Skip to main content

Detailed Anatomical and Functional Features of the Cardiac Valves

  • Chapter
Handbook of Cardiac Anatomy, Physiology, and Devices

Abstract

The use of high-resolution noninvasive imaging in modern cardiac clinics to collect detailed images of valve function has dramatically accelerated the understanding of functional human heart anatomy. In the healthy human, the cardiac valves determine the passage of blood through the heart. The atrioventricular valves open during diastole to allow the filling of the ventricles and close during systole (ventricular contraction), directing blood through the semilunar valves to the body; these valves, in turn, close during diastole to prevent the flow of blood back into the ventricle. By presenting a comprehensive review of the histology, functional anatomy, and morphology of the cardiac valves, this chapter promotes an understanding of the valve features that is required for valvar repair or replacement via either surgical or minimally invasive (transcatheter) means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APM:

Anterior papillary muscle complex (superoposterior)

PPM:

Posterior papillary muscle complex (inferoanterior)

References

  1. Wilcox BR, Cook AC, Anderson RH (2005) Surgical anatomy of the valves of the heart. In: Wilcox BR, Cook AC, Anderson RH (eds) Surgical anatomy of the heart. Cambridge University Press, Cambridge, pp 45–82

    Google Scholar 

  2. Bateman MG, Quill JL, Hill AJ et al (2013) The clinical anatomy and pathology of the human atrioventricular valves: implications for repair or replacement. J Cardiovasc Transl Res 6:155–165

    Article  PubMed  Google Scholar 

  3. Anderson RH, Becker AE, Allwork SP (1980) Cardiac anatomy: an integrated text and colour atlas. Gower Medical Publishing, Edinburgh/Churchill Livingstone, London

    Google Scholar 

  4. Bateman MG, Hill AJ, Quill JL, Iaizzo PA (2013) The clinical anatomy and pathology of the human arterial valves: implications for repair or replacement. J Cardiovasc Transl Res 6:166–175

    Article  PubMed  Google Scholar 

  5. Angelini A, Ho SY, Anderson RH et al (1988) A histological study of the atrioventricular junction in hearts with normal and prolapsed leaflets of the mitral valve. Br Heart J 59:712–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Messer S, Moseley E, Marinescu M et al (2012) Histologic analysis of the right atrioventricular junction in the adult human heart. J Heart Valve Dis 21:368–373

    PubMed  Google Scholar 

  7. Cook AC, Anderson RH (2002) Attitudinally correct nomenclature. Heart 87:503–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Victor S, Nayak VM (1994) The tricuspid valve is bicuspid. J Heart Valve Dis 3:27–36

    CAS  PubMed  Google Scholar 

  9. Yacoub M (1976) Anatomy of the mitral valve chordae and cusps. In: Kalmason D (ed) The mitral valve. A pluridisciplinary approach. Edward Arnold Publishers, London, pp 15–20

    Google Scholar 

  10. Kumar N, Kumar M, Duran CM (1995) A revised terminology for recording surgical findings of the mitral valve. J Heart Valve Dis 4:76–77

    Google Scholar 

  11. Ritchie J, Jimenez J, He Z et al (2006) The material properties of the native porcine mitral valve chordae tendineae: an in vitro investigation. J Biomech 39:1129–1135

    Article  PubMed  Google Scholar 

  12. Perloff JK, Roberts WC (1972) The mitral apparatus. Functional anatomy of mitral regurgitation. Circulation 46:227–239

    Article  CAS  PubMed  Google Scholar 

  13. Becker AE, de Wit APM (1979) Mitral valve apparatus. A spectrum of normality relevant to mitral prolapse. Br Heart J 42:680–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Van der Bel-Kahn J, Duren DR, Becker AE (1985) Isolated mitral valve prolapse: chordal architecture as an anatomic basis in older patients. J Am Coll Cardiol 5:1335–1340

    Article  PubMed  Google Scholar 

  15. Gams E, Hagl S, Schad H et al (1992) Importance of the mitral apparatus for left ventricular function: an experimental approach. Eur J Cardiothorac Surg 6(Suppl 1):S17–23. Discussion S24

    Google Scholar 

  16. Gams E, Schad H, Heimisch W et al (1993) Importance of the left ventricular subvalvular apparatus for cardiac performance. J Heart Valve Dis 2:642–645

    CAS  PubMed  Google Scholar 

  17. Hill AJ, Laske TG, Coles JA Jr et al (2005) In vitro studies of human hearts. Ann Thorac Surg 79:168–177

    Article  PubMed  Google Scholar 

  18. www.vhlab.umn.edu/atlas/index. Accessed November 20, 2014

  19. Anderson RH, Devine WA, Ho SY et al (1991) The myth of the aortic annulus: the anatomy of the subaortic outflow tract. Ann Thorac Surg 52:640–646

    Article  CAS  PubMed  Google Scholar 

  20. Schultz CJ, Moelker A, Piazza N et al (2010) Three dimensional evaluation of the aortic annulus using multislice computer tomography: are manufacturer’s guidelines for sizing percutaneous aortic valve replacement helpful? Eur Heart J 31:849–856

    Article  PubMed  Google Scholar 

  21. Sievers HH, Hemmer W, Beversdorf F et al (2012) The everyday used nomenclature of the aortic root components: the tower of Babel? Eur J Cardiothorac Surg 41:478–482

    Article  PubMed  Google Scholar 

  22. Misfeld M, Sievers HH (2007) Heart valve macro- and microstructure. Philos Trans R Soc Lond B Biol Sci 362:1421–1436

    Article  PubMed  PubMed Central  Google Scholar 

  23. Marron K, Yacoub MH, Polak JM et al (1996) Innervation of human atrioventricular and arterial valves. Circulation 94:368–375

    Article  CAS  PubMed  Google Scholar 

  24. Filip DA, Radu A, Simionescu M (1986) Interstitial cells of the heart valves possess characteristics similar to smooth muscle cells. Circ Res 59:310–320

    Article  CAS  PubMed  Google Scholar 

  25. Icardo JM, Colvee E (1995) Atrioventricular valves of the mouse: III. Collagenous skeleton and myotendinous junction. Anat Rec 243:367–375

    Article  CAS  PubMed  Google Scholar 

  26. Icardo JM, Colvee E (1995) Atrioventricular valves of the mouse: II. Light and transmission electron microscopy. Anat Rec 241:391–400

    Article  CAS  PubMed  Google Scholar 

  27. Fenoglio JJ Jr, Tuan Duc P, Wit AL et al (1972) Canine mitral complex. Ultrastructure and electromechanical properties. Circ Res 31:417–430

    Article  PubMed  Google Scholar 

  28. Itoh A, Krishnamurthy G, Swanson JC et al (2009) Active stiffening of mitral valve leaflets in the beating heart. Am J Physiol Heart Circ Physiol 296:H1766–H1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Laske TG, Shrivastav M, Iaizzo PA (2009) The cardiac conduction system. In: Iaizzo PA (ed) The handbook of cardiac anatomy, physiology, and devices, 2nd edn. Humana Press, Totowa, pp 15–21

    Google Scholar 

  30. Gross L, Kugel MA (1931) Topographic anatomy and histology of the valves in the human heart. Am J Pathol 7:445–473

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Piazza N, de Jaegere P, Schulz C et al (2008) Anatomy of the aortic valvar complex and its implications for transcatheter implantation of the aortic valve. Circ Cardiovasc Interv 1:74–81

    Article  PubMed  Google Scholar 

  32. Carpentier A, Branchini B, Cour JC et al (1976) Congenital malformations of the mitral valve in children. Pathology and surgical treatment. J Thorac Cardiovasc Surg 72:854–866

    CAS  PubMed  Google Scholar 

  33. Anderson RH, Razavi R, Taylor AM (2004) Cardiac anatomy revisited. J Anat 205:159–177

    Article  PubMed  PubMed Central  Google Scholar 

  34. Quill JL, Hill AJ, Laske TG et al (2009) Mitral leaflet anatomy revisited. J Thorac Cardiovasc Surg 137:1077–1081

    Article  PubMed  Google Scholar 

  35. Barker TA, Wilson IC (2011) Surgical anatomy of the mitral and tricuspid valve. In: Bonser RS, Pagano D, Haverich A (eds) Mitral valve surgery. Springer-Verlag, London, pp 3–19

    Google Scholar 

  36. Delgado V, Tops LF, Schuijf JD et al (2009) Assessment of mitral valve anatomy and geometry with multislice computed tomography. JACC Cardiovasc Imaging 2:556–565

    Article  PubMed  Google Scholar 

  37. Kwan J, Kim G, Jeon M et al (2007) 3D geometry of a normal tricuspid annulus during systole: a comparison study with the mitral annulus using real-time 3D echocardiography. Eur J Echocardiogr 8:375–383

    Article  PubMed  Google Scholar 

  38. Veronesi F, Corsi C, Sugeng L et al (2009) A study of functional anatomy of aortic-mitral valve coupling using 3D matrix transesophageal echocardiography. Circ Cardiovasc Imaging 2:24–31

    Article  PubMed  Google Scholar 

  39. Berdajs D, Lajos P, Turina MI (2005) A new classification of the mitral papillary muscle. Med Sci Monit 11:BR18–BR21

    PubMed  Google Scholar 

  40. Bateman MG, Russel C, Chan B et al (2010) A detailed anatomical study of the papillary muscles and chordae tendineae of the left ventricle in perfusion fixed human hearts. FASEB J. 24(Meeting Abstract Supplement):446.4

    Google Scholar 

  41. Sonne C, Sugeng L, Watanabe N et al (2009) Age and body surface area dependency of mitral valve and papillary apparatus parameters: assessment by real-time three-dimensional echocardiography. Eur J Echocardiogr 10:287–294

    Article  PubMed  Google Scholar 

  42. Lam JH, Ranganathan N, Wigle ED et al (1970) Morphology of the human mitral valve. I. Chordae tendineae: a new classification. Circulation 41:449–458

    Article  CAS  PubMed  Google Scholar 

  43. Kunzelman KS, Cochran RP, Verrier ED et al (1994) Anatomic basis for mitral valve modelling. J Heart Valve Dis 3:491–496

    CAS  PubMed  Google Scholar 

  44. Ritchie J, Warnock JN, Yoganathan AP (2005) Structural characterization of the chordae tendineae in native porcine mitral valves. Ann Thorac Surg 80:189–197

    Article  PubMed  Google Scholar 

  45. Martinez RM, O’Leary PW, Anderson RH (2006) Anatomy and echocardiography of the normal and abnormal tricuspid valve. Cardiol Young 16(Suppl 3):4–11

    Article  PubMed  Google Scholar 

  46. Weinhaus AJ, Roberts KP (2009) Anatomy of the human heart. In: Iaizzo PA (ed) The handbook of cardiac anatomy, physiology, and devices, 2nd edn. Humana Press, Totowa, pp 59–85

    Chapter  Google Scholar 

  47. Tsakiris AG, Mair DD, Seki S et al (1975) Motion of the tricuspid valve annulus in anesthetized intact dogs. Circ Res 36:43–48

    Article  CAS  PubMed  Google Scholar 

  48. Westaby S, Karp RB, Blackstone EH et al (1984) Adult human valve dimensions and their surgical significance. Am J Cardiol 53:552–556

    Article  CAS  PubMed  Google Scholar 

  49. Silver MD, Lam JH, Ranganathan N et al (1971) Morphology of the human tricuspid valve. Circulation 43:333–348

    Article  CAS  PubMed  Google Scholar 

  50. Seccombe JF, Cahill DR, Edwards WD (1993) Quantitative morphology of the normal human tricuspid valve: autopsy study of 24 cases. Clin Anat 6:203–212

    Article  Google Scholar 

  51. Wenink AC (1977) The medial papillary complex. Br Heart J 39:1012–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hill AJ (2009) Attitudinally correct cardiac anatomy. In: Iaizzo PA (ed) The handbook of cardiac anatomy, physiology, and devices, 2nd edn. Humana Press, Totowa, pp 15–21

    Chapter  Google Scholar 

  53. Kunzelman KS, Grande KJ, David TE et al (1994) Aortic root and valve relationships: impact on surgical repair. J Thorac Cardiovasc Surg 107:162–170

    CAS  PubMed  Google Scholar 

  54. Reid K (1970) The anatomy of the sinus of Valsalva. Thorax 25:79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Swanson M, Clark RE (1974) Dimensions and geometric relationships of the human aortic valve as a function of pressure. Circ Res 35:871–882

    Article  CAS  PubMed  Google Scholar 

  56. Brewer RJ, Deck JD, Capati B et al (1976) The dynamic aortic root: its role in aortic valve function. J Thorac Cardiovasc Surg 72:413–417

    CAS  PubMed  Google Scholar 

  57. Thubrikar MPW, Shaner TW, Nolan SP (1981) The design of the normal aortic valve. Am J Physiol 10:H795–H801

    Google Scholar 

  58. Hamdan A, Guetta V, Konen E et al (2012) Deformation dynamics and mechanical properties of the aortic annulus by 4-dimensional computed tomography: insights into the functional anatomy of the aortic valve complex and implications for transcatheter aortic valve therapy. J Am Coll Cardiol 59:119–127

    Article  PubMed  Google Scholar 

  59. Middelhof CJFM, Becker AE (1981) Ventricular septal geometry: a spectrum with clinical relevance. In: Wenink ACG et al (eds) The ventricular septum of the heart. Martinus Nijhoff Publishers, The Hague

    Google Scholar 

  60. Turner K, Navartnam V (1996) The positions of coronary arterial ostia. Clin Anat 9:376–380

    Article  CAS  PubMed  Google Scholar 

  61. Muriago M, Sheppard MN, Ho SY et al (1997) Location of the coronary arterial orifices in the normal heart. Clin Anat 10:297–302

    Article  CAS  PubMed  Google Scholar 

  62. Cavalcanti JS, de Melo MN, de Vasconcelos RS (2003) Morphometric and topographic study of coronary ostia. Arq Bras Cardiol 81:359–362

    Article  PubMed  Google Scholar 

  63. Jo Y, Uranaka Y, Iwaki H et al (2011) Sudden cardiac arrest: associated with anomalous origin of the right coronary artery from the left main coronary artery. Tex Heart Inst J 38:539–543

    PubMed  PubMed Central  Google Scholar 

  64. Roynard JL, Cattan S, Artigou JY et al (1994) Anomalous course of the left anterior descending coronary artery between the aorta and pulmonary trunk: a rare cause of myocardial ischaemia at rest. Br Heart J 72:397–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sutton JP, Ho SY, Anderson RH (1995) The forgotten interleaflet triangles: a review of the surgical anatomy of the aortic valve. Ann Thorac Surg 59:419–427

    Article  PubMed  Google Scholar 

  66. Vollebergh FE, Becker AE (1977) Minor congenital variations of cusp size in tricuspid aortic valves: possible link with isolated aortic stenosis. Br Heart J 39:1006–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Capps SB, Elkins RC, Fronk DM (2000) Body surface area as a predictor of aortic and pulmonary valve diameter. J Thorac Cardiovasc Surg 119:975–982

    Article  CAS  PubMed  Google Scholar 

  68. Tops LF, Wood DA, Delgado V et al (2008) Noninvasive evaluation of the aortic root with multi-slice computed tomography: implications for transcatheter aortic valve replacement. J Am Coll Cardiol Img 1:321–330

    Article  Google Scholar 

  69. Van Miegham NM, Piazza N, Anderson RH et al (2010) Anatomy of the mitral valvular complex and its implications for transcatheter interventions for mitral regurgitation. J Am Coll Cardiol 56:617–626

    Article  Google Scholar 

  70. Choure AJ, Garcia MJ, Hesse B et al (2006) In vivo analysis of the anatomical relationship of coronary sinus to mitral annulus and left circumflex coronary artery using cardiac multidetector computed tomography: implications for percutaneous coronary sinus mitral annuloplasty. J Am Coll Cardiol 48:1938–1945

    Article  PubMed  Google Scholar 

  71. Tops LF, Van de Veire NR, Schuijf JD et al (2007) Noninvasive evaluation of coronary sinus anatomy and its relation to the mitral valve annulus: implications for percutaneous mitral annuloplasty. Circulation 115:1426–1432

    Article  PubMed  Google Scholar 

  72. Tawara S (1906) Das reizleitungssystem de saugetierherzens: eine anatomichhisologische studie uber das atrioventricularbundel und die Purkinjeschen faden. Verlag von Gustav Fischer, Jena

    Google Scholar 

  73. Asante-Korang A, O’Leary PW, Anderson RH (2006) Anatomy and echocardiography of the normal and abnormal mitral valve. Cardiol Young 16(Suppl 3):27–34

    Article  PubMed  Google Scholar 

  74. Otto CM (2009) Textbook of clinical echocardiography: expert consult, 4th edn. Saunders, Philadelphia

    Google Scholar 

  75. Baumgartner H, Hung J, Bermejo J et al (2009) Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr 22:1–23

    Article  PubMed  Google Scholar 

  76. Zoghbi WA, Enriquez-Sarano M, Foster E et al (2003) Recommendations for evaluation of the severity of native valvar regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 16:777–802

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Bateman PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bateman, M.G., Quill, J.L., Hill, A.J., Iaizzo, P.A. (2015). Detailed Anatomical and Functional Features of the Cardiac Valves. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-19464-6_7

Download citation

Publish with us

Policies and ethics