Skip to main content

Mechanical Circulatory Support as Bridge to Recovery

  • Chapter
  • First Online:
Mechanical Circulatory Support in End-Stage Heart Failure

Abstract

Long-term MCS with ventricular assist devices (VADs) allows end-stage failing hearts to recover and, occasionally, even reverse remodeling with functional improvement allowing VAD removal followed by years of freedom from heart failure (HF) recurrence is possible [1–3]. Although myocardial recovery at the cellular and subcellular level has been often observed after VAD implantation, translation of these changes into functional recovery at organ level was observed less frequently, and stable cardiac improvement which might allow long-term HF-free outcome after VAD removal has occurred only rarely. Acute HF can completely reverse during left ventricular assist device (LVAD) support [4]. Outcome data for patients with chronic end-stage HF who were electively weaned from VADs are few but are encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Müller J, Wallukat G, Weng Y, Dandel M, Spiegelsberger S, Semrau S, Brandes K, Bieda H, Hummel M, Loebe M, Meyer R, Hetzer R (1997) Weaning from mechanical cardiac support in patients with dilated cardiomyopathy. Circulation 96:542–549

    Article  PubMed  Google Scholar 

  2. Hetzer R, Müller J, Weng Y, Wallukat G, Spiegelsberger S, Loebe M (1999) Cardiac recovery in dilated cardiomyopathy by unloading with a left ventricular assist device. Ann Thorac Surg 68:742–749

    Article  CAS  PubMed  Google Scholar 

  3. Dandel M, Weng Y, Sinawski H, Potapov E, Lehmkuhl HB, Hetzer R (2005) Long-term results in patients with idiopathic dilated cardiomyopathy after weaning from left ventricular assist devices. Circulation 112:37–45

    Article  Google Scholar 

  4. Ferrar DJ, Holmann WR, McBride LR, Kormos RL, Icenogle TB, Hendry PJ, Moore CH, Loisance DY, El-Banayosy A, Frazier H (2002) Long-term follow up of Thoratec ventricular assist device bridge-to-recovery patients successfully removed from support after recovery of ventricular function. J Heart Lung Transplant 21:516–521

    Article  Google Scholar 

  5. Mann DL, Barger MP, Burkhoff D (2012) Myocardial recovery and the failing Heart. J Am Coll Cardiol 60(24):2465–2472

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hall JL, Fermin DR, Birks EJ, Barton PJ, Slaughter M, Eckman P, Baba HA, Wohlschlaeger J, Miller LW (2011) Clinical, molecular, and genomic changes in response to a left ventricular assist device. J Am Coll Cardiol 57:641–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dandel M, Knosalla C, Hetzer R (2014) Contribution of ventricular assist devices to the recovery of failing hearts: a review and the Berlin Heart Centert Experience. Eur J Heart Fail 16:248–263

    Article  PubMed  Google Scholar 

  8. Dandel M, Weng Y, Siniawski H, Potapov E, Drews T, Lehmkuhl HB, Knosalla C, Hetzer R (2008) Prediction of cardiac stability after weaning from ventricular assist devices in patients with idiopathic dilated cardiomyopathy. Circulation 118:S94–S105

    Article  PubMed  Google Scholar 

  9. Dandel M, Weng Y, Siniawski H, Potapov E, Krabatsch T, Lehmkuhl HB, Drews T, Knosalla C, Hetzer R (2012) Pre-explant stability of unloading promoted cardiac improvement predicts outcome after weaning from ventricular assist devices. Circulation 126(11):S3–S19

    Google Scholar 

  10. Ambardekar AV, Walker JS, Walker LA, Cleveland JC Jr, Lowes BD, Buttrick PM (2011) Incomplete recovery of myocyte contractile function despite improvement of myocardial architecture with left ventricular assist device support. Circ Heart Fail 4(4):425–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Birks EJ, Hall JL, Barton PJR, Grindle S, Latif N, Hary JP, Rider JE, Banner NR, Khaghani A, Miller LW, Yacoub MH (2005) Gene profiling changes in cytoskeletal proteins during clinical recovery after left ventricular-assist support. Circulation 112(suppl I):I57–I64

    PubMed  Google Scholar 

  12. Akhter SA, D'Souza KM, Malhotra R, Staron ML, Valeroso TB, Fedson SE, Anderson AS, Raman J, Jeevanandam V (2010) Reversal of impaired myocardial beta-adrenergic receptor signaling by continuous-flow left ventricular assist device support. J Heart Lung Transplant 29:603–609

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ogletree ML, Sweet WE, Talerico C, Klecka ME, Young JB, Smedira NG, Starling RC, Moravec CS (2010) Duration of left ventricular assist device support: effects on abnormal calcium cycling and functional recovery in the failing human heart. J Heart Lung Transplant 29:554–561

    Article  PubMed  Google Scholar 

  14. Hall JL, Torre-Amione G (2012) Cellular, molecular, genomic and functional changes that occur in the failing heart in response to mechanical circulatory support. In: Kormos RL, Miller LW (eds) Mechanical circulatory support. A companion to braunwald’s heart disease. Elsevier, Philadelphia, pp 258–271

    Chapter  Google Scholar 

  15. Baba HA, Grabellus F, August C, Plenz G, Takeda A, Tjan TD, Schmid C, Deng MC (2000) Reversal of metallothionein expression is different throughout the human myocardium after prolonged left-ventricular mechanical support. J Heart Lung Transplant 19(7):668–674

    Article  CAS  PubMed  Google Scholar 

  16. Francis GS, Anwar F, Bank AJ, Kubo SH, Jessurun J (1999) Apoptosis, Bcl-2and proliferating cell nuclear antigen in the failing human heart: observation made after implantation of left ventricular assist device. J Card Fail 5:308–315

    Article  CAS  PubMed  Google Scholar 

  17. Manginas A, Tsiavou A, Sfyrakis P, Giamouzis G, Tsourelis L, Leontiadis E, Degiannis D, Cokkinos DV, Alivizatos PA (2009) Increased number of circulating progenitor cells after implantation of ventricular assist devices. J Heart Lung Transpl 28(7):710–717

    Article  Google Scholar 

  18. Wohlschlaeger J, Levkau B, Brockoff G, Schmitz KJ, von Winterfeld M, Takeda A, Takeda N, Stypmann J, Vahlhaus C, Schmid C, Pomjanski N, Böcking A, Baba HA (2010) Hemodynamic support by left ventricular assist devices reduces cardiomyocyte DNA content in the failing human heart. Circulation 121:989–996

    Article  CAS  PubMed  Google Scholar 

  19. Muranaka H, Marui A, Tsukashita M, Wang J, Nakano J, Ikeda T, Sakata R (2010) Prolonged mechanical unloading preserves myocardial contractility but impairs relaxation in rat heart of dilated cardiomyopathy accompanied by myocardial stiffness and apoptosis. J Thorac Cardiovasc Surg 140:916–922

    Article  PubMed  Google Scholar 

  20. Terraciano CMN, Hardy J, Birks EJ, Khaghani A, Banner NR, Yacoub MH (2004) Clinical recovery from end-stage heart failure using left ventricular assist device and pharmacological therapy correlates with increased sarcoplasmic reticulum calcium content but not with regression of cellular hypertrophy. Circulation 109:2263–2265

    Article  Google Scholar 

  21. Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M, Banner NR, Khagani A, Yacoub MH (2006) Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med 355:1873–1884

    Article  CAS  PubMed  Google Scholar 

  22. Dandel M, Weng Y, Siniawski H, Stepanenko A, Krabatsch T, Potapov E, Lehmkuhl HB, Knosalla C, Hetzer R (2011) Heart failure reversal by ventricular unloading in patients with chronic cardio-myopathy: criteria for weaning from ventricular assist devices. Eur Heart J 32:1148–1160

    Article  PubMed  Google Scholar 

  23. Simon MA, Kormos RL, Murali S, Nair P, Heffernan M, Gorcsan J, Winowich S, McNamara DM (2005) Myocardial recovery using ventricular assist devices: prevalence, clinical characteristics, and outcomes. Circulation 112:I32–I36

    Article  PubMed  Google Scholar 

  24. Kirklin JK, Naftel DC, Kormos RL, Stevensen LW, Pagani FD, Miller MM, Baldwin TJ, Joung JB (2013) Fifth INTERMAX annual report: risk factor analysis for more than 6000 mechanical circulatory support patients. J Heart Lung Transplant 32(2):141–156

    Article  PubMed  Google Scholar 

  25. Birks EJ, Miller LW (2012) Myocardial recovery with use of ventricular assist devices. In: Kormos RL, Miller LW (eds) Mechanical circulatory support. A companion to braunwald’s heart disease. Elsevier, Philadelphia, pp 258–271

    Google Scholar 

  26. Birks EJ, George RS, Firouzi A, Wright G, Bahrami T, Yacoub MH, Khaghani A (2012) Long-term outcomes of patients bridged to recovery versus patients bridged to transplantation. J Thorac Cardiovasc Surg 144:190–196

    Article  PubMed  Google Scholar 

  27. Hetzer R, Müller J, Weng Y, Meyer R, Dandel M (2001) Bridging-to-recovery. Ann Thorac Surg 71:S109–S113

    Article  CAS  PubMed  Google Scholar 

  28. Birks EJ, George RS, Hedger M, Bahrami T, Wilton P, Bowles CT, Webb C, Bougard R, Amrani M, Yacoub MH, Dreyfus G, Khaghani A (2011) Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy: a prospective study. Circulation 123(4):381–390

    Article  CAS  PubMed  Google Scholar 

  29. Krabatsch T, Schweiger M, Dandel M, Stepanenko A, Drews T, Potapov E, Pasic M, Weng YG, Huebler M, Hetzer R (2011) Is bridge to recovery more likely with pulsatile left ventricular assist devices than with nonpulsatile-flow systems? Ann Thorac Surg 91(5):1335–1340

    Article  PubMed  Google Scholar 

  30. Hetzer R, Potapov EV, Alexi-Meskishvili V, Weng Y, Moera O, Berger F, Hennig E, Hübler M (2011) Single-center experience with treatment of cardiogenic shock in children by pediatric assist devices. J Thorac Cardiovasc Surg 141:616–623

    Article  PubMed  Google Scholar 

  31. Blume ED, Naftel DC, Bastardi HJ, Duncan BW, Kirklin JK, Webber SA (2006) Outcomes of children bridged to heart transplantation with ventricular assist devices. Circulation 113:2213–2319

    Article  Google Scholar 

  32. Klotz S, Burkhoff D, Garrelds IM, Boomsma F, Danser AH (2009) The impact of left ventricular assist device induces left ventricular unloading on the myocardial renin-angiotensin-aldosterone system: therapeutic consequences? Eur Heart J 30:805–812

    Article  CAS  PubMed  Google Scholar 

  33. Simon MA, Primack BA, Teutenberg J, Kormos RL, Bermudez C, Toyoda Y, Shah H, Gorcsan J 3rd, McNamara DM (2010) Left ventricular remodelling and myocardial recovery on mechanical circulatory support. J Card Fail 16(2):99–105

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Dandel MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dandel, M., Schueler, S. (2017). Mechanical Circulatory Support as Bridge to Recovery. In: Montalto, A., Loforte, A., Musumeci, F., Krabatsch, T., Slaughter, M. (eds) Mechanical Circulatory Support in End-Stage Heart Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-43383-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43383-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43381-3

  • Online ISBN: 978-3-319-43383-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics