Skip to main content

Mechanical Circulatory Support Devices in Pediatric Patients

  • Chapter
Handbook of Cardiac Anatomy, Physiology, and Devices

Abstract

Acute heart failure can occur in children as a result of hemodynamic insults imposed on the heart by structural congenital defects or in anatomically normal hearts in which the myocardium is damaged by an inflammatory or infectious process (myocarditis, metabolic diseases leading to cardiomyopathy). Postcardiotomy heart failure following surgical repair of congenital heart defects can also lead to the need for postoperative support. Mechanical circulatory support devices have been used successfully as a bridge to recovery in children, especially in the management of acute myocarditis or postcardiotomy heart failure. The use of these devices as a bridge to transplantation has also been shown to decrease waiting list mortalities and improve the efficiency of donor organ utilizations in children. However, currently available mechanical circulatory support options for infants and children are still quite limited, especially with regard to size options for smaller patients and the long-term duration of support often required. Future devices are currently in development for clinical use on a broad scale and will greatly facilitate the successful support of children with heart failure as a bridge to myocardial recovery or heart transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ramaine-Davis A (1991) John Gibbon and his heart lung machine. University of Pennsylvania Press, Philadelphia

    Google Scholar 

  2. Lillehei CW, Cohen M, Warden HE et al (1955) Direct vision intracardiac correction of congenital anomalies by controlled cross circulation. Surgery 38:11

    CAS  PubMed  Google Scholar 

  3. Kirklin JW (1989) The middle 1950s and C Walton Lillehei. J Thorac Cardiovasc Surg 98:822

    CAS  PubMed  Google Scholar 

  4. DeBakey ME (2005) Development of mechanical heart devices. Ann Thorac Surg 79:S2228–S2231

    Article  PubMed  Google Scholar 

  5. Frazier OH, Rose EA, McCarthy P et al (1995) Improved mortality and rehabilitation of transplant candidates treated with a long-term implantable left ventricular assist system. Ann Surg 222:337–338

    Article  Google Scholar 

  6. Gemmato CJ, Forrester MD, Myers TJ, Frazier OH, Cooley DA (2005) Thirty-five years of mechanical circulatory support at the Texas Heart Institute. Tex Heart Inst J 32:168–177

    PubMed Central  PubMed  Google Scholar 

  7. Dang NC, Topkara VK, Kim BT, Mercando ML, Kay J, Naka Y (2005) Clinical outcomes in patients with chronic congestive heart failure who undergo left ventricular assist device implantation. J Thorac Cardiovasc Surg 130:1302–1309

    Article  PubMed  Google Scholar 

  8. Bank AJ, Mir SH, Nguyen DQ et al (2000) Effects of left ventricular assist devices on outcomes in patients undergoing heart transplantation. Ann Thorac Surg 69:1369–1374

    Article  CAS  PubMed  Google Scholar 

  9. Rose EA, Gelijns AC, Moskowitz AJ et al (2001) Long-term mechanical left ventricular assist device for end-stage heart failure. N Engl J Med 345:1435–1443

    Article  CAS  PubMed  Google Scholar 

  10. Loforte A, Montallo A, Ranocchi F et al (2009) Long-term mechanical support with the HeartMate II LVAS. Transplant Proc 41:1357–1359

    Article  CAS  PubMed  Google Scholar 

  11. Rossano JW, Kim JJ, Decker JA et al (2012) Prevalence, morbidity, and mortality of heart failure-related hospitalizations in children in the United States: a population-based study. J Card Fail 18:459–470

    Article  PubMed  Google Scholar 

  12. Baldwin JT, Borovetz HS, Duncan BW et al (2006) The National Heart, Lung and Blood Institute Pediatric Circulatory Support Program. Circulation 113:147–155

    Article  PubMed  Google Scholar 

  13. Litwak KN, Kihara S, Kameneva MV et al (2003) Effects of continuous flow left ventricular assist device support on skin tissue microcirculation and aortic hemodynamics. ASAIO J 49:103–107

    Article  PubMed  Google Scholar 

  14. Ootaki Y, Kamohara K, Akiyama M et al (2005) Phasic coronary blood flow pattern during a continuous flow left ventricular assist support. Eur J Cardiothorac Surg 28:711–716

    Article  PubMed  Google Scholar 

  15. Letsou GV, Myers TJ, Gregoric ID et al (2003) Continuous axial-flow left ventricular assist device (Jarvik 2000) maintains kidney and liver perfusion for up to 6 months. Ann Thorac Surg 76:1167–1170

    Article  PubMed  Google Scholar 

  16. Saito S, Westaby S, Piggot D et al (2002) End-organ function during chronic nonpulsatile circulation. Ann Thorac Surg 74:1080–1085

    Article  PubMed  Google Scholar 

  17. Gupta P, McDonald R, Chipman CW et al (2012) 20-year experience of prolonged extracorporeal membrane oxygenation in critically ill children with cardiac or pulmonary failure. Ann Thorac Surg 93:1584–1590

    Article  PubMed  Google Scholar 

  18. del Nido PJ, Dalton HJ, Thompson AE, Siewers RD (1992) Extracorporeal membrane oxygenator rescue in children during cardiac arrest after cardiac surgery. Circulation 86:II300–II304

    PubMed  Google Scholar 

  19. Kumar TKS, Zurakowski D, Dalton H et al (2010) Extracorporeal membrane oxygenation in postcardiotomy patients: factors influencing outcome. J Thorac Cardiovasc Surg 140:330–336

    Article  PubMed  Google Scholar 

  20. Imamura M, Dossey AM, Prodhan P et al (2009) Bridge to cardiac transplant in children: Berlin Heart versus extracorporeal membrane oxygenation. Ann Thorac Surg 87:1894–1901

    Article  PubMed  Google Scholar 

  21. Fraser CD Jr, Jaquiss RD, Rosenthal DN et al (2012) Prospective trial of a pediatric ventricular assist device. N Engl J Med 367:532–611

    Article  CAS  PubMed  Google Scholar 

  22. Sandica E, Knyphausen E, Blanz U, Rofe D, Morshuis M (2012) Safety of long-term mechanical support with Berlin Heart EXCOR in pediatric patients. World J Pediatr Congenit Heart Surg 3:72–76

    Article  PubMed  Google Scholar 

  23. Owens WR, Bryant R 3rd, Dreyer WJ et al (2010) Initial clinical experience with the HeartMate II ventricular assist system in a pediatric institution. Artif Organs 34:600–603

    Article  PubMed  Google Scholar 

  24. Reinhartz O, Hill JD, Al-Khaldi A et al (2005) Thoratec ventricular assist devices in pediatric patients: update on clinical results. ASAIO J 51:501–503

    Article  PubMed  Google Scholar 

  25. Rossano JW, Goldberg DJ, Fuller S, Ravishankar C, Montenegro LM, Gaynor JW (2014) Successful use of the total artificial heart in the failing Fontan circulation. Ann Thorac Surg 97:1438–1440

    Article  PubMed  Google Scholar 

  26. Rodefeld MD, Boyd JH, Myers CD et al (2003) Cavopulmonary assist: circulatory support for the univentricular Fontan circulation. Ann Thorac Surg 76:1911–1916

    Article  PubMed  Google Scholar 

  27. Throckmorton AL, Ballman KK, Myers CD et al (2007) Mechanical cavopulmonary assist for the univentricular Fontan circulation using a novel folding propeller blood pump. ASAIO J 53:734–741

    Article  PubMed  Google Scholar 

  28. Wang D, Plunkett M, Lynch J et al (2011) Dual lumen cannula leads to total cavopulmonary support in a failing Fontan sheep model. Ann Thorac Surg 91:1956–1960

    Article  PubMed  Google Scholar 

  29. Allan CK, Thiagarajan RR, del Nido PJ et al (2007) Indication for initiation of mechanical circulatory support impacts survival of infants with shunted single-ventricle circulation supported with extracorporeal membrane oxygenation. J Thorac Cardiovasc Surg 133:660–667

    Article  PubMed  Google Scholar 

  30. Rood KL, Teele SA, Barrett CS et al (2011) Extracorporeal membrane oxygenation support after the Fontan operation. J Thorac Cardiovasc Surg 142:504–510

    Article  PubMed  Google Scholar 

  31. Almond CS, Singh TP, Gauvreau K et al (2011) Extracorporeal membrane oxygenation for bridge to heart transplantation among children in the United States: analysis of data from the Organ Procurement and Transplant Network and Extracorporeal Life Support Organization Registry. Circulation 123:2975–2984

    Article  PubMed  Google Scholar 

  32. Stein ML, Robbins R, Sabati AA et al (2010) Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS)—defined morbidity and mortality associated with pediatric ventricular assist device support at a single US center/clinical perspective. Circ Heart Fail 3:682–688

    Article  PubMed  Google Scholar 

  33. Hehir DA, Niebler RA, Brabant CC et al (2012) Intensive care of the pediatric ventricular assist device patient. World J Pediatr Congenit Heart Surg 3:58–66

    Article  PubMed  Google Scholar 

  34. Spanier T, Oz M, Levin H, Weinberg A, Stamatis K, Stern D (1996) Activation of coagulation and fibrinolytic pathways in patients with left ventricular assist devices. J Thorac Cardiovasc Surg 112:1090–1097

    Article  CAS  PubMed  Google Scholar 

  35. Chinn R, Dembitsky W, Eaton L et al (2005) Multicenter experience: prevention and management of left ventricular assist device infections. ASAIO J 51:461–470

    Article  PubMed  Google Scholar 

  36. Holman WL, Rayburn BK, McGiffin DC et al (2003) Infection in ventricular assist devices: prevention and treatment. Ann Thorac Surg 75:48–57

    Article  Google Scholar 

  37. Fukamachi K, McCarthy PM, Smedira NG et al (1999) Preoperative risk factors for right ventricular failure after implantable left ventricular assist device insertion. Ann Thorac Surg 68:2181–2184

    Article  CAS  PubMed  Google Scholar 

  38. Santamore WP, Gray LA (1996) Left ventricular contributions to right ventricular systolic function during LVAD support. Ann Thorac Surg 61:350–356

    Article  CAS  PubMed  Google Scholar 

  39. Gandhi SK, Huddleston CB, Balzer DT et al (2008) Biventricular assist devices as a bridge to heart transplantation in small children. Circulation 118:S89–S93

    Article  PubMed  Google Scholar 

  40. Morales DL, Zafar F, Rossano JW et al (2010) Use of ventricular assist devices in children across the United States: analysis of 7.5 million pediatric hospitalizations. Ann Thorac Surg 90:1313–1319

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Plunkett MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Plunkett, M.D., St. Louis, J.D. (2015). Mechanical Circulatory Support Devices in Pediatric Patients. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-19464-6_11

Download citation

Publish with us

Policies and ethics