Skip to main content

Intraoperative Anesthesiological Monitoring and Management

  • Chapter
  • First Online:
Mechanical Circulatory Support in End-Stage Heart Failure

Abstract

Patients undergoing ventricular assist device (VAD) implantation are critically ill, usually receiving multiple inotropic drugs and/or an intra-aortic balloon pump, often showing a no more than 20% mean ejection fraction (EF) [1]. So that intraoperative management for VAD surgery may be challenging for cardiac anesthesiologists as this patient cohort is associated with significant comorbidities: pulmonary hypertension, peripheral vascular disease, kidney, hepatobiliary, and central nervous dysfunction. Even minor changes in hemodynamics may dramatically increase morbidity and mortality. In other words, the anesthesiologist should become familiar with the various assist devices; the anesthetic plan must take into account the severity of cardiac dysfunction and the degree of organ dysfunction. The use of diagnostic (transesophageal echocardiography), hemodynamic (MAPs, CVP, SvO2, PAPs), and therapeutic (vasopressors, inotropes) tools is mandatory. Particularly, the diagnosis of right-sided heart failure after implantation of left-ventricular assist devices should be intraoperatively investigated. Patients suffering from severe congestive heart failure (CHF) are typically chronically treated with ß-blockers, intensive diuretic therapy, ACE inhibitors, and/or angiotensin receptor blockers, the latter in order to reduce peripheral vascular resistances, but with the controversy of a theoretical increase in inotrope support requirement [2]. Patient that comes to theater has usually received premedication with benzodiazepine or opioids in order to reduce the sympathetic tone. However, an overtreatment with sedatives may cause hypoventilation and hypoxia, thus increasing pulmonary vascular resistances and acidosis [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kocabas S et al (2013) Anesthesia for ventricular assist device placement: experience from a single center. Transplantation Proceedings 45:1005–1008

    Google Scholar 

  2. Hasija S et al (2010) Prophylactic vasopressin in patients receiving the angiotensin-converting enzyme inhibitor ramipril undergoing coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth 24:230–238

    Article  CAS  PubMed  Google Scholar 

  3. Feussner M et al (2012) Best Pract Res Clin Anaesthesiol 26(2):167–177

    Google Scholar 

  4. Broussard D et al (2011) Anesthesia for left ventricular assist device insertion: a case series and review. Ochsner J 11:70–77

    PubMed  PubMed Central  Google Scholar 

  5. Long DA et al (2006) Effect of heparin-bonded central venous catheters on the incidence of catheter-related thrombosis and infection in children and adults. Anaesth Intensive Care 34:481–484

    CAS  PubMed  Google Scholar 

  6. Palepu GB et al (2009) Impact of ultrasonography on central venous catheter insertion in intensive care. Indian J Radiol Imaging 19:191–198

    Article  PubMed  PubMed Central  Google Scholar 

  7. Calvert N et al (2003) The effectiveness and cost-effectiveness of ultrasound locating devices for central venous access: a systematic review and economic evaluation. Health Technol Assess 7:1–84

    Article  CAS  PubMed  Google Scholar 

  8. Schwann NM et al (2011) Lack of effectiveness of the pulmonary artery catheter in cardiac surgery. Anesth Analg 113:994–1002

    Article  PubMed  Google Scholar 

  9. Cowie BS (2011) Does the pulmonary artery catheter still have a role in the perioperative period? Anaesth Intensive Care 39:345–355

    CAS  PubMed  Google Scholar 

  10. Kanchi M (2011) Do we need a pulmonary artery catheter in cardiac anesthesia? – An Indian perspective. Ann Card Anaesth 14:25–29

    PubMed  Google Scholar 

  11. El-Magharbel I (2005) Ventricular assist devices and anesthesia. Semin Cardiothorac Vasc Anesth 9:241–249

    Article  PubMed  Google Scholar 

  12. Chumnanvej S et al (2007) Perioperative echocardiographic examination for ventricular assist device implantation. Anesth Analg 105:583

    Article  PubMed  Google Scholar 

  13. Scalia GM et al (2000) Clinical utility of echocardiography in the management of implantable ventricular assist devices. J Am Soc Echocardiogr 13:754

    Article  CAS  PubMed  Google Scholar 

  14. Nicoara A et al (2007) Mal- positioned left ventricular assist device cannula: diagnosis and management with transesophageal echocardiography guidance. Anesth Analg 105:1574

    Article  PubMed  Google Scholar 

  15. Potapov EV et al (2008) Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J Heart Lung Transplant 27:1275–1281

    Article  PubMed  Google Scholar 

  16. Drakos SG et al (2010) Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol 105:1030–1035

    Article  PubMed  Google Scholar 

  17. Kavarana MN et al (2002) Right ventricular dysfunction and organ failure in left ventricular assist device recipients: a continuing problem. Ann Thorac Surg 73:745–750

    Article  PubMed  Google Scholar 

  18. De Tournay-Jetté E et al (2011) The relationship between cerebral oxygen saturation changes and postoperative cognitive dysfunction in elderly patients after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth 25:95–104

    Article  PubMed  Google Scholar 

  19. Heringlake M et al (2011) Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery. Anesthesiology 114

    Google Scholar 

  20. Magner JJ, Royston D (2004) Heart failure. Br J Anaesth 93:74

    Article  CAS  PubMed  Google Scholar 

  21. Morel J et al (2011) Haemodynamic consequences of etomidate administration in elective cardiac surgery: a randomized double-blinded study. Br J Anaesth 107:503–509

    Article  CAS  PubMed  Google Scholar 

  22. Bendel S et al (2007) Propofol causes more hypotension than etomidate in patients with severe aortic stenosis: a double-blind, randomized study comparing propofol and etomidate. Acta Anaesthesiol Scand 51:284–289

    Article  CAS  PubMed  Google Scholar 

  23. Horibe M et al (2000) Propofol attenuates acetylcholine-induced pulmonary vasorelaxation: role of nitric oxide and endothelium-derived hyperpolarizing factors. Anesthesiology 93:447–455

    Article  CAS  PubMed  Google Scholar 

  24. Stone ME (2007) Current status of mechanical circulatory assistance. Semin Cardiothorac Vasc Anesth 11:185–204

    Article  PubMed  Google Scholar 

  25. Landoni G, Biondi-Zoccai GG, Zangrillo A et al (2007) Desflurane and sevoflurane in cardiac surgery: a meta-analysis of randomized clinical trials. J Cardiothorac Vasc Anesth 21:502–511

    Article  CAS  PubMed  Google Scholar 

  26. Newman MF et al (1995) Cerebral physiologic effects of burst suppression doses of propofol during nonpulsatile cardiopulmonary bypass. CNS subgroup of McSPI. Anesth Analg 81:452–457

    CAS  PubMed  Google Scholar 

  27. Aviado DM et al (1957) Effects of anoxia on pulmonary circulation: reflex pulmonary vasoconstriction. Am J Phys 189:253–262

    CAS  Google Scholar 

  28. Barer GR et al (1971) Pulmonary vasodilator and vasoconstrictor actions of carbon dioxide. J Physiol 213:633–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Google Scholar 

  30. Berglund JE et al (1994) Echocardiographic analysis of cardiac function during high PEEP ventilation. Intensive Care Med 20:174–180

    Article  CAS  PubMed  Google Scholar 

  31. Roberts I et al. (2004) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev (2):CD000567

    Google Scholar 

  32. Vallet B et al (2010) Venous oxygen saturation as a physiologic transfusion trigger. Crit Care 14:213

    Article  PubMed  PubMed Central  Google Scholar 

  33. (2010) Transfusion requirements after cardiac surgery. JAMA 304:1559–1567

    Google Scholar 

  34. Reeves BC et al (2008) Increased mortality, morbidity, and cost associated with red blood cell transfusion after cardiac surgery. Curr Opin Cardiol 23:607–612

    Article  PubMed  Google Scholar 

  35. Heilmann C et al (2009) Haemolysis in patients with ventricular assit devices: major differences between systems. Eur J Cardiothorac Surg 36:580–584

    Article  PubMed  Google Scholar 

  36. Lavigne D (2010) Vasopressin and methylene blue: alternate therapies in vasodilatory shock. Semin Cardiothorac Vasc Anesth 14:186–189

    Article  PubMed  Google Scholar 

  37. Levin MA et al (2009) Early on-cardiopulmonary bypass hypotension and other factors associated with vasoplegic syndrome. Circulation 120:1664–1671

    Article  PubMed  Google Scholar 

  38. Riha H et al (2011) Pro: methylene blue as a rescue therapy for vasoplegia after cardiac surgery. J Cardiothorac Vasc Anesth 25:736–738

    Article  PubMed  Google Scholar 

  39. Fischer GW et al (2010) Vasoplegia during cardiac surgery: current concepts and management. Thorac Cardiovasc Surg 22(2):140–144

    Google Scholar 

  40. Levy JH et al (2003) Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg 75:S715–S720

    Article  PubMed  Google Scholar 

  41. Papadopoulos G et al (2010) Perioperative infusion of low-dose of vasopressin for prevention and management of vasodilatory vasoplegic syndrome in patients undergoing coronary artery bypass grafting-A double blind randomized study. J Cardiothorac Surg 5:17

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nussmeier NA et al (2003) Anesthetic management for implantation of the Jarvik 2000 left ventricular assist system. Anesth Analg 97:964–971

    Article  PubMed  Google Scholar 

  43. Papp Z et al (2005) Pharmacological mechanisms contributing to the clinical efficacy of levosimendan. Cardiovasc Drug Rev 23:71–98

    Article  CAS  PubMed  Google Scholar 

  44. Parle NM et al (2008) Repeated infusions of levosimendan: well tolerated and improves functional capacity in decompensated heart failure – a single-centre experience. Heart Lung Circ 17:206–210

    Article  CAS  PubMed  Google Scholar 

  45. Sponga S et al (2012) Reversible circumflex coronary artery occlusion during percutaneous transvenous mitral annuloplasty with the viacor system. J Am Coll Cardiol 59:288

    Article  PubMed  Google Scholar 

  46. Van Meter Jr CH (2001) Right heart failure: best treated by avoidance. Ann Thorac Surg 71:S220–S222

    Article  CAS  Google Scholar 

  47. Kormos RL et al (2010) Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg 139(5):1316–1324

    Article  PubMed  Google Scholar 

  48. Hare JM et al (1997) Influence of inhaled nitric oxide on systemic flow and ventricular filling pressure in patients receiving mechanical circulatory assistance. Circulation 95(9):2250–2253

    Article  CAS  PubMed  Google Scholar 

  49. Argenziano M et al (1998) Randomized, double-blind trial of inhaled nitric oxide in LVAD recipients with pulmonary hypertension. Ann Thorac Surg 65(2):340–345

    Article  CAS  PubMed  Google Scholar 

  50. Macdonald PS et al (1998) Adjunctive use of inhaled nitric oxide during implantation of a left ventricular assist device. J Heart Lung Transplant Off Publ Int Soc Heart Transplant 17(3):312–316

    CAS  Google Scholar 

  51. Benedetto M et al (2015) Inhaled nitric oxide in cardiac surgery: evidence or tradition? Nitric Oxide 49:67–79

    Article  CAS  PubMed  Google Scholar 

  52. Peura JL et al (2012) Recommendations for the use of mechanical circulatory support: device strategies and patient selection: a scientific statement from the American Heart Association. Circulation 126(22):2648–2667

    Article  PubMed  Google Scholar 

  53. Khan A et al (2009) A prospective, randomized, crossover pilot study of inhaled nitric oxide versus inhaled prostacyclin in heart transplant and lung transplant recipients. J Thorac Cardiovasc Surg 138:1417–1424

    Article  CAS  PubMed  Google Scholar 

  54. Ranucci M et al (2005) Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations. Ann Thorac Surg 80:2213

    Article  PubMed  Google Scholar 

  55. Awad H, Abd El Dayem M, Heard J et al (2010) Initial experience with off-pump left ventricular assist device implantation in single center: retrospective analysis. J Cardiothorac Surg 5:123

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Baiocchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baiocchi, M., Benedetto, M., Frascaroli, G. (2017). Intraoperative Anesthesiological Monitoring and Management. In: Montalto, A., Loforte, A., Musumeci, F., Krabatsch, T., Slaughter, M. (eds) Mechanical Circulatory Support in End-Stage Heart Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-43383-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43383-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43381-3

  • Online ISBN: 978-3-319-43383-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics