Skip to main content

Noninvasive and Mechanical Ventilation

  • Chapter
  • First Online:
Emergency Department Critical Care

Abstract

Respiratory failure is a common presentation to the emergency department (ED). In addition to supplemental oxygen, noninvasive positive-pressure ventilation (NIPPV) and mechanical ventilation (MV) are tools commonly used for the management of acute respiratory failure. It is important to know the principles of oxygenation and ventilation and how NIPPV and MV can improve gas exchange. There are many modes that can be confusing to practitioners who do not use ventilators frequently. Knowledge of the different ventilator parameters helps so that the most appropriate mode may be selected for the specific clinical scenario. Once on positive-pressure ventilation (PPV), the provider must be able to troubleshoot problems that commonly occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luecke T, Pelosi P. Clinical review: positive end-expiratory pressure and cardiac output. Crit Care Lond Engl. 2005;9:607–21.

    Article  Google Scholar 

  2. Gray A, et al. Noninvasive ventilation in acute cardiogenic pulmonary edema. N Engl J Med. 2008;359:142–51.

    Article  CAS  Google Scholar 

  3. Confalonieri M, et al. A chart of failure risk for noninvasive ventilation in patients with COPD exacerbation. Eur Respir J. 2005;25:348–55.

    Article  CAS  Google Scholar 

  4. Luo J, et al. Can non-invasive positive pressure ventilation prevent endotracheal intubation in acute lung injury/acute respiratory distress syndrome? A meta-analysis. Respirology Carlton VIC. 2014;19:1149–57.

    Article  Google Scholar 

  5. Corrêa TD, et al. Performance of noninvasive ventilation in acute respiratory failure in critically ill patients: a prospective, observational, cohort study. BMC Pulm Med. 2015;15:144.

    Article  Google Scholar 

  6. Walls RM, Murphy MF. Manual of emergency airway management. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  7. West JB. Chapter 50: Acid–base management. In: Respiratory physiology. Baltimore: Lippincott Williams & Wilkins; 2012.

    Google Scholar 

  8. Jardin F, Vieillard-Baron A. Is there a safe plateau pressure in ARDS? The right heart only knows. Intensive Care Med. 2007;33:444–7.

    Article  Google Scholar 

  9. Vieillard-Baron A, et al. Prone positioning unloads the right ventricle in severe ARDS. Chest. 2007;132:1440–6.

    Article  Google Scholar 

  10. Guervilly C, et al. Right ventricular function during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care Med. 2012;40:1539–45.

    Article  Google Scholar 

  11. Guérin C, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368:2159–68.

    Article  Google Scholar 

  12. Chan B, Gaudry P, Grattan-Smith TM, McNeil R. The use of Glasgow Coma Scale in poisoning. J Emerg Med. 1993;11:579–82.

    Article  CAS  Google Scholar 

  13. Donald C, Duncan R, Thakore S. Predictors of the need for rapid sequence intubation in the poisoned patient with reduced Glasgow coma score. Emerg Med J: EMJ. 2009;26:510–2.

    Article  CAS  Google Scholar 

  14. Davies AE, Kidd D, Stone SP, MacMahon J. Pharyngeal sensation and gag reflex in healthy subjects. Lancet. 1995;345:487–8.

    Article  CAS  Google Scholar 

  15. Magder S. Bench-to-bedside review: ventilatory abnormalities in sepsis. Crit Care Lond Engl. 2009;13:202.

    Article  Google Scholar 

  16. Hess DR. Ventilator modes: where have we come from and where are we going? Chest. 2010;137:1256–8.

    Article  Google Scholar 

  17. Bersten AD, Soni N. Oh’s intensive care manual: expert consult: online. London: Elsevier Health Sciences; 2013.

    Google Scholar 

  18. Agasti TK. Textbook of anaesthesia for postgraduates. New Delhi St. Louis: JP Brothers Medical Publishers Ltd; 2011.

    Google Scholar 

  19. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.

    Article  Google Scholar 

  20. Futier E, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369:428–37.

    Article  CAS  Google Scholar 

  21. Hager DN, Krishnan JA, Hayden DL, Brower RG, ARDS Clinical Trials Network. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med. 2005;172:1241–5.

    Article  Google Scholar 

  22. Weingart S. Podcast 3 – Laryngoscope as a Murder Weapon (LAMW) Series – Ventilatory Kills – Intubating the patient with Severe Metabolic Acidosis. EMCrit Blog. Published on May 22, 2009; Accessed on November 22nd 2019. Available at https://emcrit.org/emcrit/tube-severe-acidosis/.

  23. Kallet RH, Branson RD. Respiratory controversies in the critical care setting. Do the NIH ARDS Clinical Trials Network PEEP/FIO2 tables provide the best evidence-based guide to balancing PEEP and FIO2 settings in adults? Respir Care. 2007;52:461–75; discussion 475–477.

    PubMed  Google Scholar 

  24. Brower RG, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327–36.

    Article  Google Scholar 

  25. Fanelli V, et al. Acute respiratory distress syndrome: new definition, current and future therapeutic options. J Thorac Dis. 2013;5:326–34.

    PubMed  PubMed Central  Google Scholar 

  26. Ferguson ND, et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012;38:1573–82.

    Article  Google Scholar 

  27. Mikkelsen ME, et al. The epidemiology of acute respiratory distress syndrome in patients presenting to the emergency department with severe sepsis. Shock Augusta Ga. 2013;40:375–81.

    Article  Google Scholar 

  28. Petrucci N, Iacovelli W. Ventilation with lower tidal volumes versus traditional tidal volumes in adults for acute lung injury and acute respiratory distress syndrome. Cochrane Database Syst Rev. 2004:CD003844. https://doi.org/10.1002/14651858.CD003844.pub2.

  29. Stehman CR, et al. Bedside estimation of patient height for calculating ideal body weight in the emergency department. J Emerg Med. 2011;41:97–101.

    Article  Google Scholar 

  30. Hickling KG. Permissive hypercapnia. Respir Care Clin N Am. 2002;8:155–169, v.

    Article  Google Scholar 

  31. Bidani A, Tzouanakis AE, Cardenas VJ, Zwischenberger JB. Permissive hypercapnia in acute respiratory failure. JAMA. 1994;272:957–62.

    Article  CAS  Google Scholar 

  32. Kregenow DA, Rubenfeld GD, Hudson LD, Swenson ER. Hypercapnic acidosis and mortality in acute lung injury. Crit Care Med. 2006;34:1–7.

    Article  Google Scholar 

  33. Ni Chonghaile M, Higgins B, Laffey JG. Permissive hypercapnia: role in protective lung ventilatory strategies. Curr Opin Crit Care. 2005;11:56–62.

    Article  Google Scholar 

  34. Curley G, Hayes M, Laffey JG. Can ‘permissive’ hypercapnia modulate the severity of sepsis-induced ALI/ARDS? Crit Care Lond Engl. 2011;15:212.

    Article  Google Scholar 

  35. Reddy VG. Auto-PEEP: how to detect and how to prevent--a review. Middle East J Anaesthesiol. 2005;18:293–312.

    PubMed  Google Scholar 

  36. Laghi F, Goyal A. Auto-PEEP in respiratory failure. Minerva Anestesiol. 2012;78:201–21.

    CAS  PubMed  Google Scholar 

  37. Chiumello D, et al. Time to reach a new steady state after changes of positive end expiratory pressure. Intensive Care Med. 2013;39:1377–85.

    Article  CAS  Google Scholar 

  38. Barr J, Pandharipande PP. The pain, agitation, and delirium care bundle: synergistic benefits of implementing the 2013 pain, agitation, and delirium guidelines in an integrated and interdisciplinary fashion. Crit Care Med. 2013;41:S99–115.

    Article  Google Scholar 

  39. Needham CJ, Brindley PG. Best evidence in critical care medicine: the role of neuromuscular blocking drugs in early severe acute respiratory distress syndrome. Can J Anaesth. 2012;59:105–8.

    Article  Google Scholar 

  40. Papazian L, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–16.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Gaillard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaillard, J.P., Schinlever, M. (2020). Noninvasive and Mechanical Ventilation. In: Shiber, J., Weingart, S. (eds) Emergency Department Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-030-28794-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28794-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28792-4

  • Online ISBN: 978-3-030-28794-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics