Skip to main content

Preoperative Assessment and Clinical Optimization

  • Chapter
  • First Online:
Mechanical Circulatory Support in End-Stage Heart Failure

Abstract

Indications for short- or long-term mechanical circulatory support (MCS) in patients with acute or chronic severe disease, of various degrees of urgency, and with different probabilities of myocardial recovery are presented and discussed in details in other chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kirklin JK, Naftel DC, Kormos RL et al (2010) Second INTERMACS annual report: more than 1,000 primary left ventricular assist device implants. J Heart Lung Transplant 29:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kirklin JK, Naftel DC, Pagani FD et al (2015) Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant 34:1495–1504

    Article  PubMed  Google Scholar 

  3. Mancini D, Colombo P (2015) Left ventricular assist devices: a rapidly evolving alternative to transplant. J Am Coll Cardiol 65:2542–2555

    Article  PubMed  Google Scholar 

  4. Estep JD, Starling RC, Horstmanshof DA et al (2015) Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients: results from the ROADMAP Study, for the ROADMAP Study Investigators. J Am Coll Cardiol 66:1747–1761

    Article  PubMed  Google Scholar 

  5. Feldman D, Pamboukian SV, Teuteberg JJ et al (2013) The 2013 International Society of Heart and Lung Transplantation Guidelines for Mechanical Circulatory Support. Executive Summary. J Heart Lung Transplant 32:157–187. (See Lietz K, Deng M, Feldman D et al. Task Force 1: Selection of candidates for Mechanical Circulatory Support and risk management prior to implantation for fixed comorbidities.)

    Google Scholar 

  6. Peura JL, Colvin-Adams M, Francis GS et al (2012) AHA Scientific Statement. Recommendations for the use of Mechanical Circulatory Support: device strategy and patient selection. A scientific statement from the American Heart Association. Circulation 126:2648–2667

    Article  PubMed  Google Scholar 

  7. Goda A, Lund LH, Mancini DM (2011) The Heart Failure Survival Score outperforms the peak oxygen consumption for heart transplantation selection in the era of device therapy. J Heart Lung Transplant 30:315–325

    Article  PubMed  Google Scholar 

  8. Cattadori G, Agostoni P, Corrà U et al (2013) Severe heart failure prognosis evaluation for transplant selection in the era of beta-blockers: role of peak oxygen consumption. Int J Cardiol 168:5078–5081

    Article  PubMed  Google Scholar 

  9. Scrutinio D, Ammirati E, Passantino A et al (2015) Predicting short-term mortality in advanced decompensated heart failure – role of the updated acute decompensated heart failure/N-terminal pro-B-type natriuretic Peptide risk score. Circ J 79:1076–1083

    Article  PubMed  Google Scholar 

  10. Scrutinio D, Ammirati E, Guida P et al (2014) The ADHF/NT-proBNP risk score to predict 1-year mortality in hospitalized patients with advanced decompensated heart failure. J Heart Lung Transplant 33:404–411

    Article  PubMed  Google Scholar 

  11. Bonde P, Ku NC, Genovese EA et al (2012) Model for end-stage liver disease score predicts adverse events related to ventricular assist device therapy. Ann Thorac Surg 93:1541–1547

    Article  PubMed  Google Scholar 

  12. Grady KL, Naftel DC, Myers S et al (2015) Change in health-related quality of life from before to after destination therapy mechanical circulatory support is similar for older and younger patients: analyses from INTERMACS. J Heart Lung Transplant 34:213–221

    Article  PubMed  Google Scholar 

  13. Kiernan MS, Sundareswaran KS, Pham DT et al (2016) Preoperative determinants of quality of life and functional capacity response to left ventricular assist device therapy. J Card Fail 22:797–805

    Google Scholar 

  14. Dunlay SM, Park SJ, Joyce LD et al (2014) Frailty and outcomes after implantation of left ventricular assist device as destination therapy. J Heart Lung Transplant 33:359–365

    Article  PubMed  Google Scholar 

  15. Bruce CR, Delgado E, Kostick K et al (2014) Ventricular assist devices: a review of psychosocial risk factors and their impact on outcomes. J Card Fail 20:996–1003

    Article  PubMed  Google Scholar 

  16. Stainback RF, Estep JD, Agler DA et al (2015) Echocardiography in the management of patients with Left Ventricular Assist Devices: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr 28:853–909

    Article  PubMed  Google Scholar 

  17. Atluri P, Goldstone AB, Fairman AS et al (2013) Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg 96:857–863 ; discussion 863–864

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fried J, Levin AP, Mody KM et al (2014) Prior hematologic conditions carry a high morbidity and mortality in patients supported with continuous-flow left ventricular assist devices. J Heart Lung Transplant 33:1119–1125

    Article  PubMed  Google Scholar 

  19. Benken ST, Tillman N, Dajani S, Shah A, Thomas T (2014) A retrospective evaluation of fondaparinux for confirmed or suspected heparin-induced thrombocytopenia in left-ventricular-assist device patients. J Cardiothorac Surg 9:55

    Article  PubMed  PubMed Central  Google Scholar 

  20. Morshuis M, Boergermann J, Gummert J, Koster A (2013) A modified technique for implantation of the HeartWare™ left ventricular assist device when using bivalirudin anticoagulation in patients with acute heparin-induced thrombocytopenia. Interact Cardiovasc Thorac Surg 17:225–226

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chaudhry UI, Kanji A, Sai-Sudhakar CB, Higgins RS, Needleman BJ (2015) Laparoscopic sleeve gastrectomy in morbidly obese patients with end-stage heart failure and left ventricular assist device: medium-term results. Surg Obes Relat Dis 11:88–93

    Article  PubMed  Google Scholar 

  22. Schweizer ML, Chiang HY, Septimus E et al (2015) Association of a bundled intervention with surgical site infections among patients undergoing cardiac, hip, or knee surgery. JAMA 313:2162–2171

    Article  CAS  PubMed  Google Scholar 

  23. Patlolla B, Beygui R, Haddad F (2013) Right-ventricular failure following left ventricle assist device implantation. Curr Opin Cardiol 28:223–233

    Article  PubMed  Google Scholar 

  24. Dandel M, Potapov E, Krabatsch T et al (2013) Load dependency of right ventricular Performance Is a Major Factor to be Considered in Decision Making Before Ventricular Assist Device Implantation. Circulation 128(26 Suppl 1):S14–S23

    Article  PubMed  Google Scholar 

  25. Takeda K, Naka Y, Yang J et al (2014) Outcome of unplanned right ventricular assist device support for severe right heart failure after implantable left ventricular assist device insertion. J Heart Lung Transplant 33:141–148

    Article  PubMed  Google Scholar 

  26. Kormos RL, Teuteberg JJ, Pagani FD et al (2010) Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg 139:1316–1324

    Article  PubMed  Google Scholar 

  27. Drakos SG, Janicki L, Horne BD et al (2010) Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol 105:1030–1035

    Article  PubMed  Google Scholar 

  28. Raina A, Seetha Rammohan HR, Gertz ZM, Rame JE, Woo YJ, Kirkpatrick JN (2013) Postoperative right ventricular failure after left ventricular assist device placement is predicted by preoperative echocardiographic structural, hemodynamic, and functional parameters. J Card Fail 19:16–24

    Article  PubMed  Google Scholar 

  29. Potapov EV, Stepanenko A, Dandel M et al (2008) Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J Heart Lung Transplant 27:1275–1281

    Article  PubMed  Google Scholar 

  30. Vivo RP, Cordero-Reyes AM, Qamar U et al (2013) Increased right-to-left ventricle diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device. J Heart Lung Transplant 32:792–799

    Article  PubMed  Google Scholar 

  31. Kato TS, Jiang J, Schulze PC, Jorde U, Uriel N, Kitada S et al (2013) Serial echocardiography using tissue Doppler and speckle tracking imaging to monitor right ventricular failure before and after left ventricular assist device surgery. JACC Heart Fail 1:216–222

    Article  PubMed  PubMed Central  Google Scholar 

  32. Grant ADM, Smedira NG, Starling RC, Marwick TH (2012) Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol 60:521–528

    Article  PubMed  Google Scholar 

  33. Ammirati E, Cipriani M, De Chiara B et al (2014) Left ventricular or Bi-ventricular assist device? How dobutamine stress echocardiography can untie the dilemma of right ventricular dysfunction. Int J Cardiol 5:7–9

    Google Scholar 

  34. Deswarte G, Kirsch M, Lesault P-F, Trochu J-N, Damy T (2010) Right ventricular reserve and outcome after continuous-flow left ventricular assist device implantation. J Heart Lung Transplant 29:1196–1198

    Article  PubMed  Google Scholar 

  35. Morine KJ, Kiernan MS, Pham DT, Paruchuri V, Denofrio D, Kapur NK (2016) The Pulmonary Artery pulsatility index is associated with right ventricular failure following left ventricular assist device surgery. J Cardiac Fail 22:110–116

    Article  Google Scholar 

  36. Oliveira GH, Dupont M, Naftel D et al (2014) Increased need for right ventricular support in patients with chemotherapy-induced cardiomyopathy undergoing mechanical circulatory support: outcomes from the INTERMACS Registry (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol 63:240–248

    Article  PubMed  Google Scholar 

  37. Melenovsky V, Kotrc M, Borlaug B et al (2013) Relationships between right ventricular function, body composition, and prognosis in advanced heart failure. J Am Coll Cardiol 62:1660–1670

    Article  PubMed  Google Scholar 

  38. Horwich TB, Kalantar-Zadeh K, MacLellan RW, Fonarow GC (2008) Albumin levels predict survival in patients with systolic heart failure. Am Heart J 155:883–889

    Article  CAS  PubMed  Google Scholar 

  39. Takeda K, Takayama H, Colombo PC, Jorde UP, Yuzefpolskaya M, Fukuhara S et al (2015) Late right heart failure during support with continuous-flow left ventricular assist devices adversely affects post-transplant outcome. J Heart Lung Transplant 34:667–674

    Article  PubMed  Google Scholar 

  40. Yancy CW, Jessup M, Bozkurt M et al (2013) The ACC/AHA HF 2013 ACCF/AHA guideline for the management of heart failure. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 128:e240–e327

    Article  PubMed  Google Scholar 

  41. Gheorghiade M, Vaduganathan M, Ambrosy A et al (2013) Current management and future directions for the treatment of patients hospitalized for heart failure with low blood pressure. Heart Fail Rev 18:107–122

    Article  PubMed  Google Scholar 

  42. Sponga S, Ivanitskaia E, Potapov E, Krabatsch T, Hetzer R, Lehmkuhl H (2012) Preoperative treatment with levosimendan in candidates for mechanical circulatory support. ASAIO J 58:6–11

    Article  CAS  PubMed  Google Scholar 

  43. Schaffer JM, Allen JG, Weiss ES et al (2011) Infectious complications after pulsatile-flow and continuous-flow left ventricular assist device implantation. J Heart Lung Transplant 30:164–174

    Article  PubMed  Google Scholar 

  44. Zierer A, Melby SJ, Voeller RK et al (2007) Late-onset driveline infections: the Achilles’ heel of prolonged left ventricular assist device support. Ann Thorac Surg 84:515–520

    Google Scholar 

  45. Acharya MN, Som R, Tsui S (2012) What is the optimum antibiotic prophylaxis in patients undergoing implantation of a left ventricular assist device? Interact Cardiovasc Thorac Surg 14:209–214

    Article  PubMed  Google Scholar 

  46. Eckman PM, John R (2012) Bleeding and thrombosis in patient with continuous-flow ventricular assist devices. Circulation 125:3038–3047

    Article  PubMed  Google Scholar 

  47. Najjar SS, Slaughter MS, Pagani FD et al (2014) An analysis of pump thrombus events in patient in the HeartWare ADVANCE bridge to transplant and continuous access protocol trial. J Heart Lung Transplant 33:23–34

    Article  PubMed  Google Scholar 

  48. Tsirious A, Paone G, Nemeh HW et al (2014) Factors determining post-operative readmissions after left ventricular assist device implantation. J Heart Lung Transplant 33:1041–1047

    Article  Google Scholar 

  49. Kirklin JK, Naftel DC, Kormos RL et al (2014) Third INTERMACS Annual Report: the evolution of destination therapy in the United States. J Heart Lung Transplant 30:115–123

    Article  Google Scholar 

  50. Aggarwall A, Pant R, Kumar S et al (2012) Incidence and management of gastrointestinal bleeding with continuous flow assist device. Ann Thorac Surg 93:1534–1540

    Article  Google Scholar 

  51. Boyle AJ, Jorde UP, Sun B et al (2014) Pre-operative risk factors of bleeding and stroke during left ventricular assist device support: an analysis of more than 900 HeartMate II outpatients. J Am Coll Cardiol 63:880–888

    Article  PubMed  Google Scholar 

  52. Gerdes AM, Iervasi G (2010) Thyroid replacement therapy and heart failure. Circulation 122:385–393

    Article  PubMed  Google Scholar 

  53. Kowalczuk-Wieteska A, Baranska-Kosakowska A, Zakliczynski M, Lindon S, Zembala M (2011) Do thyroid disorders affect the postoperative course of patients in the early post-heart transplant period? Ann Transplant 16:77–81

    Article  PubMed  Google Scholar 

  54. Oskui PM, French WJ, Herring MJ, Mayeda GS, Burstein S, Kloner RA (2013) Testosterone and the cardiovascular system: a comprehensive review of the clinical literature. J Am Heart Assoc 2:e000272

    Article  PubMed  PubMed Central  Google Scholar 

  55. Toma M, McAlister FA, Coglianese EE et al (2012) Testosterone supplementation in heart failure a meta-analysis. Circ Heart Fail 5:315–321

    Article  CAS  PubMed  Google Scholar 

  56. Vrtovec B, Radovancevic R, Delgado RM, Radovancevic B, Bracey AW, Gregoric ID et al (2009) Significance of anaemia in patients with advanced heart failure receiving long-term mechanical circulatory support. Eur J Heart Fail 11:1000–1004

    Article  PubMed  Google Scholar 

  57. Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H et al (2009) Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med 361:2436–2448

    Article  CAS  PubMed  Google Scholar 

  58. Ponikowski P, van Veldhuisen DJ, Comin-Colet J et al (2015) Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur Heart J 36:657–668

    Article  CAS  PubMed  Google Scholar 

  59. Swedberg K, Young JB, Anand IS et al (2013) Treatment of anemia with darbepoetin alfa in systolic heart failure. N Engl J Med 368:1210–1219

    Article  CAS  PubMed  Google Scholar 

  60. Nassif ME, Patel JS, Shuster JE et al (2015) Clinical outcomes with use of erythropoiesis stimulating agents in patients with the HeartMate II left ventricular assist device. JACC Heart Fail 3:146–153

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gotsman I, Shauer A, Zwas DR et al (2012) Vitamin D deficiency is a predictor of reduced survival in patients with heart failure; vitamin D supplementation improves outcome. Eur J Heart Fail 14:357–366

    Article  CAS  PubMed  Google Scholar 

  62. Zittermann A, Morshuis M, Kuhn J, Pilz S, Ernst JB, Oezpeker C et al (2015) Vitamin D metabolites and fibroblast growth factor-23 in patients with left ventricular assist device implants: association with stroke and mortality risk. Eur J Nutr 55:305–313

    Article  PubMed  Google Scholar 

  63. Doehner W, Frenneaux M, Anker SD (2014) Metabolic impairment in heart failure: the myocardial and systemic perspective. J Am Coll Cardiol 64:1388–1400

    Article  PubMed  Google Scholar 

  64. Holdy K, Dembitsky W, Eaton LL, Chillcott S, Stahovich M, Rasmusson B et al (2005) Nutrition assessment and management of left ventricular assist device patients. J Heart Lung Transplant 24:1690–1696

    Article  PubMed  Google Scholar 

  65. Musci M, Loforte A, Potapov EV et al (2008) Body mass index and outcome after ventricular assist device placement. Ann Thorac Surg 86:1236–1242

    Article  PubMed  Google Scholar 

  66. Birks E, Feldman D, Hryniewicz K et al (2013) The 2013 International Society of Heart and Lung Transplantation guidelines for mechanical circulatory support. Task Force 2: patient optimization, consent, and appropriate timing for mechanical circulatory support: modifiable risk management prior to implantation. J Heart Lung Transplant 32:157–187

    Article  PubMed  Google Scholar 

  67. Modica M, Ferratini M, Torri A et al (2015) Quality of life and emotional distress early after left ventricular assist device implant: a mixed-method study. Artif Organs 39:220–227

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frigerio, M., Cipriani, M., Oliva, F., Pappalardo, F. (2017). Preoperative Assessment and Clinical Optimization. In: Montalto, A., Loforte, A., Musumeci, F., Krabatsch, T., Slaughter, M. (eds) Mechanical Circulatory Support in End-Stage Heart Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-43383-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43383-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43381-3

  • Online ISBN: 978-3-319-43383-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics