Skip to main content

Abstract

Nowadays, approximately every patient affected from end-stage acute or chronic heart failure may be a potential candidate for MCS; therefore, a careful patient selection for MCS is crucial to establish an effective MCS program, having an impact on both the number of patient treated and the outcomes and the costs of the entire program.

Since MCS is a relatively young and still rapidly developing field, indications and institutional policies have been frequently modified over the past 30 years based on new available technologies or newly found clinical evidences. Nevertheless, due to the high individual variability of the clinical presentation of end stage heart failure it is nearly impossible to produce generally accepted patient selection criteria which guarantee best treatment for each individual patient.

For the last decade a clear paradigm shift has been made in the application of durable VADs in patients with acute, severe hemodynamic deterioration. Due to their higher risk for morbidity and mortality, longer ICU stay, higher incidence of debilitating complications, and significantly increased costs, the application of Temporary Circulatory Support (TCS) systems with lower costs and less invasiveness (percutaneous VAD) has been the first-line choice for those patients in their worst clinical conditions. Durable VADs proof best clinical results with hemodynamic stable end-stage heart failure patients.

The INTERMACS classification, introduced in the 90s, tried to classify the acuity and severity of end-stage heart failure patients based on their expected one year survival. This was one first attempt to introduce a standardization of the terminology for end-stage heart failure patients in order to scientifically compare the results and outcome of this expanding patient population when they were implanted a durable VAD.

Further selection criteria for MCS implantation to be considered:

  • Cost/benefit analysis

  • Device strategy (BTD, BTT, BTC, DT)

  • Underlying disease/etiology and eventual reversibility

  • Patient comorbidities and their reversibility

  • Frailty, nutritional status, and risk of infections

  • Assessment of hemorrhagic and thromboembolic risk

Once the decision of an MCS implantation has been considered as a valuable option, the following criteria should be further investigated:

  • Available risk scores

  • Right Heart Dysfunction Reversibility and/or need of preoperative management of right ventricle to reduce perioperative unplanned RVAD implantation

  • Management of the aortic valve to avoid approach of the aortic valve during mid-/long-term follow-up

  • Surgical management and/or need of eventual concomitant procedures

  • Need of pulsatility and eventual strategies to prevent hemorrhagic complications

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fleischmann KE, Beckman JA, Buller CE et al (2009) 2009 ACCF/AHA Focused Update on Perioperative Beta Blockade: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 120(21):2123–2151. http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192689. ISSN 1524–4539

    Article  PubMed  Google Scholar 

  2. Kirklin JK et al (2015) Seventh INTERMACS annual report: 15,000 patients and counting. JHLT 34(12):1495–1504. doi:10.1016/j.healun.2015.10.003. ISSN 1053-2498

    Google Scholar 

  3. Patel CB, Cowger JA, Zuckermann A (2014) A contemporary review of mechanical circulatory support. J Heart Lung Transplant 33(7):667–674. https://doi.org/10.1016/j.healun.2014.02.014. ISSN 1557–3117

    Article  PubMed  Google Scholar 

  4. Lund LH, Edwards LB, Kucheryavaya, AY, Dipchand AI, Benden C, Christie JD, et al. The registry of the International Society for Heart and Lung Transplantation: Thirtieth Official Adult Heart Transplant Report—2013; Focus Theme: Age for the International Society for Heart and Lung Transplantation. 2013. doi: 10.1016/j.healun.2013.08.006

  5. Kirklin JK, Cantor R, Mohacsi P, Gummert J, De By T, Hannan MM et al (2016) First annual IMACS report: a global International Society for Heart and Lung Transplantation Registry for Mechanical Circulatory Support. J Heart Lung Transplant 35(4):407–412. doi:10.1016/j.healun.2016.01.002

    Article  PubMed  Google Scholar 

  6. Khazanie P, Rogers JG (2011) Patient selection for left ventricular assist devices. Congest Heart Fail 17(5):227–234. doi:10.1111/j.1751-7133.2011.00236.x

    Article  PubMed  Google Scholar 

  7. Slaughter MS, Meyer AL, Birks EJ (2011) Destination therapy with left ventricular assist devices: patient selection and outcomes. Curr Opin Cardiol 26(3):232–236. doi:10.1097/HCO.0b013e328345aff4

    Article  PubMed  Google Scholar 

  8. Miller LW, Guglin M (2013) Patient selection for ventricular assist devices: a moving target. J Am Coll Cardiol 61(12):1209–1221. doi:10.1016/j.jacc.2012.08.1029

    Article  PubMed  Google Scholar 

  9. Lund LH, Matthews J, Aaronson K (2010) Patient selection for left ventricular assist devices. Eur J Heart Fail 12(5):434–443. doi:10.1093/eurjhf/hfq006

    Article  PubMed  Google Scholar 

  10. Angelo LD, Bovolo V, Frigerio M (2014) Ventricular assist devices for heart failure: a focus on patient selection and complications. Res Rep Clin Cardiol 5:199–211. doi:10.2147/RRCC.S48886

    Google Scholar 

  11. Long EF, Swain GW, Mangi AA (2014) Comparative survival and cost effectiveness of advanced therapies for end-stage heart failure. Circ Heart Failure. doi:10.1161/CIRCHEARTFAILURE.113.000807

    PubMed  Google Scholar 

  12. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA et al (2012) The Fourth INTERMACS Annual Report: 4,000 implants and counting. J Heart Lung Transplant 31(2):117–126

    Article  PubMed  Google Scholar 

  13. Gilotra NA, Stevens GR (2015) Temporary mechanical circulatory support: a review of the options, indications, and outcomes. Clin Med Insights Cardiol 8(Suppl 1):75–85. doi:10.4137/CMC.s15718

    PubMed  PubMed Central  Google Scholar 

  14. Cowger J, Shah P, Stulak J, Maltais S, Aaronson KD, Kirklin JK et al (2016) INTERMACS profiles and modifiers: heterogeneity of patient classification and the impact of modifiers on predicting patient outcome. J Heart Lung Transplant 35:440–448. doi:10.1016/j.healun.2015.10.037 ISSN 1053-2498

    Article  PubMed  Google Scholar 

  15. Copeland JG, Copeland H, Gustafson M, Mineburg N, Covington D, Smith RG, Friedman M (2012) Experience with more than 100 total artificial heart implants. J Thorac Cardiovasc Surg 143(3):727–734. doi:10.1016/j.jtcvs.2011.12.002. Epub 2012 Jan 14. PMID: 22245242

    Article  PubMed  Google Scholar 

  16. Riebandt J, Haberl T, Mahr S, Laufer G, Rajek A, Steinlechner B, Schima H, Zimpfer D (2014) Preoperative patient optimization using extracorporeal life support improves outcomes of INTERMACS Level I patients receiving a permanent ventricular assist device. Eur J Cardiothorac Surg 46(3):486–492. ; discussion 492. doi: 10.1093/ejcts/ezu093. Epub 2014 Mar 18. PMID: 24648428

    Article  PubMed  Google Scholar 

  17. Young JB (2007) Heart failure’s near dead and dying. J Am Coll Cardiol 50(13):1291–1293. doi:10.1016/j.jacc.2007.07.008

    Article  PubMed  Google Scholar 

  18. Durinka JB, Bogar LJ, Hirose H, Brehm C, Koerner MM, Pae WE, Cavarocchi NC (2014) End-organ recovery is key to success for extracorporeal membrane oxygenation as a bridge to implantable left ventricular assist device. ASAIO J (American Society for Artificial Internal Organs : 1992) 60(2):189–192. doi:10.1097/MAT.0000000000000043

    Article  CAS  Google Scholar 

  19. Shah P, Smith S, Haft JW, Desai SS, Burton NA, Romano MA, Cowger JA (2016) Clinical outcomes of advanced heart failure patients with cardiogenic shock treated with temporary circulatory support before durable lvad implant. ASAIO J 62(1):20–27. doi:10.1097/MAT.0000000000000309

    Article  CAS  PubMed  Google Scholar 

  20. Schumer EM, Ising MS, Trivedi JR, Slaughter MS, Cheng A (2015) Early outcomes with marginal donor hearts compared with left ventricular assist device support in patients with advanced heart failure. Ann Thorac Surg 100:522–527. doi:10.1016/j.athoracsur.2015.02.089

    Article  PubMed  Google Scholar 

  21. Stewart GC, Kittleson MM, Cowger JA, Johnson FL, Patel CB, Mountis MM et al (2015) Who wants a left ventricular assist device for ambulatory heart failure? Early insights from the MEDAMACS screening pilot. J Heart Lung Transplant 34(12):1630–1633. doi:10.1016/j.healun.2015.07.009

    Article  PubMed  Google Scholar 

  22. Estep JD, Starling RC, Horstmanshof DA, Milano CA, Selzman CH, Shah KB, et al., for the ROADMAP Study Investigators. Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients. J Am Coll Cardiol. 2016;66(16):1747–1761. doi:10.1016/j.jacc.2015.07.075

  23. Miller LW, Guglin M, Rogers J (2013) Cost of ventricular assist devices can we afford the progress? Circulation 127(6):743–748. doi:10.1161/CIRCULATIONAHA.112.13982

    Article  PubMed  Google Scholar 

  24. Slaughter MS (2010) Advances in LVAD patient management: clinical strategies to minimize adverse events. PARADIGM Adv Heart Fail Technol 3:1–2

    Google Scholar 

  25. Pulikottil-Jacob R, Suri G, Connock M, Kandala NB, Sutcliffe P, Maheswaran H, Banner NR, Clarke A. Comparative cost-effectiveness of the HeartWare versus HeartMate II left ventricular assist devices used in the United Kingdom National Health Service bridge-to-transplant program for patients with heart failure J Heart Lung Transplant 2014;33(4):350–358. doi:10.1016/j.healun.2014.01.003. Epub 2014 Jan 19. PMID: 24582838

  26. Liao L, Allen LA, Whellan DJ (2008) Economic burden of heart failure in the elderly. PharmacoEconomics 26:447–462

    Article  PubMed  Google Scholar 

  27. Uriel N, Jorde UP, Woo Pak S, Jiang J, Clerkin K, Takayama H, Mancini DM (2013) Impact of long term left ventricular assist device therapy on donor allocation in cardiac transplantation. J Heart Lung Transplant 32(2):188–195. doi:10.1016/j.healun.2012.11.010

    Article  PubMed  Google Scholar 

  28. Fang JC, Stehlik J (2013) Moving beyond “bridges”∗. JACC Heart Failure 1(5):379–381. doi:10.1016/j.jchf.2013.08.003

    Article  PubMed  Google Scholar 

  29. Drakos SG, Kfoury AG, Stehlik J, Selzman CH, Reid BB, Terrovitis JV, Li DY (2012) Bridge to recovery: understanding the disconnect between clinical and biological outcomes. Circulation 126(2):230–241. doi:10.1161/CIRCULATIONAHA.111.040261

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ammirati E et al (2014) Current indications for heart transplantation and left ventricular assist device: a practical point of view. Eur J Intern Med 25(5):422–429. doi:10.1016/j.ejim.2014.02.006

  31. Tsipouras MG, Karvounis EC, Tzallas AT, Katertsidis NS, Goletsis Y, Frigerio M, Verde A, Trivella MG, Fotiadis DI (2013) Adverse event prediction in patients with left ventricular assist devices. Conf Proc IEEE Eng Med Biol Soc 2013:1314–1317. doi:10.1109/EMBC.2013.6609750

    PubMed  Google Scholar 

  32. Akhter SA, Badami A, Murray M, Kohmoto T, Lozonschi L, Osaki S, Lushaj EB (2015) Hospital readmissions after continuous-flow left ventricular assist device implantation: incidence, causes, and cost analysis. Ann Thorac Surg 100(3):884–889. doi:10.1016/j.athoracsur.2015.03.010. Epub 2015 Jun 19

    Article  PubMed  Google Scholar 

  33. Meyns BP, Simon A, Klotz S, Wittwer T, Schlensak C, Rega F, Burkhoff D. Clinical benefits of partial circulatory support in New York Heart Association Class IIIB and Early Class IV patients.Eur J Cardiothorac Surg 2011;39(5):693–698. doi: 10.1016/j.ejcts.2010.07.049. Epub 2010 Oct 8. PMID: 20934882

  34. Zucchetta F, Tarzia V, Bottio T, Gerosa G (2014) The Jarvik-2000 ventricular assist device implantation: how we do it. Ann Cardiothorac Surg 3(5):525–531. doi:10.3978/j.issn.2225-319X.2014.09.09

    PubMed  PubMed Central  Google Scholar 

  35. Frazier OH, Myers TJ, Westaby S, Gregoric ID (2003) Use of the Jarvik 2000 left ventricular assist system as a bridge to heart transplantation or as destination therapy for patients with chronic heart failure. Ann Surg 237(5):631–636; discussion 636–637. doi:10.1097/01.SLA.0000064359.90219.44

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Westaby S, Siegenthaler M, Beyersdorf F, Massetti M, Pepper J, Khayat A, Frazier OH (2010) Destination therapy with a rotary blood pump and novel power delivery. Eur J Cardiothorac Surg 37(2):350–356. doi:10.1016/j.ejcts.2009.03.071

    PubMed  Google Scholar 

  37. Wever-Pinzon O, Selzman CH, Drakos SG, Saidi A, Stoddard GJ, Gilbert EM, Labedi M, Reid BB, Davis ES, Kfoury AG, Li DY, Stehlik J, Bader F (2013) Pulsatility and the risk of nonsurgical bleeding in patients supported with the continuous-flow left ventricular assist device HeartMate II. Circ Heart Fail 6(3):517–526. doi:10.1161/CIRCHEARTFAILURE.112.000206. Epub 2013 Mar 11

    Article  CAS  PubMed  Google Scholar 

  38. Moazami N, Dembitsky WP, Adamson R, Steffen RJ, Soltesz EG, Starling RC, Fukamachi K (2015) Does pulsatility matter in the era of continuous-flow blood pumps? J Heart Lung Transplant 34(8):999–1004. doi:10.1016/j.healun.2014.09.012. Epub 2014 Sep 28

    Article  PubMed  Google Scholar 

  39. Imamura T, Kinugawa K, Nitta D, Hatano M, Kinoshita O, Nawata K, Ono M. Advantage of pulsatility in left ventricular reverse remodeling and aortic insufficiency prevention during left ventricular assist device treatment Circ J 2015;79(9):1994–9. doi: 10.1253/circj.CJ-15-0419. Epub 2015 Jun 25 PMID: 26118343

  40. Tolpen S, Janmaat J, Reider C, Kallel F, Farrar D, May-Newman K (2015) Programmed speed reduction enables aortic valve opening and increased pulsatility in the LVAD-assisted heart. ASAIO J 61(5):540–547. doi:10.1097/MAT.0000000000000241

    Article  PubMed  Google Scholar 

  41. Ising MS, Sobieski MA, Slaughter MS, Koenig SC, Giridharan GA. Feasibility of pump speed modulation for restoring vascular pulsatility with rotary blood pumps ASAIO J 2015;61(5):526–532. doi: 10.1097/MAT.0000000000000262. PMID: 26102173

  42. Bourque K, Cotter C, Dague C, Harjes D, Dur O, Duhamel J, Spink K, Walsh K, Burke E (2016) Design rationale and preclinical evaluation of the HeartMate 3 left ventricular assist system for hemocompatibility. ASAIO J 62(4):375–383. doi:10.1097/MAT.0000000000000388

    Article  CAS  PubMed  Google Scholar 

  43. Kimura M, Kinoshita O, Nawata K, Nishimura T, Hatano M, Imamura T, Endo M, Kagami Y, Kubo H, Kashiwa K, Kinugawa K, Kyo S, Komuro I, Ono M (2015) Midterm outcome of implantable left ventricular assist devices as a bridge to transplantation: Single-center experience in Japan. J Cardiol 65(5):383–389. doi:10.1016/j.jjcc.2014.06.007. Epub 2014 Jul 14. PMID: 25034705

    Article  PubMed  Google Scholar 

  44. Jabbar HR, Abbas A, Ahmed M, Klodell CT Jr, Chang M, Dai Y, Draganov PV (2015) The incidence, predictors and outcomes of gastrointestinal bleeding in patients with left ventricular assist device (LVAD). Dig Dis Sci 60(12):3697–3706. doi:10.1007/s10620-015-3743-4. Epub 2015 Jun 14

    Article  PubMed  Google Scholar 

  45. Jorde UP (2016) Relative preservation of high molecular weight von Willebrand factor multimers during HM 3 support–plain physics or a matter of clinical consequence? J Heart Lung Transplant 35(7):857–859. doi:10.1016/j.healun.2016.06.007

  46. Cheng A, Williamitis CA, Slaughter MS (2014) Comparison of continuous-flow and pulsatile-flow left ventricular assist devices: is there an advantage to pulsatility? Ann Cardiothorac Surg 3(6):573–581. doi:10.3978/j.issn.2225-319X.2014.08.24

    PubMed  PubMed Central  Google Scholar 

  47. John R, Aaronson KD, Pae WE, Acker MA, Hathaway DR, Najarian KB, Slaughter MS, HeartWare Bridge to Transplant ADVANCE Trial Investigators (2014) Drive-line infections and sepsis in patients receiving the HVAD system as a left ventricular assist device. J Heart Lung Transplant 33(10):1066–1073. doi:10.1016/j.healun.2014.05.010. Epub 2014 Jun 4.PMID: 25087103

    Article  PubMed  Google Scholar 

  48. Gray BW, Haft JW, Hirch JC, Annich GM, Hirschl RB, Bartlett RH, Support EL (2015) ASAIO J 61:2–7. doi:10.1097/MAT.0000000000000150

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chang CH, Chen HC, Caffrey JL et al (2011) Survival analysis after extracorporeal membrane oxygenation in critically ill adults: a comparison with conventional cardiopulmonary resuscitation. Crit Care Med 39:1. doi:10.1097/CCM.0b013e3181feb339

  50. Hacking DF, Best D, d’Udekem Y, Brizard CP, Konstantinov IE, Millar J, Butt W (2015) Elective decompression of the left ventricle in pediatric patients may reduce the duration of venoarterial extracorporeal membrane oxygenation. Artif Organs 39(4):319–326. doi:10.1111/aor.12390. Epub 2014 Oct 20

    Article  PubMed  Google Scholar 

  51. Lee M, Akashi H, Kato TS, Takayama H, Wu C, Xu K, Collado E, Weber MP, Kennel PJ, Brunjes DL, Ji R, Naka Y, George I, Mancini D, Farr M, Christian Schulze P (2016) Vascular inflammation and abnormal aortic histomorphometry in patients after pulsatile- and continuous-flow left ventricular assist device placement. J Heart Lung Transplant. pii: S1053–2498(16)00022-X. doi:10.1016/j.healun.2015.12.027 [Epub ahead of print]

    Google Scholar 

  52. Topilsky Y, Pereira NL, Shah DK, Boilson B, Schirger JA, Kushwaha SS, Joyce LD, Park SJ (2011) Left ventricular assist device therapy in patients with restrictive and hypertrophic cardiomyopathy. Circ Heart Fail 4:266–275. doi:10.1161/CIRCHEARTFAILURE.110.959288

    Article  PubMed  Google Scholar 

  53. Ammash NM, Seward JB, Bailey KR, Edwards WD, Tajik AJ (2000) Clinical profile and outcome of idiopathic restrictive cardiomyopathy. Circulation 101:2490–2496

    Article  CAS  PubMed  Google Scholar 

  54. Frazier OH, Gregoric ID, Messner GN (2005) Total circulatory support with an LVAD in an adolescent with a previous Fontan procedure. Tex Heart Inst J 32(3):402–404. PMID: 16392230

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Weinstein S, Bello R, Pizarro C, Fynn-Thompson F, Kirklin J, Guleserian K, Woods R, Tjossem C, Kroslowitz R, Friedmann P, Jaquiss R (2014) The use of the Berlin Heart EXCOR in patients with functional single ventricle. J Thorac Cardiovasc Surg 147(2):697–704; discussion 704–705. doi:10.1016/j.jtcvs.2013.10.030. Epub 2013 Nov 28

    Article  PubMed  Google Scholar 

  56. Ryan TD, Jefferies JL, Zafar F, Lorts A, Morales DL (2015) The evolving role of the total artificial heart in the management of end-stage congenital heart disease and adolescents. ASAIO J 61(1):8–14. doi:10.1097/MAT.0000000000000156. Review

    Article  CAS  PubMed  Google Scholar 

  57. Takeda K, Naka Y, Yang JA, Uriel N, Colombo PC, Jorde UP, Takayama H (2014) Outcome of unplanned right ventricular assist device support for severe right heart failure after implantable left ventricular assist device insertion. J Heart Lung Transplant 33(2):141–148. doi:10.1016/j.healun.2013.06.025. Epub 2013 Aug 6. PMID: 23932442

    Article  PubMed  Google Scholar 

  58. Patlolla B, Beygui R, Haddad F (2013) Right-ventricular failure following left ventricle assist device implantation. Curr Opin Cardiol 28(2):223–233. doi:10.1097/HCO.0b013e32835dd12c

    Article  PubMed  Google Scholar 

  59. Lampert BC, Teuteberg JJ (2015) Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant 34(9):1123–1130. doi:10.1016/j.healun.2015.06.015

    Article  PubMed  Google Scholar 

  60. Dandel M et al (2015) Left ventricular vs. biventricular mechanical support: decision making and strategies for avoidance of right heart failure after left ventricular assist device implantation. Int J Cardiol 198:241–250. doi:10.1016/j.ijcard.2015.06.103

  61. Reichenspurner H (2015) When is the patient sick enough to implant MCS ? – importance and assessment of RV function ISHLT number of transplants by year, 2014–2015

    Google Scholar 

  62. Ihnken KA, Ramzy D, Esmailian F, Trento A, Arabía FA (2016) Surgical technique to facilitate explanation of mechanical circulatory support devices: LVADs, BiVADs, and TAHs before heart transplantation. ASAIO J 62(2):211–213. doi:10.1097/MAT.0000000000000318. PMID: 26692405

    CAS  PubMed  Google Scholar 

  63. Slaughter MS, Pagani FD, Rogers JG, Miller LW, Sun B, Russell SD et al (2010) Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant 29(4 SUPPL):S1–S39. doi:10.1016/j.healun.2010.01.011

    Article  PubMed  Google Scholar 

  64. Cowger, J., Romano, M.A, Stulak, J., Pagani, F. D., & Aaronson, K.D. (2011). Left ventricular assist device management in patients chronically supported for advanced heart failure. Curr Opin Cardiol, 26(2), 149–154. doi:10.1097/HCO.0b013e3283438258

  65. Danchin N, Puymirat E (2011) 1980–2010: the three glorious decades of cardiology. A comprehensive and collective effort rewarded by outstanding clinical results. Rev Española Cardiología (English Ed) 64(11):959–961. doi:10.1016/j.rec.2011.08.001

    Google Scholar 

  66. Lee S, Fukamachi K, Golding L, Moazami N, Starling RC (2013) Left ventricular assist devices: from the bench to the clinic. Cardiology 125(1):1–12. doi:10.1159/000346865. PMID: 10831523

  67. Patel AM, Adeseun G a, Ahmed I, Mitter N, Rame JE, Rudnick MR (2013) Renal failure in patients with left ventricular assist devices. Clin J Am Soc Nephrol CJASN 8:484–496. doi:10.2215/CJN.06210612

    Article  PubMed  Google Scholar 

  68. Kirklin JK et al (2013) Quantifying the effect of cardiorenal syndrome on mortality after left ventricular assist device implant. J Heart Lung Transplant 32(12):1205–1213

    Article  PubMed  Google Scholar 

  69. Nguyen PH, Tuzun E, Quick CM (2016) Aortic pulse pressure homeostasis emerges from physiologic adaptation of systemic arteries to local mechanical stresses. Am J Physiol Regul Integr Comp Physiol 311(3):R522–R531. doi:10.1152/ajpregu.00402.2015

    Article  PubMed  Google Scholar 

  70. Flint KM, Matlock DD, Lindenfeld J, Allen LA (2012) Frailty and the selection of patients for destination therapy left ventricular assist device. Circ Heart Fail 5(2):286–293. doi:10.1161/CIRCHEARTFAILURE.111.963215

    Article  PubMed  Google Scholar 

  71. Ravichandran AK, Cowger J (2015) Left ventricular assist device patient selection: do risk scores help? J Thorac Dis 7(12):2080–2087. doi:10.3978/j.issn.2072-1439.2015.11.02

    PubMed  PubMed Central  Google Scholar 

  72. Scandroglio AM, Pieri M, Zangrillo A, Kaufmann F, Falk V, Potapov E, Krabatsch T (2016) Role of survival scores before left ventricular assist device implantation. ASAIO J 62(4):438–441. doi:10.1097/MAT.0000000000000376

    Article  PubMed  Google Scholar 

  73. Yang Q, Zimmerman J, Steinfeld A, Carey L, Antaki JF (2016) Investigating the heart pump implant decision process: opportunities for decision support tools to help. In: Proceedings of the 2016 CHI conference on human factors in computing systems (CHI ‘16). ACM, New York, pp 4477–4488. doi: http://dx.doi.org/10.1145/2858036.2858373

  74. Kilic A, Acker MA, Atluri P (2015) Dealing with surgical left ventricular assist device complications. Journal of Thoracic Disease. AME Publications. doi:10.3978/j.issn.2072-1439.2015.10.64

    Google Scholar 

  75. Himmelreich G, Ullmann H, Riess H, Rosch R, Loebe M, Schiessler A, Hetzer R (1995) Pathophysiologic role of contact activation in bleeding followed by thromboembolic complications after implantation of a ventricular assist device. ASAIO J 41:M790–M794. PMID: 8573916

    Google Scholar 

  76. Atluri P, Goldstone AB, Kobrin DM, Cohen JE, MacArthur JW, Howard JL, Jessup ML, Rame JE, Acker MA, Woo YJ (2013) Ventricular assist device implant in the elderly is associated with increased, but respectable risk: a multi-institutional study. Ann Thorac Surg 96(1):141–147. doi:10.1016/j.athoracsur.2013.04.010

  77. Crow S, Chen D, Milano C, Thomas W, Joyce L, Piacentino V, Sharma R, Wu J, Arepally G, Bowles D, Rogers J, Villamizar-Ortiz N (2010) Acquired von Willebrand syndrome in continuous-flow ventricular assist device recipients. Ann Thorac Surg 90:1263–1269. doi:10.1016/j.athoracsur.2010.04.099

  78. Munoz SJ, Stravitz RT, Gabriel DA (2009) Coagulopathy of acute liver failure. Clin Liver Dis 13(1):95–107. doi:10.1016/j.cld.2008.10.001

  79. Uriel N, Pak SW, Jorde UP, Jude B, Susen S, Vincentelli A, Ennezat PV, Cappelman S, Naka Y, Mancini D (2010) Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J Am Coll Cardiol 56:1207–1213. doi:10.1016/j.jacc.2010.05.016. Epub 2010 Jul 2

  80. Kulminski AM, Ukraintseva SV, Culminskaya IV et al (2008) Cumulative deficits and physiological indices as predictors of mortality and long life. J Gerontol A Biol Sci Med Sci 63:1053–1059. PMID: 18948555 PMCID: PMC2684458

    Google Scholar 

  81. Chung CJ, Wu JM, Kato TS, Dam TT, Givens RC, Templeton DL, Maurer MS, Naka Y, Takayama H, Mancini DM, Schulze PC (2014) Reduced handgrip strength as a marker of frailty predicts clinical outcomes in patients with heart failure undergoing ventricular assist device placement. J Card Fail 20(5):310–315. doi:10.1016/j.cardfail.2014.02.008. Epub 2014 Feb 22

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kobrin DM, Donnelly JP, Acker AL, Howard JL, Zalewski CM, Walsh SL, Hill CE, O’Hara ML, Marble JF, Atluri P, Wald JW, Goldberg LR, Woo YJ, Acker MA, Rame JE (2013) Dynamic BMI changes in patients implanted with continuous flow left ventricular assist devices: evidence for reversibility of cardiac cachexia and impact on survival. J Heart Lung Transplant 32(4S):S90–S91

    Google Scholar 

  83. Sileshi B, O’Hara BK, Davis ME, Haglund NA, Meng X, Deegan R et al (2016) Outcomes of patients implanted using a left thoracotomy technique for a miniaturized centrifugal continuous-flow pump. ASAIO J. doi:10.1097/MAT.0000000000000407

    PubMed  Google Scholar 

  84. Sileshi B, Haglund NA, Davis ME, Tricarico NM, Stulak JM, Khalpey Z et al (2015) In-hospital outcomes of a minimally invasive off-pump left thoracotomy approach using a centrifugal continuous-flow left ventricular assist device. J Heart Lung Transplant 34(1):107–112. doi:10.1016/j.healun.2014.09.023

    Article  PubMed  Google Scholar 

  85. Hanke JS, Haverich A, Schmitto JD (2016) Right heart failure after left ventricular assist devices: surgical considerations. J Heart Lung Transplant 35(3):395–396. doi:10.1016/j.healun.2015.12.013

    Article  PubMed  Google Scholar 

  86. Leprince P et al Patients with a body surface area less than 1.7 m2 have a good outcome with the cardiowest total artificial heart. J Heart Lung Transplant 24(10):1501–1505. doi: http://dx.doi.org/10.1016/j.healun.2005.01.016

  87. Kalya A, Jaroszewski D, Pajaro O, et al (2013) Role of total artificial heart in the management of heart transplant rejection and retransplantation: case report and review. Clin Transplant. 2013;27(4):E348–50. doi:10.1111/ctr.12146. Epub 2013 May 31

  88. Wells D, Villa CR, Simón Morales DL. (2017) The 50/50 cc Total Artificial Heart Trial: Extending the Benefits of the Total Artificial Heart to Underserved Populations. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2017;20:16–19. doi:10.1053/j.pcsu.2016.09.004

  89. Saffarzadeh A, Bonde P (2015) Options for temporary mechanical circulatory support. J Thorac Dis AME Publications. doi:10.3978/j.issn.2072-1439.2015.09.14

    Google Scholar 

  90. Acharya D, Loyaga-Rendon RY, Pamboukian SV, Tallaj JA, Holman WL, Cantor RS et al (2016) Ventricular assist device in acute myocardial infarction. J Am Coll Cardiol 67(16):1871–1880. doi:10.1016/j.jacc.2016.02.025.

  91. Raman L, Dalton HJ (2016) Year in review 2015: Extracorporeal membrane oxygenation. Respir Care 61(7):986–991. doi:10.4187/respcare.04985

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cristiano Amarelli or Georg Wieselthaler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amarelli, C., Buonocore, M., Maiello, C., Montalto, A., Wieselthaler, G. (2017). MCS Candidate Selection Criteria. In: Montalto, A., Loforte, A., Musumeci, F., Krabatsch, T., Slaughter, M. (eds) Mechanical Circulatory Support in End-Stage Heart Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-43383-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43383-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43381-3

  • Online ISBN: 978-3-319-43383-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics