Skip to main content

Measures for Well-Being in Highly Automated Vehicles: The Effect of Prior Experience

  • Conference paper
  • First Online:
HCI in Mobility, Transport, and Automotive Systems. Automated Driving and In-Vehicle Experience Design (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12212))

Included in the following conference series:

Abstract

Highly automated vehicles are likely to cause a paradigm shift, as they profoundly affect user behavior and vehicle design. To reflect this change in a user-centric approach to designing automated vehicles, passenger well-being can be a relevant variable. To be able to consider passenger well-being appropriately, valid and reliable measures are required. In study contexts or industry applications, restrictions may apply that limit the selection of measures for passenger well-being. Frequently utilized multi-dimensional self-report measures may not always be appropriate. Instead, single item measures and physiological measures may be more suitable. In case of physiological measures, habituation effects can affect measurement and require further investigation. This work utilizes a low-fidelity driving simulator study (n = 30) to identify suitable short self-report and physiological measures for automated driving settings. Further, this work contributes by investigating habituation effects on the relationship between physiological measures and subjective well-being. Results indicate that the short measure with three items “happy”, “calm” and “awake” is a permissible alternative for cases where multidimensional self-report measures for passenger well-being cannot be used due to time or distraction constraints. Further, electrodermal activity and heart rate variability can be physiological proxies for passenger well-being. The data also provide indication of habituation effects caused by increased experience with automated driving on sympathetic activity that requires consideration in the selection of physiological measures for passenger well-being.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. European Parliament: Self-driving cars in the EU: from science fiction to reality (2019). https://www.europarl.europa.eu/news/en/headlines/economy/20190110STO23102/self-driving-cars-in-the-eu-from-science-fiction-to-reality. Accessed 13 Nov 2019

  2. SAE: Taxonomy and Definitions for Terms Related to On-road Motor Vehicle Automated Driving Systems, 2016th edn. SAE (SAE J3016) (2016)

    Google Scholar 

  3. Sauer, V., Mertens, A., Heitland, J., Nitsch, V.: Exploring the concept of passenger well-being in the context of automated driving. Int. J. Hum. Factors Ergon. (2019). https://doi.org/10.1504/IJHFE.2019.104594

    Article  Google Scholar 

  4. Fairclough, S.H., van der Zwaag, M., Spiridon, E., Westerink, J.: Effects of mood induction via music on cardiovascular measures of negative emotion during simulated driving. Physiol. Behav. (2014). https://doi.org/10.1016/j.physbeh.2014.02.049

    Article  Google Scholar 

  5. Winzen, J., Albers, F., Marggraf-Micheel, C.: The influence of coloured light in the aircraft cabin on passenger thermal comfort. Light. Res. Technol. (2014). https://doi.org/10.1177/1477153513484028

    Article  Google Scholar 

  6. Västfjäll, D., Kleiner, M., Gärling, T.: Affective reactions to interior aircraft sounds. Acta Acust. United With Acust. 89(4), 693–701 (2003)

    Google Scholar 

  7. Brell, T., Philipsen, R., Ziefle, M.: sCARy! risk perceptions in autonomous driving. The influence of experience on perceived benefits and barriers. Risk Anal.: Off. Publ. Soc. Risk Anal. (2019). https://doi.org/10.1111/risa.13190

  8. Diener, E., Lucas, R.E.: Personality and subjective well-being. In: Kahneman, D., Diener, E., Schwarz, N. (eds.) Well-Being. The Foundations of Hedonic Psychology, pp. 213–229. Russell Sage Foundation, New York (1999)

    Google Scholar 

  9. Quehl, J.: Comfort studies on aircraft interior sound and vibration. Dissertation, Carl von Ossietzky Universität (2001)

    Google Scholar 

  10. Steyer, R., Schwenkmezger, P., Notz, P., Eid, M.: Der Mehrdimensionale Befindlichkeitsfragebogen (MDBF). Hogrefe, Göttingen (1997)

    Google Scholar 

  11. Janke, W., Debus, G.: EWL Eigenschaftswörterliste. In: Schumacher, J., Klaiberg, A., Brähler, E. (eds.) Diagnostische Verfahren zu Lebensqualität und Wohlbefinden. Diagnostik für Klinik und Praxis, vol. 2, pp. 92–96. Hogrefe Verlag für Psychologie, Göttingen (2003)

    Google Scholar 

  12. Västfjäll, D., Friman, M., Gärling, T., Kleiner, M.: The measurement of core affect: a Swedish self-report measure derived from the affect circumplex. Scand. J. Psychol. 43(1), 19–31 (2002)

    Article  Google Scholar 

  13. Watson, D., Clark, L.A., Tellegen, A.: Development and validation of brief measures of positive and negative affect: the PANAS scale. J. Personal. Soc. Psychol. 54(6), 1063–1070 (1988)

    Article  Google Scholar 

  14. Diener, E.: Subjective well-being. Psychol. Bull. (1984). https://doi.org/10.1037/0033-2909.95.3.542

    Article  Google Scholar 

  15. McDowell, I.: Measures of self-perceived well-being. J. Psychosom. Res. (2010). https://doi.org/10.1016/j.jpsychores.2009.07.002

    Article  Google Scholar 

  16. Ryff, C.D., Keyes, C.L.M.: The structure of psychological well-being revisited. J. Personal. Soc. Psychol. (1995). https://doi.org/10.1037//0022-3514.69.4.719

    Article  Google Scholar 

  17. Andrews, F.M., Crandall, R.: The validity of measures of self-reported well-being. Soc. Indic. Res. (1976). https://doi.org/10.1007/BF00286161

    Article  Google Scholar 

  18. McDowell, I.: Measuring Health. A Guide to Rating Scales and Questionnaires, 3rd edn. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  19. Sauer, V., Mertens, A., Nitsch, V., Reuschel, J.D.: An empirical investigation of measures for well-being in highly automated vehicles. In: Janssen, C.P., Donker, S.F., Chuang, L.L., Ju, W. (eds.) Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications Adjunct Proceedings - AutomotiveUI 2019, Utrecht, Netherlands, 21–25 September 2019, pp. 369–374. ACM Press, New York (2019). https://doi.org/10.1145/3349263.3351337

  20. Diener, E.: Assessing subjective well-being: progress and opportunities. Soc. Indic. Res. 31(2), 103–157 (1994)

    Article  Google Scholar 

  21. Healey, J.A., Picard, R.W.: Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. (2005). https://doi.org/10.1109/TITS.2005.848368

    Article  Google Scholar 

  22. Kreibig, S.D.: Autonomic nervous system activity in emotion. A review. Biol. Psychol. (2010). https://doi.org/10.1016/j.biopsycho.2010.03.010

    Article  Google Scholar 

  23. Critchley, H.D.: Electrodermal responses: what happens in the brain. Neuroscientist 8(2), 132–142 (2002)

    Article  Google Scholar 

  24. Bastiaansen, M., et al.: Emotions as core building blocks of an experience. Int. J. Contemp. Hosp. Manag. (2019). https://doi.org/10.1108/IJCHM-11-2017-0761

    Article  Google Scholar 

  25. Wörle, J., Metz, B., Thiele, C., Weller, G.: Detecting sleep in drivers during highly automated driving. The potential of physiological parameters. IET Intell. Transp. Syst. (2019). https://doi.org/10.1049/iet-its.2018.5529

  26. Morris, D.M., Erno, J.M., Pilcher, J.J.: Electrodermal response and automation trust during simulated self-driving car use. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting (2017). https://doi.org/10.1177/1541931213601921

  27. Daviaux, Y., et al.: Event-related electrodermal response to stress. Results from a realistic driving simulator scenario. Hum. Factors (2020). https://doi.org/10.1177/0018720819842779

  28. Walker, F., Wang, J., Martens, M.H., Verwey, W.B.: Gaze behaviour and electrodermal activity. Objective measures of drivers’ trust in automated vehicles. Transp. Res. Part F: Traffic Psychol. Behav. (2019). https://doi.org/10.1016/j.trf.2019.05.021

  29. Beggiato, M., Hartwich, F., Krems, J.: Using smartbands, pupillometry and body motion to detect discomfort in automated driving. Front. Hum. Neurosci. (2018). https://doi.org/10.3389/fnhum.2018.00338

    Article  Google Scholar 

  30. Wilson, K.G., Sandler, L.S., Larsen, D.K.: Skin conductance responding to mood-congruent stimuli. J. Psychophysiol. 5(4), 301–314 (1991)

    Google Scholar 

  31. Greco, A., Valenza, G., Citi, L., Scilingo, E.P.: Arousal and valence recognition of affective sounds based on electrodermal activity. IEEE Sens. J. (2017). https://doi.org/10.1109/JSEN.2016.2623677

    Article  Google Scholar 

  32. Søndergaard, K.H.E., Olesen, C.G., Søndergaard, E.K., de Zee, M., Pascal, M.: The variability and complexity of sitting postural control are associated with discomfort. J. Biomech. (2010). https://doi.org/10.1016/j.jbiomech.2010.03.009

    Article  Google Scholar 

  33. Cascioli, V., Liu, Z., Heusch, A., McCarthy, P.W.: A methodology using in-chair movements as an objective measure of discomfort for the purpose of statistically distinguishing between similar seat surfaces. Appl. Ergon. (2016). https://doi.org/10.1016/j.apergo.2015.11.019

    Article  Google Scholar 

  34. Appelhans, B.M., Luecken, L.J.: Heart rate variability as an index of regulated emotional responding. Rev. Gen. Psychol. (2006). https://doi.org/10.1037/1089-2680.10.3.229

    Article  Google Scholar 

  35. Task force of the european society of cardiology and the North American Society of pacing and electrophysiology (task force): heart rate variability. Eur. Heart J. (1996). https://doi.org/10.1093/eurheartj/17.suppl_3.381

  36. Geisler, F.C.M., Vennewald, N., Kubiak, T., Weber, H.: The impact of heart rate variability on subjective well-being is mediated by emotion regulation. Personal. Individ. Diff. (2010). https://doi.org/10.1016/j.paid.2010.06.015

    Article  Google Scholar 

  37. Trimmel, M.: Relationship of Heart Rate Variability (HRV) parameters including pNNxx with the subjective experience of stress, depression, well-being, and every-day trait moods (TRIM-T). A pilot study. TOERGJ (2015). https://doi.org/10.2174/1875934301508010032

    Article  Google Scholar 

  38. Heikoop, D.D., Winter, J.C.F. de, van Arem, B., Stanton, N.A.: Acclimatizing to automation. Driver workload and stress during partially automated car following in real traffic. Transp. Res. Part F: Traffic Psychol. Behav. (2019). https://doi.org/10.1016/j.trf.2019.07.024

  39. Grissom, N., Bhatnagar, S.: Habituation to repeated stress. Get used to it. Neurobiol. Learn. Mem. (2009). https://doi.org/10.1016/j.nlm.2008.07.001

  40. Ward, C., Raue, M., Lee, C., D’Ambrosio, L., Coughlin, Joseph F.: Acceptance of automated driving across generations: the role of risk and benefit perception, knowledge, and trust. In: Kurosu, M. (ed.) HCI 2017. LNCS, vol. 10271, pp. 254–266. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58071-5_20

    Chapter  Google Scholar 

  41. König, M., Neumayr, L.: Users’ resistance towards radical innovations. The case of the self-driving car. Transp. Res. Part F: Traffic Psychol. Behav. (2017). https://doi.org/10.1016/j.trf.2016.10.013

  42. Gold, C., Körber, M., Hohenberger, C., Lechner, D., Bengler, K.: Trust in automation – before and after the experience of take-over scenarios in a highly automated vehicle. Procedia Manuf. (2015). https://doi.org/10.1016/j.promfg.2015.07.847

    Article  Google Scholar 

  43. Averill, J.R., Malmstrom, E.J., Koriat, A., Lazarus, R.S.: Habituation to complex emotional stimuli. J. Abnorm. Psychol. (1972). https://doi.org/10.1037/h0033309

    Article  Google Scholar 

  44. Jönsson, P., Wallergård, M., Osterberg, K., Hansen, A.M., Johansson, G., Karlson, B.: Cardiovascular and cortisol reactivity and habituation to a virtual reality version of the trier social stress test. A pilot study. Psychoneuroendocrinology (2010). https://doi.org/10.1016/j.psyneuen.2010.04.003

    Article  Google Scholar 

  45. Benedek, M., Kaernbach, C.: Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology (2010). https://doi.org/10.1111/j.1469-8986.2009.00972.x

    Article  Google Scholar 

  46. Benedek, M., Kaernbach, C.: A continuous measure of phasic electrodermal activity. J. Neurosci. Methods (2010). https://doi.org/10.1016/j.jneumeth.2010.04.028

    Article  Google Scholar 

  47. Boucsein, W.: Elektrodermale Aktivität. Grundlagen, Methoden und Anwendungen. Springer, Berlin (1988)

    Book  Google Scholar 

  48. R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2018)

    Google Scholar 

  49. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences, 2nd edn. Erlbaum, Hillsdale (1988)

    MATH  Google Scholar 

  50. Watson, D., Tellegen, A.: Toward a consensual structure of mood. Psychol. Bull. (1985). https://doi.org/10.1037//0033-2909.98.2.219

    Article  Google Scholar 

  51. Roseman, I.J., Smith, C.A.: Appraisal theory. Overview, assumptions, varieties, controversies. In: Scherer, K.R., Schorr, A., Johnstone, T. (eds.) Appraisal Processes in Emotion: Theory, Methods, Research, pp. 3–19. Oxford University Press, New York (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Sauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sauer, V., Mertens, A., Heyden, A., Groß, S., Nitsch, V. (2020). Measures for Well-Being in Highly Automated Vehicles: The Effect of Prior Experience. In: Krömker, H. (eds) HCI in Mobility, Transport, and Automotive Systems. Automated Driving and In-Vehicle Experience Design. HCII 2020. Lecture Notes in Computer Science(), vol 12212. Springer, Cham. https://doi.org/10.1007/978-3-030-50523-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50523-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50522-6

  • Online ISBN: 978-3-030-50523-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics