Skip to main content

Executive Function

  • Chapter
Cognitive Enhancement

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 228))

Abstract

Components of human executive function, like rule generation and selection in response to stimuli (attention set-shifting) or overcoming a habit (reversal learning), can be reliably modelled in rodents. The rodent paradigms are based upon tasks that assess cognitive flexibility in clinical populations and have been effective in distinguishing the neurobiological substrates and the underlying neurotransmitter systems relevant to executive function. A review of the literature on the attentional set-shifting task highlights a prominent role for the medial region of the prefrontal cortex in the ability to adapt to a new rule (extradimensional shift) while the orbitofrontal cortex has been associated with the reversal learning component of the task. In other paradigms specifically developed to examine reversal learning in rodents, the orbitofrontal cortex also plays a prominent role. Modulation of dopamine, serotonin, and glutamatergic receptors can disrupt executive function, a feature commonly exploited to develop concepts underlying psychiatric disorders. While these paradigms do have excellent translational construct validity, they have been less effective as predictive preclinical models for cognitive enhancers, especially for cognition in health subjects. Accordingly, a more diverse battery of tasks may be necessary to model normal human executive function in the rodent for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison C, Shoaib M (2013) Nicotine improves performance in an attentional set shifting task in rats. Neuropharmacology 64:314–320

    Article  CAS  PubMed  Google Scholar 

  • Asari T, Konishi S, Jimura K, Miyashita Y (2005) Multiple components of lateral posterior parietal activation associated with cognitive set shifting. Neuroimage 26(3):694–702

    Article  PubMed  Google Scholar 

  • Barak S, Weiner I (2011) Putative cognitive enhancers in preclinical models related to schizophrenia: the search for an elusive target. Pharmacol Biochem Behav 99(2):164–189

    Article  CAS  PubMed  Google Scholar 

  • Barnett JH, Robbins TW, Leeson VC, Sahakian BJ, Joyce EM, Blackwell AD (2010) Assessing cognitive function in clinical trials of schizophrenia. Neurosci Biobehav Rev 34:1161–1177

    Article  PubMed  Google Scholar 

  • Berg EA (1948) A simple objective technique for measuring flexibility in thinking. J Gen Psychol 39:15–22

    Article  CAS  PubMed  Google Scholar 

  • Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20(11):4320–4324

    CAS  PubMed  Google Scholar 

  • Bissonette GB, Martins GJ, Franz TM, Harper ES, Schoenbaum G, Powell EM (2008) Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice. J Neurosci 28(44):11124–11130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boulougouris V, Robbins TW (2009) Pre-surgical training ameliorates orbitofrontal-mediated impairments in spatial reversal learning. Behav Brain Res 197:469–475

    Article  PubMed  Google Scholar 

  • Boulougouris V, Robbins TW (2010) Enhancement of spatial reversal learning by 5-HT2C receptor antagonism is neuroanatomically specific. J Neurosci 30:930–938

    Article  CAS  PubMed  Google Scholar 

  • Boulougouris V, Dalley JW, Robbins TW (2007) Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behav Brain Res 179:219–228

    Article  PubMed  Google Scholar 

  • Boulougouris V, Castane A, Robbins TW (2009) Dopamine D2/D3 receptor agonist quinpirole impairs spatial reversal learning in rats: investigation of D3 receptor involvement in persistent behavior. Psychopharmacology (Berl) 202:611–620

    Article  CAS  Google Scholar 

  • Brigman JL, Feyder M, Saksida LM, Bussey TJ, Mishina M, Holmes A (2008) Impaired discrimination learning in mice lacking the NMDA receptor NR2A subunit. Learn Mem 15:50–54

    Article  PubMed Central  PubMed  Google Scholar 

  • Brigman JL, Mathur P, Harvey-White J, Izquierdo A, Saksida LM, Bussey TJ, Fox S, Deneris E, Murphy DL, Holmes A (2010) Pharmacological or genetic inactivation of the serotonin transporter improves reversal learning in mice. Cereb Cortex 20:1955–1963

    Article  PubMed Central  PubMed  Google Scholar 

  • Brigman JL, Daut RA, Wright T, Gunduz-Cinar O, Graybeal C, Davis MI, Jiang Z, Saksida LM, Jinde S, Pease M, Bussey TJ, Lovinger DM, Nakazawa K, Holmes A (2013) GluN2B in corticostriatal circuits governs choice learning and choice shifting. Nat Neurosci 16:1101–1110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Broadbent NJ, Squire LR, Clark RE (2007) Rats depend on habit memory for discrimination learning and retention. Learn Mem 14:145–151

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown VJ, Bowman EM (2002) Rodent models of prefrontal cortical function. Trends Neurosci 25(7):340–343

    Article  CAS  PubMed  Google Scholar 

  • Chase EA, Tait DS, Brown VJ (2012) Lesions of the orbital prefrontal cortex impair the formation of attentional set in rats. Eur J Neurosci 36(3):2368–2375

    Article  PubMed  Google Scholar 

  • Chen KC, Baxter MG, Rodefer JS (2004) Central blockade of muscarinic cholinergic receptors disrupts affective and attentional set-shifting. Eur J Neurosci 20:1081–1088

    Article  PubMed  Google Scholar 

  • Clarke HF, Walker SC, Crofts HS, Dalley JW, Robbins TW, Roberts AC (2005) Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. J Neurosci 25:532–538

    Article  CAS  PubMed  Google Scholar 

  • Clarke HF, Walker SC, Dalley JW, Robbins TW, Roberts AC (2007) Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. Cereb Cortex 17:18–27

    Article  CAS  PubMed  Google Scholar 

  • Clarke HF, Robbins TW, Roberts AC (2008) Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex. J Neurosci 28:10972–10982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clarke HF, Hill GJ, Robbins TW, Roberts AC (2011) Dopamine, but not serotonin, regulates reversal learning in the marmoset caudate nucleus. J Neurosci 31:4290–4297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clatworthy PL, Lewis SJ, Brichard L, Hong YT, Izquierdo D, Clark L, Cools R, Aigbirhio FI, Baron JC, Fryer TD, Robbins TW (2009) Dopamine release in dissociable striatal subregions predicts the different effects of oral methylphenidate on reversal learning and spatial working memory. J Neurosci 29:4690–4696

    Article  CAS  PubMed  Google Scholar 

  • Cools R, Clark L, Owen AM, Robbins TW (2002) Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J Neurosci 22(11):4563–4567

    CAS  PubMed  Google Scholar 

  • Cools R, Lewis SJ, Clark L, Barker RA, Robbins TW (2007) L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson's disease. Neuropsychopharmacology 32:180–189

    Article  CAS  PubMed  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28(7):771–784

    Article  CAS  PubMed  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996a) Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380(6569):69–72

    Article  CAS  PubMed  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996b) Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav Neurosci 110(5):872–886

    Article  CAS  PubMed  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1997) Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: restriction to novel situations and independence from “on-line” processing. J Neurosci 17(23):9285–9297

    CAS  PubMed  Google Scholar 

  • Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 98(12):6917–6922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Egerton A, Brett RR, Pratt JA (2005a) Acute delta9-tetrahydrocannabinol-induced deficits in reversal learning: neural correlates of affective inflexibility. Neuropsychopharmacology 30(10):1895–1905

    Article  CAS  PubMed  Google Scholar 

  • Egerton A, Reid L, McKerchar CE, Morris BJ, Pratt JA (2005b) Impairment in perceptual attentional set-shifting following PCP administration: a rodent model of set-shifting deficits in schizophrenia. Psychopharmacology (Berl) 179(1):77–84

    Article  CAS  Google Scholar 

  • Fellini L, Kumar G, Gibbs S, Steckler T, Talpos J (2014) Re-evaluating the PCP challenge as a pre-clinical model of impaired cognitive flexibility in schizophrenia. Eur Neuropsychopharmacol 24(11):1836–1849. doi:10.1016/j.euroneuro.2014.08.012

    Article  CAS  PubMed  Google Scholar 

  • Fletcher PJ, Tenn CC, Rizos Z, Lovic V, Kapur S (2005) Sensitization to amphetamine, but not PCP, impairs attentional set shifting: reversal by a D1 agonist injected into the medial prefrontal cortex. Psychopharmacology (Berl) 183(2):190–200

    Article  CAS  Google Scholar 

  • Floresco SB, Jentsch JD (2011) Pharmacological enhancement of memory and executive functioning in laboratory animals. Neuropsychopharmacology 36(1):227–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fox MT, Barense MD, Baxter MG (2003) Perceptual attentional set-shifting is impaired in rats with neurotoxic lesions of posterior parietal cortex. J Neurosci 23(2):676–681

    CAS  PubMed  Google Scholar 

  • Frohlich J, Van Horn JD (2014) Reviewing the ketamine model for schizophrenia. J Psychopharmacol 28(4):287–302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Groman SM, Lee B, London ED, Mandelkern MA, James AS, Feiler K, Rivera R, Dahlbom M, Sossi V, Vandervoort E, Jentsch JD (2011) Dorsal striatal D2-like receptor availability covaries with sensitivity to positive reinforcement during discrimination learning. J Neurosci 31:7291–7299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haluk DM, Floresco SB (2009) Ventral striatal dopamine modulation of different forms of behavioral flexibility. Neuropsychopharmacology 34:2041–2052

    Article  CAS  PubMed  Google Scholar 

  • Hampshire A, Owen AM (2006) Fractionating attentional control using event-related fMRI. Cereb Cortex 16:1679–1689

    Article  PubMed  Google Scholar 

  • Hornak J, O’Doherty J, Bramham J, Rolls ET, Morris RG, Bullock PR, Polkey CE (2004) Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J Cogn Neurosci 16:463–478

    Article  CAS  PubMed  Google Scholar 

  • Keeler JF, Robbins TW (2011) Translating cognition from animals to humans. Biochem Pharmacol 81(12):1356–1366

    Article  CAS  PubMed  Google Scholar 

  • Lapiz MD, Bondi CO, Morilak DA (2007) Chronic treatment with desipramine improves cognitive performance of rats in an attentional set-shifting test. Neuropsychopharmacology 32(5):1000–1010

    Article  CAS  PubMed  Google Scholar 

  • Lapiz MD, Morilak DA (2006) Noradrenergic modulation of cognitive function in rat medial prefrontal cortex as measured by attentional set shifting capability. Neuroscience 137(3):1039–1049

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Groman S, London ED, Jentsch JD (2007) Dopamine D2/D3 receptors play a specific role in the reversal of a learned visual discrimination in monkeys. Neuropsychopharmacology 32:2125–2134

    Article  CAS  PubMed  Google Scholar 

  • Leeson VC, Robbins TW, Matheson E, Hutton SB, Ron MA, Barnes TR, Joyce EM (2009) Discrimination learning, reversal, and set-shifting in first-episode schizophrenia: stability over six years and specific associations with medication type and disorganization syndrome. Biol Psychiatry 66(6):586–593

    Article  PubMed Central  PubMed  Google Scholar 

  • Lindgren HS, Wickens R, Tait DS, Brown VJ, Dunnett SB (2013) Lesions of the dorsomedial striatum impair formation of attentional set in rats. Neuropharmacology 71:148–153

    Article  CAS  PubMed  Google Scholar 

  • McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146(1–2):97–103

    Article  PubMed  Google Scholar 

  • McGaughy J, Ross RS, Eichenbaum H (2008) Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting. Neuroscience 153(1):63–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McLean SL, Idris NF, Grayson B, Gendle DF, Mackie C, Lesage AS, Pemberton DJ, Neill JC (2012) PNU-120596, a positive allosteric modulator of α7 nicotinic acetylcholine receptors, reverses a sub-chronic phencyclidine-induced cognitive deficit in the attentional set-shifting task in female rats. J Psychopharmacol 26(9):1265–1270

    Article  CAS  PubMed  Google Scholar 

  • Milner B (1963) Effects of different brain lesions on card sorting. Arch Neurol 9:100–110

    Google Scholar 

  • Muller U, Rowe JB, Rittman T, Lewis C, Robbins TW, Sahakian BJ (2013) Effects of modafinil on non-verbal cognition, task enjoyment and creative thinking in healthy volunteers. Neuropharmacology 64:490–495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neill JC, Barnes S, Cook S, Grayson B, Idris NF, McLean SL, Snigdha S, Rajagopal L, Harte MK (2010) Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism. Pharmacol Ther 128(3):419–432

    Article  CAS  PubMed  Google Scholar 

  • Newman LA, Darling J, McGaughy J (2008) Atomoxetine reverses attentional deficits produced by noradrenergic deafferentation of medial prefrontal cortex. Psychopharmacology (Berl) 200(1):39–50

    Article  CAS  Google Scholar 

  • Ng CW, Noblejas MI, Rodefer JS, Smith CB, Poremba A (2007) Double dissociation of attentional resources: prefrontal versus cingulate cortices. J Neurosci 27(45):12123–12131

    Article  CAS  PubMed  Google Scholar 

  • Nikiforuk A, Popik P (2012) Effects of quetiapine and sertindole on subchronic ketamine-induced deficits in attentional set-shifting in rats. Psychopharmacology (Berl) 220(1):65–74

    Article  CAS  Google Scholar 

  • Nikiforuk A, Gołembiowska K, Popik P (2010) Mazindol attenuates ketamine-induced cognitive deficit in the attentional set shifting task in rats. Eur Neuropsychopharmacol 20(1):37–48

    Article  CAS  PubMed  Google Scholar 

  • Normans DA, Shallice T (1980) Attention to action: willed and automatic control of behavior. In: Gazzaniga MS (ed) Cognitive neuroscience: a reader. Blackwell, Oxford

    Google Scholar 

  • Owen AM, Roberts AC, Polkey CE, Sahakian BJ, Robbins TW (1991) Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia 29(10):993–1006

    Article  CAS  PubMed  Google Scholar 

  • Park SB, Coull JT, McShane RH, Young AH, Sahakian BJ, Robbins TW, Cowen PJ (1994) Tryptophan depletion in normal volunteers produces selective impairments in learning and memory. Neuropharmacology 33:575–588

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW, James M, Owen AM, Sahakian BJ, McInnes L, Rabbitt P (1994) Cambridge Neuropsychological Test Automated Battery (CANTAB): a factor analytic study of a large sample of normal elderly volunteers. Dementia 5:266–281

    CAS  PubMed  Google Scholar 

  • Roberts AC, Wallis JD (2000) Inhibitory control and affective processing in the prefrontal cortex: neuropsychological studies in the common marmoset. Cereb Cortex 10:252–262

    Article  CAS  PubMed  Google Scholar 

  • Roberts AC, Robbins TW, Everitt BJ, Jones GH, Sirkia TE, Wilkinson J, Page K (1990) The effects of excitotoxic lesions of the basal forebrain on the acquisition, retention and serial reversal of visual discriminations in marmosets. Neuroscience 34:311–329

    Article  CAS  PubMed  Google Scholar 

  • Roberts AC, Robbins TW, Everitt BJ, Muir JL (1992) A specific form of cognitive rigidity following excitotoxic lesions of the basal forebrain in marmosets. Neuroscience 47(2):251–264

    Article  CAS  PubMed  Google Scholar 

  • Rodefer JS, Nguyen TN, Karlsson JJ, Arnt J (2008) Reversal of subchronic PCP-induced deficits in attentional set shifting in rats by sertindole and a 5-HT6 receptor antagonist: comparison among antipsychotics. Neuropsychopharmacology 33(11):2657–2666

    Article  CAS  PubMed  Google Scholar 

  • Rogers RD, Everitt BJ, Baldacchino A, Blackshaw AJ, Swainson R, Wynne K, Baker NB, Hunter J, Carthy T, Booker E, London M, Deakin JF, Sahakian BJ, Robbins TW (1999a) Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology 20:322–339

    Article  CAS  PubMed  Google Scholar 

  • Rogers RD, Blackshaw AJ, Middleton HC, Matthews K, Hawtin K, Crowley C, Hopwood A, Wallace C, Deakin JF, Sahakian BJ, Robbins TW (1999b) Tryptophan depletion impairs stimulus-reward learning while methylphenidate disrupts attentional control in healthy young adults: implications for the monoaminergic basis of impulsive behaviour. Psychopharmacology (Berl) 146:482–491

    Article  CAS  Google Scholar 

  • Rygula R, Walker SC, Clarke HF, Robbins TW, Roberts AC (2010) Differential contributions of the primate ventrolateral prefrontal and orbitofrontal cortex to serial reversal learning. J Neurosci 30:14552–14559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schoenbaum G, Nugent SL, Saddoris MP, Setlow B (2002) Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. Neuroreport 13(6):885–890

    Article  PubMed  Google Scholar 

  • Seu E, Jentsch JD (2009) Effect of acute and repeated treatment with desipramine or methylphenidate on serial reversal learning in rats. Neuropharmacology 57(7–8):665–672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tait DS, Brown VJ, Farovik A, Theobald DE, Dalley JW, Robbins TW (2007) Lesions of the dorsal noradrenergic bundle impair attentional set-shifting in the rat. Eur J Neurosci 25(12):3719–3724

    Article  PubMed  Google Scholar 

  • Tait DS, Brown VJ (2008) Lesions of the basal forebrain impair reversal learning but not shifting of attentional set in rats. Behav Brain Res 187(1):100–108

    Article  CAS  PubMed  Google Scholar 

  • Tait DS, Chase EA, Brown VJ (2013) Tacrine improves reversal learning in older rats. Neuropharmacology 73:284–289

    Article  CAS  PubMed  Google Scholar 

  • Talpos J, Steckler T (2013) Touching on translation. Cell Tissue Res 354:297–308

    Article  PubMed  Google Scholar 

  • Waltz JA, Gold JM (2007) Probabilistic reversal learning impairments in schizophrenia: further evidence of orbitofrontal dysfunction. Schizophr Res 93(1–3):296–303

    Article  PubMed Central  PubMed  Google Scholar 

  • Wood S, Sage JR, Shuman T, Anagnostaras SG (2014) Psychostimulants and cognition: a continuum of behavioral and cognitive activation. Pharmacol Rev 66:193–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Shoaib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Talpos, J., Shoaib, M. (2015). Executive Function. In: Kantak, K., Wettstein, J. (eds) Cognitive Enhancement. Handbook of Experimental Pharmacology, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-319-16522-6_6

Download citation

Publish with us

Policies and ethics