injury: role of PDGF and TGF-beta1. Tissue Cell 32:312–321

    Article  CAS  PubMed  Google Scholar 

  • Franchini A, Conte A, Ottaviani E (1995) Nitric oxide: an ancestral immunocyte effector molecule. Adv Neuroimmunol 5:463–478

    Article  CAS  PubMed  Google Scholar 

  • Garceau V, Smith J, Paton IR, Davey M, Fares MA, Sester DP, Burt DW, Hume DA (2010) Pivotal advance: avian colony-stimulating factor 1 (CSF-1), interleukin-34 (IL-34), and CSF-1 receptor genes and gene products. J Leukoc Biol 87:753–764

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  CAS  PubMed  Google Scholar 

  • Grayfer L, Robert J (2013) Colony-stimulating factor-1-responsive macrophage precursors reside in the amphibian (Xenopus laevis) bone marrow rather than the hematopoietic subcapsular liver. J Innate Immun 5:531–542

    Article  CAS  PubMed  Google Scholar 

  • Grayfer L, Robert J (2014) Divergent antiviral roles of amphibian (Xenopus laevis) macrophages elicited by colony-stimulating factor-1 and interleukin-34. J Leukoc Biol 96:1143–1153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grayfer L, Robert J (2015) Distinct functional roles of amphibian (Xenopus laevis) colony-stimulating factor-1- and interleukin-34-derived macrophages. J Leukoc Biol 98:641–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grayfer L, Robert J (2016) Amphibian macrophage development and antiviral defenses. Dev Comp Immunol 58:60–67

    Article  CAS  PubMed  Google Scholar 

  • Grayfer L, Hanington PC, Belosevic M (2009) Macrophage colony-stimulating factor (CSF-1) induces pro-inflammatory gene expression and enhances antimicrobial responses of goldfish (Carassius auratus L.) macrophages. Fish Shellfish Immunol 26:406–413

    Article  CAS  PubMed  Google Scholar 

  • Grayfer L, Andino Fde J, Chen G, Chinchar GV, Robert J (2012) Immune evasion strategies of ranaviruses and innate immune responses to these emerging pathogens. Viruses 4:1075–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grayfer L, De Jesus Andino F, Robert J (2014a) The amphibian (Xenopus laevis) type I interferon response to frog virus 3: new insight into ranavirus pathogenicity. J Virol 88:5766–5777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grayfer L, Edholm ES, Robert J (2014b) Mechanisms of amphibian macrophage development: characterization of the Xenopus laevis colony-stimulating factor-1 receptor. Int J Dev Biol 58:757–766

    Article  CAS  PubMed  Google Scholar 

  • Grayfer L, Hodgkinson JW, Belosevic M (2014c) Antimicrobial responses of teleost phagocytes and innate immune evasion strategies of intracellular bacteria. Dev Comp Immunol 43:223–242

    Article  CAS  PubMed  Google Scholar 

  • Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP (2005) Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65:3437–3446

    CAS  PubMed  Google Scholar 

  • Guilbert LJ, Stanley ER (1980) Specific interaction of murine colony-stimulating factor with mononuclear phagocytic cells. J Cell Biol 85:153–159

    Article  CAS  PubMed  Google Scholar 

  • Hanington PC, Belosevic M (2007) Interleukin-6 family cytokine M17 induces differentiation and nitric oxide response of goldfish (Carassius auratus L.) macrophages. Dev Comp Immunol 31:817–829

    Article  CAS  PubMed  Google Scholar 

  • Hanington PC, Wang T, Secombes CJ, Belosevic M (2007) Growth factors of lower vertebrates: characterization of goldfish (Carassius auratus L.) macrophage colony-stimulating factor-1. J Biol Chem 282:31865–31872

    Article  CAS  PubMed  Google Scholar 

  • Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, Yang SM (2012) Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012:948098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herbein G, Varin A (2010) The macrophage in HIV-1 infection: from activation to deactivation? Retrovirology 7:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hodgkinson JW, Grayfer L, Belosevic M (2015) Biology of bony fish macrophages. Biology (Basel) 4:881–906

    Google Scholar 

  • Hoverman JT, Gray MJ, Miller DL (2010) Anuran susceptibilities to ranaviruses: role of species identity, exposure route, and a novel virus isolate. Dis Aquat Organ 89:97–107

    Article  PubMed  Google Scholar 

  • Huang Z, Luo Q, Guo Y, Chen J, Xiong G, Peng Y, Ye J, Li J (2015) Mycobacterium tuberculosis-induced polarization of human macrophage orchestrates the formation and development of tuberculous granulomas in vitro. PLoS One 10:e0129744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Italiani P, Boraschi D (2014) From monocytes to M1/M2 macrophages: phenotypical vs functional differentiation. Front Immunol 5:514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joerink M, Forlenza M, Ribeiro CM, de Vries BJ, Savelkoul HF, Wiegertjes GF (2006a) Differential macrophage polarisation during parasitic infections in common carp (Cyprinus carpio L.) Fish Shellfish Immunol 21:561–571

    Article  CAS  PubMed  Google Scholar 

  • Joerink M, Ribeiro CM, Stet RJ, Hermsen T, Savelkoul HF, Wiegertjes GF (2006b) Head kidney-derived macrophages of common carp (Cyprinus carpio L.) show plasticity and functional polarization upon differential stimulation. J Immunol 177:61–69

    Article  CAS  PubMed  Google Scholar 

  • Joerink M, Savelkoul HF, Wiegertjes GF (2006c) Evolutionary conservation of alternative activation of macrophages: structural and functional characterization of arginase 1 and 2 in carp (Cyprinus carpio L.) Mol Immunol 43:1116–1128

    Article  CAS  PubMed  Google Scholar 

  • Kirkpatrick RB, Matico RE, McNulty DE, Strickler JE, Rosenberg M (1995) An abundantly secreted glycoprotein from Drosophila melanogaster is related to mammalian secretory proteins produced in rheumatoid tissues and by activated macrophages. Gene 153:147–154

    Article  CAS  PubMed  Google Scholar 

  • Labonte AC, Tosello-Trampont AC, Hahn YS (2014) The role of macrophage polarization in infectious and inflammatory diseases. Mol Cells 37:275–285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lang R, Patel D, Morris JJ, Rutschman RL, Murray PJ (2002) Shaping gene expression in activated and resting primary macrophages by IL-10. J Immunol 169:2253–2263

    Article  CAS  PubMed  Google Scholar 

  • Lichanska AM, Browne CM, Henkel GW, Murphy KM, Ostrowski MC, McKercher SR, Maki RA, Hume DA (1999) Differentiation of the mononuclear phagocyte system during mouse embryogenesis: the role of transcription factor PU.1. Blood 94:127–138

    CAS  PubMed  Google Scholar 

  • Liu H, Leo C, Chen X, Wong BR, Williams LT, Lin H, He X (2012) The mechanism of shared but distinct CSF-1R signaling by the non-homologous cytokines IL-34 and CSF-1. Biochim Biophys Acta 1824:938–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manos MM (1988) Expression and processing of a recombinant human macrophage colony-stimulating factor in mouse cells. Mol Cell Biol 8:5035–5039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  CAS  PubMed  Google Scholar 

  • Marino S, Cilfone NA, Mattila JT, Linderman JJ, Flynn JL, Kirschner DE (2015) Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection. Infect Immun 83:324–338

    Article  PubMed  CAS  Google Scholar 

  • Martin CJ, Carey AF, Fortune SM (2016) A bug’s life in the granuloma. Semin Immunopathol 38:213–220

    Article  CAS  PubMed  Google Scholar 

  • Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311

    Article  CAS  PubMed  Google Scholar 

  • Martinez FO, Helming L, Milde R, Varin A, Melgert BN, Draijer C, Thomas B, Fabbri M, Crawshaw A, Ho LP, Ten Hacken NH, Cobos Jimenez V, Kootstra NA, Hamann J, Greaves DR, Locati M, Mantovani A, Gordon S (2013) Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood 121:e57–e69

    Article  CAS  PubMed  Google Scholar 

  • McKinney EC, Haynes L, Droese AL (1986) Macrophage-like effector of spontaneous cytotoxicity from the shark. Dev Comp Immunol 10:497–508

    Article  CAS  PubMed  Google Scholar 

  • Meijer AH (2016) Protection and pathology in TB: learning from the zebrafish model. Semin Immunopathol 38:261–273

    Article  CAS  PubMed  Google Scholar 

  • Meijer AH, Verbeek FJ, Salas-Vidal E, Corredor-Adamez M, Bussman J, van der Sar AM, Otto GW, Geisler R, Spaink HP (2005) Transcriptome profiling of adult zebrafish at the late stage of chronic tuberculosis due to Mycobacterium marinum infection. Mol Immunol 42:1185–1203

    Article  CAS  PubMed  Google Scholar 

  • Metchnikoff EM (1905) Immunity in infective disease. Cambridge University Press, Cambridge

    Google Scholar 

  • Mills CD (2001) Macrophage arginine metabolism to ornithine/urea or nitric oxide/citrulline: a life or death issue. Crit Rev Immunol 21:399–425

    Article  CAS  PubMed  Google Scholar 

  • Mills CD (2012) M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol 32:463–488

    Article  CAS  PubMed  Google Scholar 

  • Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166–6173

    Article  CAS  PubMed  Google Scholar 

  • Morales HD, Abramowitz L, Gertz J, Sowa J, Vogel A, Robert J (2010) Innate immune responses and permissiveness to ranavirus infection of peritoneal leukocytes in the frog Xenopus laevis. J Virol 84:4912–4922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris SM Jr (2009) Recent advances in arginine metabolism: roles and regulation of the arginases. Br J Pharmacol 157:922–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munder M, Eichmann K, Moran JM, Centeno F, Soler G, Modolell M (1999) Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J Immunol 163:3771–3777

    CAS  PubMed  Google Scholar 

  • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann NF, Stafford JL, Belosevic M (2000) Biochemical and functional characterisation of macrophage stimulating factors secreted by mitogen-induced goldfish kidney leucocytes. Fish Shellfish Immunol 10:167–186

    Article  CAS  PubMed  Google Scholar 

  • Nguyen-Chi M, Laplace-Builhe B, Travnickova J, Luz-Crawford P, Tejedor G, Phan QT, Duroux-Richard I, Levraud JP, Kissa K, Lutfalla G, Jorgensen C, Djouad F (2015) Identification of polarized macrophage subsets in zebrafish. Elife 4:e07288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Toole R (2010) Experimental models used to study human tuberculosis. Adv Appl Microbiol 71:75–89

    Article  PubMed  Google Scholar 

  • Ohtani M, Hayashi N, Hashimoto K, Nakanishi T, Dijkstra JM (2008) Comprehensive clarification of two paralogous interleukin 4/13 loci in teleost fish. Immunogenetics 60:383–397

    Article  CAS  PubMed  Google Scholar 

  • Ottaviani E (2011) Immunocyte: the invertebrate counterpart of the vertebrate macrophage. Invertebr Surviv J 8:1–4

    Google Scholar 

  • Ottaviani E, Franceschi C (1997) The invertebrate phagocytic immunocyte: clues to a common evolution of immune and neuroendocrine systems. Immunol Today 18:169–174

    Article  CAS  PubMed  Google Scholar 

  • Paredes R, Ishibashi S, Borrill R, Robert J, Amaya E (2015) Xenopus: an in vivo model for imaging the inflammatory response following injury and bacterial infection. Dev Biol 408:213–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterton D, Shi YB (1994) Thyroid hormone-dependent differential regulation of multiple arginase genes during amphibian metamorphosis. J Biol Chem 269:25328–25334

    CAS  PubMed  Google Scholar 

  • Raes G, Van den Bergh R, De Baetselier P, Ghassabeh GH, Scotton C, Locati M, Mantovani A, Sozzani S (2005) Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells. J Immunol 174:6561. author reply 6561-2

    Article  CAS  PubMed  Google Scholar 

  • Rettenmier CW, Roussel MF (1988) Differential processing of colony-stimulating factor 1 precursors encoded by two human cDNAs. Mol Cell Biol 8:5026–5034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieger AM, Hall BE, Barreda DR (2010) Macrophage activation differentially modulates particle binding, phagocytosis and downstream antimicrobial mechanisms. Dev Comp Immunol 34:1144–1159

    Article  CAS  PubMed  Google Scholar 

  • Robert J, Edholm ES (2014) A prominent role for invariant T cells in the amphibian Xenopus laevis tadpoles. Immunogenetics 66:513–523

    Article  CAS  PubMed  Google Scholar 

  • Robert J, Abramowitz L, Gantress J, Morales HD (2007) Xenopus laevis: a possible vector of Ranavirus infection? J Wildl Dis 43:645–652

    Article  CAS  PubMed  Google Scholar 

  • Roszer T (2015) Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm 2015:816460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saccani A, Schioppa T, Porta C, Biswas SK, Nebuloni M, Vago L, Bottazzi B, Colombo MP, Mantovani A, Sica A (2006) p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res 66:11432–11440

    Article  CAS  PubMed  Google Scholar 

  • Samson ML (2000) Drosophila arginase is produced from a nonvital gene that contains the elav locus within its third intron. J Biol Chem 275:31107–31114

    Article  CAS  PubMed  Google Scholar 

  • Sang Y, Miller LC, Blecha F (2015) Macrophage polarization in virus-host interactions. J Clin Cell Immunol 6:311

    PubMed  PubMed Central  Google Scholar 

  • Scotton CJ, Martinez FO, Smelt MJ, Sironi M, Locati M, Mantovani A, Sozzani S (2005) Transcriptional profiling reveals complex regulation of the monocyte IL-1 beta system by IL-13. J Immunol 174:834–845

    Article  CAS  PubMed  Google Scholar 

  • Shaked I, Hanna DB, Gleissner C, Marsh B, Plants J, Tracy D, Anastos K, Cohen M, Golub ET, Karim R, Lazar J, Prasad V, Tien PC, Young MA, Landay AL, Kaplan RC, Ley K (2014) Macrophage inflammatory markers are associated with subclinical carotid artery disease in women with human immunodeficiency virus or hepatitis C virus infection. Arterioscler Thromb Vasc Biol 34:1085–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sica A, Saccani A, Mantovani A (2002) Tumor-associated macrophages: a molecular perspective. Int Immunopharmacol 2:1045–1054

    Article  CAS  PubMed  Google Scholar 

  • Silva Miranda M, Breiman A, Allain S, Deknuydt F, Altare F (2012) The tuberculous granuloma: an unsuccessful host defence mechanism providing a safety shelter for the bacteria? Clin Dev Immunol 2012:139127

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith SJ, Kotecha S, Towers N, Latinkic BV, Mohun TJ (2002) XPOX2-peroxidase expression and the XLURP-1 promoter reveal the site of embryonic myeloid cell development in Xenopus. Mech Dev 117:173–186

    Article  CAS  PubMed  Google Scholar 

  • Sricharoen S, Kim JJ, Tunkijjanukij S, Soderhall I (2005) Exocytosis and proteomic analysis of the vesicle content of granular hemocytes from a crayfish. Dev Comp Immunol 29:1017–1031

    Article  CAS  PubMed  Google Scholar 

  • Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176:287–292

    Article  CAS  PubMed  Google Scholar 

  • Stempin CC, Dulgerian LR, Garrido VV, Cerban FM (2010) Arginase in parasitic infections: macrophage activation, immunosuppression, and intracellular signals. J Biomed Biotechnol 2010:683485

    Article  PubMed  CAS  Google Scholar 

  • Stinear TP, Seemann T, Harrison PF, Jenkin GA, Davies JK, Johnson PD, Abdellah Z, Arrowsmith C, Chillingworth T, Churcher C, Clarke K, Cronin A, Davis P, Goodhead I, Holroyd N, Jagels K, Lord A, Moule S, Mungall K, Norbertczak H, Quail MA, Rabbinowitsch E, Walker D, White B, Whitehead S, Small PL, Brosch R, Ramakrishnan L, Fischbach MA, Parkhill J, Cole ST (2008) Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res 18:729–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagoh H, Himes R, Clarke D, Leenen PJ, Riggs AD, Hume D, Bonifer C (2002) Transcription factor complex formation and chromatin fine structure alterations at the murine c-fms (CSF-1 receptor) locus during maturation of myeloid precursor cells. Genes Dev 16:1721–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E, Kastelein R, Kolk A, de Waal-Malefyt R, Ottenhoff TH (2004) Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A 101:4560–4565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verreck FA, de Boer T, Langenberg DM, van der Zanden L, Ottenhoff TH (2006) Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol 79:285–293

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Secombes CJ (2013) The cytokine networks of adaptive immunity in fish. Fish Shellfish Immunol 35:1703–1718

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Hanington PC, Belosevic M, Secombes CJ (2008) Two macrophage colony-stimulating factor genes exist in fish that differ in gene organization and are differentially expressed. J Immunol 181:3310–3322

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Johansson P, Abos B, Holt A, Tafalla C, Jiang Y, Wang A, Xu Q, Qi Z, Huang W, Costa MM, Diaz-Rosales P, Holland JW, Secombes CJ (2016) First in-depth analysis of the novel Th2-type cytokines in salmonid fish reveals distinct patterns of expression and modulation but overlapping bioactivities. Oncotarget 7:10917–10946

    PubMed  PubMed Central  Google Scholar 

  • Wei S, Nandi S, Chitu V, Yeung YG, Yu W, Huang M, Williams LT, Lin H, Stanley ER (2010) Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J Leukoc Biol 88:495–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright PA, Campbell A, Morgan RL, Rosenberger AG, Murray BW (2004) Dogmas and controversies in the handling of nitrogenous wastes: expression of arginase type I and II genes in rainbow trout: influence of fasting on liver enzyme activity and mRNA levels in juveniles. J Exp Biol 207:2033–2042

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms. Maureen Banach for critical reading of the manuscript. Funding support R24-AI-059830 from the National Institute of Allergy and Infectious Diseases (NIH/NIAID) and IOS-1456213 from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Robert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Edholm, ES., Rhoo, K.H., Robert, J. (2017). Evolutionary Aspects of Macrophages Polarization. In: Kloc, M. (eds) Macrophages. Results and Problems in Cell Differentiation, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-319-54090-0_1

Download citation

Publish with us

Policies and ethics