Skip to main content

Depth and Colour Perception in Real and Virtual Robot Cells in the Context of Occupational Safety and Health

  • Conference paper
  • First Online:
Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Posture, Motion and Health (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12198))

Included in the following conference series:

  • 1731 Accesses

Abstract

Investigations into comparisons of real and virtual environments serve multiple purposes. Results may improve development, implementation and application of virtual environments, inform about potentials for positive transfer of effects and facilitate decision making about appropriate virtual reality techniques in specific situations on human factors and ergonomics in human-system interaction. Absolute and relative estimations of object sizes, colours and greyscales were differentially investigated in virtual and real robot cells. Analyses revealed differences for environments (e.g. size, colour) and in some cases even for specific characteristics under investigation (e.g. robot cell size, 10% greyscales). Differential results on human task performance in virtual environments with potential technical constraints are crucial for safety and health reasons and because they provide a basis for human behaviour consequences and work system design decisions and requirements for transfer research. Results support informed decision making about virtual reality techniques and media selection in OSH applications on training and work systems design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO: Basic documents: forty-ninth edition (including amendments adopted up to 31 May 2019). World Health Organization, Geneva (2020). http://apps.who.int/gb/bd/

  2. Radandt, S., Rantanen, J., Renn, O.: Governance of occupational safety and health environmental risks. In: Bischoff, H.-J. (ed.) Risks in Modern Society. TISRRAQ, vol. 13, pp. 127–258. Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-8289-4_4

  3. Lehto, M.R., Cook, B.T.: Occupational health and safety management. In: Salvendy, G. (ed.) Handbook of Human Factors and Ergonomics, pp. 701–733. Wiley, Hoboken (2012)

    Google Scholar 

  4. Nickel, P.: Extending the effective range of prevention through design by OSH applications in virtual reality. In: Nah, F.F.-H., Tan, C.-H. (eds.) HCIBGO 2016. LNCS, vol. 9752, pp. 325–336. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39399-5_31

    Chapter  Google Scholar 

  5. EU OSH Framework Directive 89/391/EEC of 12 June 1989 on the introduction of measures to encourage improvements in the safety and health of workers at work (with amendments 2008). Official Journal of the European Union L 183, 29/06/1989, 1–8 (2008)

    Google Scholar 

  6. EN ISO 6385: Ergonomic principles in the design of work systems. CEN, Brussels (2016)

    Google Scholar 

  7. Nickel, P., et al.: Human-system interaction design requirements to improve machinery and systems safety. In: Arezes, P.M. (ed.) AHFE 2019. AISC, vol. 969, pp. 3–13. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-20497-6_1

    Chapter  Google Scholar 

  8. Nickel, P., Janning, M., Wachholz, T., Pröger, E.: Shaping future work systems by OSH risk assessments early on. In: Bagnara, S., Tartaglia, R., Albolino, S., Alexander, T., Fujita, Y. (eds.) IEA 2018. AISC, vol. 819, pp. 247–256. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96089-0_27

    Chapter  Google Scholar 

  9. Miller, C., et al.: Human-machine interface. In: Hockey, G.R.J. (ed.) THESEUS Cluster 2: Psychology and Human-Machine Systems – Report, Indigo, Strasbourg, pp. 22–38 (2012)

    Google Scholar 

  10. Hale, K.S., Stanney, K.M. (eds.): Handbook of Virtual Environments: Design, Implementation, and Applications. CRC Press, Boca Raton (2015)

    Google Scholar 

  11. Zhou, W., Whyte, J., Sacks, R.: Construction safety and digital design: a review. Autom. Constr. 22, 102–111 (2012)

    Article  Google Scholar 

  12. Grabowski, A.: Innovative and comprehensive support system for training people working in dangerous conditions. In: Duffy, V.G. (ed.) HCII 2019. LNCS, vol. 11581, pp. 394–405. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22216-1_29

    Chapter  Google Scholar 

  13. Lawson, G., Shaw, E., Roper, T., Nilsson, T., Bajorunaite, L., Batool, A.: Immersive virtual worlds: multi-sensory virtual environments for health and safety training. IOSH, Leicestershire (2019)

    Google Scholar 

  14. Helin, K., Karjalainen, J., Kuula, T., Philippon, N.: Virtual/mixed/augmented reality laboratory research for the study of augmented human and human-machine systems. In: Proceedings of 12th International IEEE Conference on Intelligent Environments, IE 2016, September 2016, London, pp. 14–16 (2016)

    Google Scholar 

  15. Kaufeld, M., Nickel, P.: Level of robot autonomy and information aids in human-robot interaction affect human mental workload – an investigation in virtual reality. In: Duffy, V.G. (ed.) HCII 2019. LNCS, vol. 11581, pp. 278–291. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22216-1_21

    Chapter  Google Scholar 

  16. Eastgate, R.M., Wilson, J.R., D’Cruz, M.: Structured development of virtual environments. In: Hale, K.S., Stanney, K.M. (eds.) Handbook of Virtual Environments: Design, Implementation, and Applications, pp. 353–390. CRC Press, Boca Raton (2015)

    Google Scholar 

  17. De Kort, Y.A.W., Ijsselsteijn, W.A., Kooijman, J., Schuurmans, Y.: Virtual laboratories: comparability of real and virtual environments for environmental psychology. Presence 12(4), 360–373 (2003)

    Article  Google Scholar 

  18. Champney, R.K., Carroll, M., Surpris, G., Cohn, J.: Conducting training transfer studies in virtual environments. In: Hale, K.S., Stanney, K.M. (eds.) Handbook of Virtual Environments: Design, Implementation, and Applications, pp. 781–795. CRC Press, Boca Raton (2015)

    Google Scholar 

  19. Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: a presence questionnaire. Presence 7(3), 225–240 (1998)

    Article  Google Scholar 

  20. Simpson, B.D., Cowgill, J.L., Gilkey, R.H., Weisenberger, J.M.: Technological considerations in the design of multisensory virtual environments: how real does it need to be? In: Hale, K.S., Stanney, K.M. (eds.) Handbook of Virtual Environments: Design, Implementation, and Applications, pp. 313–333. CRC Press, Boca Raton (2015)

    Google Scholar 

  21. Lampton, D.R., Knerr, B.W., Goldberg, S.L., Bliss, J.P., Moshell, M.J., Blau, B.S.: The Virtual Environment Performance Assessment Battery: Development and evaluation (TR 1029). US Army Research Institute, Alexandria (1995)

    Google Scholar 

  22. McCauley Bell, P.: Ergonomics in virtual environments. In: Stanney, K.M. (ed.) Handbook of Virtual Environments, pp. 807–826. LEA, Mahwah (2002)

    Google Scholar 

  23. Marc, J., Belkacem, N., Marsot, J.: Virtual reality: a design tool for enhanced consideration of usability ‘validation elements’. Saf. Sci. 45, 589–601 (2007)

    Article  Google Scholar 

  24. Nickel, P., Lungfiel, A.: Improving occupational safety and health (OSH) in human-system interaction (HSI) through applications in virtual environments. In: Duffy, V.G. (ed.) DHM 2018. LNCS, vol. 10917, pp. 85–96. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91397-1_8

    Chapter  Google Scholar 

  25. Renner, R.S., Velichkovsky, B.M., Helmert, J.R.: The perception of egocentric distances in virtual environments – a review. ACM Comput. Surv. (CSUR) 46(2), 40, Article 23 (2013). https://doi.org/10.1145/2543581.2543590

  26. Badcock, D.R., Palmisano, S., May, J.G.: Vision and virtual environments. In: Hale, K.S., Stanney, K.M. (eds.) Handbook of Virtual Environments: Design, Implementation, and Applications, pp. 39–85. CRC Press, Boca Raton (2015)

    Google Scholar 

  27. Goldstein, E.B., Brockmole, J.R.: Sensation and Perception. Cengage Learning, Boston (2017)

    Google Scholar 

  28. Maruhn, P., Schneider, S., Bengler, K.: Measuring egocentric distance perception in virtual reality: influence of methodologies, locomotion and translation gains. PLoS ONE 14(10), e0224651 (2019). https://doi.org/10.1371/journal.pone.0224651

    Article  Google Scholar 

  29. Stahre, B., Billger, M.: Physical measurements vs visual perception: comparing colour appearance in reality to virtual reality. In: Proceedings of the Conference on Colour in Graphics, Imaging, and Vision, CGIV 2006, 19–22 June 2006, Leeds, pp. 146-151 (2006)

    Google Scholar 

  30. Plumert, J.M., Kearney, J.K., Cremer, J.F., Recker, K.: Distance perception in real and virtual environments. ACM Trans. Appl. Percept. 2(3), 216–233 (2005). https://doi.org/10.1145/1077399.1077402

    Article  Google Scholar 

  31. EN ISO 8596: Ophthalmic optics - Visual acuity testing - Standard and clinical optotypes and their presentation (ISO 8596:2017). Brussels, CEN (2018)

    Google Scholar 

  32. Ishihara, S.: Tests for Colour Blindness. Handaya Hongo Harukich, Tokyo (1917)

    Google Scholar 

  33. TNO: Test for stereoscopic vision (Netherlands Organization for Applied Scientific Research, Institut for Perception, 17th ed.). Lameris Ootech, Nieuwegein (1972)

    Google Scholar 

  34. Nickel, P., Lungfiel, A.: SUTAVE. Safety and usability through applications in virtual environments. Virtual reality in occupational safety and health. An IFA service. DGUV, Berlin (2014). www.dguv.de/ifa/sutave

  35. EN ISO 10218: Robots and robotic devices - Safety requirements for industrial robots - Part 1: Robots. Part 2: Robot systems and integration. CEN, Brussels (2012)

    Google Scholar 

  36. Nickel, P., Lungfiel, A., Trabold, R.-J.: Reconstruction of near misses and accidents for analyses from virtual reality usability study. In: Barbic, J., D’Cruz, M., Latoschik, M.E., Slater, M., Bourdot, P. (eds.) EuroVR 2017. LNCS, vol. 10700, pp. 182–191. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72323-5_12

    Chapter  Google Scholar 

  37. EN ISO 216: Writing paper and certain classes of printed matter - Trimmed sizes - A and B series, and indication of machine direction (ISO 216:2007). CEN, Brussels (2007)

    Google Scholar 

  38. Hart, S.G., Staveland, L.E.: Development of the NASA task load index (TLX): results of empirical and theoretical research. In: Hancock, P.A., Meshkati, N. (eds.) Human Mental Workload, pp. 139–183. North-Holland, Amsterdam (1988)

    Chapter  Google Scholar 

  39. Witmer, B.G., Jerome, C.J., Singer, M.J.: The factor structure of the presence questionnaire. Presence 14(3), 298–312 (2005)

    Article  Google Scholar 

  40. Weibel, D., Schmutz, J., Pahud, O., Wissmath, B.: Measuring spatial presence: introducing and validating the pictorial presence SAM. Presence Teleoperators Virtual Environ. 24(1), 44–61 (2015)

    Google Scholar 

  41. Kennedy, R.S., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993)

    Article  Google Scholar 

  42. Pfendler, C., Thun, J.: Der Simulator Sickness Questionnaire von Kennedy et al. (1993) und seine rechnergestützte Version (Technischer Bericht). Forschungsinstitut für Kommunikation, Informationsverarbeitung und Ergonomie (FKIE), Wachtberg (2001)

    Google Scholar 

  43. Stanney, K.M., Kennedy, R.S., Drexler, J.M.: Cybersickness is not simulator sickness. In: Proceedings of the 41st Annual Meeting of the Human Factors and Ergonomics Society, HFES 1997, 22–26 September 1997, Albuquerque, pp. 1138--1142. HFES, San Diego (1997)

    Google Scholar 

  44. Nickel, P., Nachreiner, F.: Differential usability of paper-based and computer-based work documents for control room operators in the chemical process industry. In: De Waard, D., Brookhuis, K.A., van Egmond, R., Boersema, T. (eds.) Human Factors in Design, Safety, and Management, pp. 299–314. Shaker Publishing, Maastricht (2005)

    Google Scholar 

  45. Noyes, J.M., Garland, K.J.: Computer- vs. paper-based tasks: Are they equivalent? Ergonomics 51(9), 1352–1375 (2008)

    Google Scholar 

Download references

Acknowledgements

It is a pleasant duty to acknowledge all participants for taking part in the study and for immersing in the virtual work environment. The author is grateful to the efforts of Mr. Andy Lungfiel for technical development of the VE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Nickel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nickel, P. (2020). Depth and Colour Perception in Real and Virtual Robot Cells in the Context of Occupational Safety and Health. In: Duffy, V. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Posture, Motion and Health. HCII 2020. Lecture Notes in Computer Science(), vol 12198. Springer, Cham. https://doi.org/10.1007/978-3-030-49904-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49904-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49903-7

  • Online ISBN: 978-3-030-49904-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics