Skip to main content

Renal Emergencies

  • Chapter
  • First Online:
Emergency Department Critical Care

Abstract

Renal oxygen consumption occurs at a rate of 6–8 mL/min per 100 g. While the kidneys receive approximately 20–25% of cardiac output at rest, the kidneys use 7–10% of total oxygen uptake. The sodium-potassium ATPase pump utilizes approximately 2/3 of renal oxygen uptake. Unlike other organs and tissues in which blood flow is determined by metabolic need, blood flow to the kidney is determined by metabolic need indirectly via sodium reabsorption and effects on the glomerular filtration rate. Additionally, as renal perfusion is autoregulated, changes in perfusion altering oxygen delivery are likely restricted in the kidney; this provides a basis for the production of erythropoietin in the presence of low tissue oxygen tension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palmer LG, Schnermann J. Integrated control of Na transport along the nephron. Clin J Am Soc Nephrol. 2015;10(4):676–87.

    CAS  PubMed  Google Scholar 

  2. Dunn A, Lo V, Donnelly S. The role of the kidney in blood volume regulation: the kidney as a regulator of the hematocrit. Am J Med Sci. 2007;334(1):65–71.

    CAS  PubMed  Google Scholar 

  3. Rizzo JD, et al. Erythropoietin: a paradigm for the development of practice guidelines. Hematol Am Soc Hematol Educ Program. 2001;2001:10–30.

    Google Scholar 

  4. Gattineni J, Baum M. Regulation of phosphate transport by fibroblast growth factor 23 (FGF23): implications for disorders of phosphate metabolism. Pediatr Nephrol. 2010;25(4):591–601.

    PubMed  Google Scholar 

  5. Martin A, David V, Quarles LD. Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev. 2012;92(1):131–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Razzaque MS. Bone-kidney axis in systemic phosphate turnover. Arch Biochem Biophys. 2014;561C:154–8.

    Google Scholar 

  7. George AL, Neilson EG. Cellular and molecular biology of the kidney. In: Fauci A, editor. Harrison’s principles of internal medicine. New York: McGraw-Hill; 2015.

    Google Scholar 

  8. Wagner CA, et al. Regulated acid-base transport in the collecting duct. Pflugers Arch. 2009;458(1):137–56.

    CAS  PubMed  Google Scholar 

  9. Nakamura M, et al. Roles of renal proximal tubule transport in acid/base balance and blood pressure regulation. Biomed Res Int. 2014;2014:504808.

    PubMed  PubMed Central  Google Scholar 

  10. Jacques T, et al. Overexpression of pendrin in intercalated cells produces chloride-sensitive hypertension. J Am Soc Nephrol. 2013;24(7):1104–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Buxton IO, Benet LZ. Goodman & Gilman’s the pharmacological basis of therapeutics. In: Brunton LL, editor. Goodman & Gilman’s the pharmacological basis of therapeutics. New York: McGraw-Hill; 2011.

    Google Scholar 

  12. Nolin TD, et al. Emerging evidence of the impact of kidney disease on drug metabolism and transport. Clin Pharmacol Ther. 2008;83(6):898–903.

    CAS  PubMed  Google Scholar 

  13. Lote CJ, editor. Principles of renal physiology. 5th ed. New York: Springer; 2012.

    Google Scholar 

  14. Kotchen TA, Guthrie GP Jr. Renin-angiotensin-aldosterone and hypertension. Endocr Rev. 1980;1(1):78–99.

    CAS  PubMed  Google Scholar 

  15. Jelkmann W. Regulation of erythropoietin production. J Physiol. 2011;589(Pt 6):1251–8.

    CAS  PubMed  Google Scholar 

  16. Chawla LS, et al. The severity of acute kidney injury predicts progression to chronic kidney disease. Kidney Int. 2011;79(12):1361–9.

    PubMed  PubMed Central  Google Scholar 

  17. Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380(9843):756–66.

    PubMed  Google Scholar 

  18. James MT, et al. Glomerular filtration rate, proteinuria, and the incidence and consequences of acute kidney injury: a cohort study. Lancet. 2010;376(9758):2096–103.

    PubMed  Google Scholar 

  19. Star RA. Treatment of acute renal failure. Kidney Int. 1998;54(6):1817–31.

    CAS  PubMed  Google Scholar 

  20. Bellomo R, et al. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–12.

    PubMed  PubMed Central  Google Scholar 

  21. Ricci Z, Cruz D, Ronco C. The RIFLE criteria and mortality in acute kidney injury: a systematic review. Kidney Int. 2008;73(5):538–46.

    CAS  PubMed  Google Scholar 

  22. Lameire NH, et al. Acute kidney injury: an increasing global concern. Lancet. 2013;382(9887):170–9.

    PubMed  Google Scholar 

  23. Barasch J, Zager R, Bonventre JV. Acute kidney injury: a problem of definition. Lancet. 2017;389(10071):779–81.

    PubMed  PubMed Central  Google Scholar 

  24. Lameire N, Van Biesen W, Vanholder R. Acute renal failure. Lancet. 2005;365(9457):417–30.

    CAS  PubMed  Google Scholar 

  25. Coca SG, et al. Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int. 2008;73(9):1008–16.

    CAS  PubMed  Google Scholar 

  26. Mehta RL, Chertow GM. Acute renal failure definitions and classification: time for change? J Am Soc Nephrol. 2003;14(8):2178–87.

    PubMed  Google Scholar 

  27. Kaul A, Ruhela V. Approach to a patient with acute kidney injury. Clin Queries Nephrol. 2012;1(1):6–12.

    Google Scholar 

  28. Wasung ME, Chawla LS, Madero M. Biomarkers of renal function, which and when? Clin Chim Acta. 2015;438:350–7.

    CAS  PubMed  Google Scholar 

  29. Vanmassenhove J, et al. Management of patients at risk of acute kidney injury. Lancet. 2017;389(10084):2139–51.

    PubMed  Google Scholar 

  30. Kellum JA. Diagnostic criteria for acute kidney injury: present and future. Crit Care Clin. 2015;31(4):621–32.

    PubMed  PubMed Central  Google Scholar 

  31. Kellum JA, et al. Developing a consensus classification system for acute renal failure. Curr Opin Crit Care. 2002;8(6):509–14.

    PubMed  Google Scholar 

  32. Lopes JA, Jorge S. The RIFLE and AKIN classifications for acute kidney injury: a critical and comprehensive review. Clin Kidney J. 2013;6(1):8–14.

    PubMed  Google Scholar 

  33. Mehta RL, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.

    PubMed  PubMed Central  Google Scholar 

  34. Sawhney S, Fraser SD. Epidemiology of AKI: utilizing large databases to determine the burden of AKI. Adv Chronic Kidney Dis. 2017;24(4):194–204.

    PubMed  PubMed Central  Google Scholar 

  35. Group, T.K.D.I.G.O.K.W. Definition and classification of acute kidney injury. Kidney Int. 2012;Suppl 2:19–36.

    Google Scholar 

  36. Manjunath G, Sarnak MJ, Levey AS. Prediction equations to estimate glomerular filtration rate: an update. Curr Opin Nephrol Hypertens. 2001;10(6):785–92.

    CAS  PubMed  Google Scholar 

  37. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1–266.

    Google Scholar 

  38. Cruz DN, et al. North East Italian Prospective Hospital Renal Outcome Survey on Acute Kidney Injury (NEiPHROS-AKI): targeting the problem with the RIFLE criteria. Clin J Am Soc Nephrol CJASN. 2007;2(3):418–25.

    PubMed  Google Scholar 

  39. Hoste EA, et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care. 2006;10(3):R73.

    PubMed  PubMed Central  Google Scholar 

  40. Ali T, et al. Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J Am Soc Nephrol. 2007;18(4):1292–8.

    CAS  PubMed  Google Scholar 

  41. Hsu CY, et al. Community-based incidence of acute renal failure. Kidney Int. 2007;72(2):208–12.

    PubMed  PubMed Central  Google Scholar 

  42. Liangos O, et al. Epidemiology and outcomes of acute renal failure in hospitalized patients: a national survey. Clin J Am Soc Nephrol CJASN. 2006;1(1):43–51.

    PubMed  Google Scholar 

  43. Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis. 2002;39(5):930–6.

    PubMed  Google Scholar 

  44. Sawhney S, et al. Intermediate and long-term outcomes of survivors of acute kidney injury episodes: a large population-based Cohort Study. Am J Kidney Dis. 2017;69(1):18–28.

    PubMed  PubMed Central  Google Scholar 

  45. de Mendonca A, et al. Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score. Intensive Care Med. 2000;26(7):915–21.

    PubMed  Google Scholar 

  46. Bagshaw SM, George C, Bellomo R. Early acute kidney injury and sepsis: a multicentre evaluation. Crit Care. 2008;12(2):R47.

    PubMed  PubMed Central  Google Scholar 

  47. Cosentino F, Chaff C, Piedmonte M. Risk factors influencing survival in ICU acute renal failure. Nephrol Dial Transplant. 1994;9(Suppl 4):179–82.

    PubMed  Google Scholar 

  48. Liano F, Pascual J. Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid Acute Renal Failure Study Group. Kidney Int. 1996;50(3):811–8.

    CAS  PubMed  Google Scholar 

  49. Ahlstrom A, et al. Comparison of 2 acute renal failure severity scores to general scoring systems in the critically ill. Am J Kidney Dis. 2006;48(2):262–8.

    PubMed  Google Scholar 

  50. Bell M, et al. Optimal follow-up time after continuous renal replacement therapy in actual renal failure patients stratified with the RIFLE criteria. Nephrol Dial Transplant. 2005;20(2):354–60.

    PubMed  Google Scholar 

  51. Uchino S, et al. An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit Care Med. 2006;34(7):1913–7.

    PubMed  Google Scholar 

  52. Chertow GM, et al. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16(11):3365–70.

    PubMed  Google Scholar 

  53. Metnitz PG, et al. Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med. 2002;30(9):2051–8.

    PubMed  Google Scholar 

  54. Amdur RL, et al. Outcomes following diagnosis of acute renal failure in U.S. veterans: focus on acute tubular necrosis. Kidney Int. 2009;76(10):1089–97.

    PubMed  Google Scholar 

  55. Bellomo R, et al. Acute kidney injury in sepsis. Intensive Care Med. 2017;43(6):816–28.

    CAS  PubMed  Google Scholar 

  56. Sharfuddin AA, Molitoris BA. Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol. 2011;7(4):189–200.

    CAS  PubMed  Google Scholar 

  57. Ostermann M, Liu K. Pathophysiology of AKI. Best Pract Res Clin Anaesthesiol. 2017;31(3):305–14.

    PubMed  Google Scholar 

  58. Kumar J. Pathophysiology of ischemic acute tubular necrosis. Clin Queries Nephrol. 2012;1(1):18–26.

    CAS  Google Scholar 

  59. Post EH, et al. Renal perfusion in sepsis: from macro- to microcirculation. Kidney Int. 2017;91(1):45–60.

    PubMed  Google Scholar 

  60. Raimundo M, et al. Low systemic oxygen delivery and BP and risk of progression of early AKI. Clin J Am Soc Nephrol CJASN. 2015;10(8):1340–9.

    CAS  PubMed  Google Scholar 

  61. Poukkanen M, et al. Hemodynamic variables and progression of acute kidney injury in critically ill patients with severe sepsis: data from the prospective observational FINNAKI study. Crit Care. 2013;17(6):R295.

    PubMed  PubMed Central  Google Scholar 

  62. Martin C, et al. Renal effects of norepinephrine used to treat septic shock patients. Crit Care Med. 1990;18(3):282–5.

    CAS  PubMed  Google Scholar 

  63. Izawa J, et al. Early-phase cumulative hypotension duration and severe-stage progression in oliguric acute kidney injury with and without sepsis: an observational study. Crit Care. 2016;20(1):405.

    PubMed  PubMed Central  Google Scholar 

  64. Sun LY, et al. Association of intraoperative hypotension with acute kidney injury after elective noncardiac surgery. Anesthesiology. 2015;123(3):515–23.

    PubMed  Google Scholar 

  65. Wesselink EM, et al. Intraoperative hypotension and the risk of postoperative adverse outcomes: a systematic review. Br J Anaesth. 2018;121(4):706–21.

    CAS  PubMed  Google Scholar 

  66. Walsh M, et al. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology. 2013;119(3):507–15.

    PubMed  Google Scholar 

  67. Prowle J, Bagshaw SM, Bellomo R. Renal blood flow, fractional excretion of sodium and acute kidney injury: time for a new paradigm? Curr Opin Crit Care. 2012;18(6):585–92.

    PubMed  Google Scholar 

  68. Bougle A, Duranteau J. Pathophysiology of sepsis-induced acute kidney injury: the role of global renal blood flow and renal vascular resistance. Contrib Nephrol. 2011;174:89–97.

    PubMed  Google Scholar 

  69. Bellomo R, et al. Septic acute kidney injury: the glomerular arterioles. Contrib Nephrol. 2011;174:98–107.

    PubMed  Google Scholar 

  70. Ergin B, et al. The renal microcirculation in sepsis. Nephrol Dial Transplant. 2015;30(2):169–77.

    CAS  PubMed  Google Scholar 

  71. Legrand M, et al. Renal hypoxia and dysoxia after reperfusion of the ischemic kidney. Mol Med. 2008;14(7–8):502–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Verma SK, Molitoris BA. Renal endothelial injury and microvascular dysfunction in acute kidney injury. Semin Nephrol. 2015;35(1):96–107.

    CAS  PubMed  Google Scholar 

  73. Zarbock A, Gomez H, Kellum JA. Sepsis-induced acute kidney injury revisited: pathophysiology, prevention and future therapies. Curr Opin Crit Care. 2014;20(6):588–95.

    PubMed  PubMed Central  Google Scholar 

  74. Sutton TA. Alteration of microvascular permeability in acute kidney injury. Microvasc Res. 2009;77(1):4–7.

    CAS  PubMed  Google Scholar 

  75. Versteilen AM, et al. Rho-kinase inhibition reduces early microvascular leukocyte accumulation in the rat kidney following ischemia-reperfusion injury: roles of nitric oxide and blood flow. Nephron Exp Nephrol. 2011;118(4):e79–86.

    CAS  PubMed  Google Scholar 

  76. Kwon O, Hong SM, Ramesh G. Diminished NO generation by injured endothelium and loss of macula densa nNOS may contribute to sustained acute kidney injury after ischemia-reperfusion. Am J Physiol Renal Physiol. 2009;296(1):F25–33.

    CAS  PubMed  Google Scholar 

  77. Kato N, et al. The E-selectin ligand basigin/CD147 is responsible for neutrophil recruitment in renal ischemia/reperfusion. J Am Soc Nephrol. 2009;20(7):1565–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pulskens WP, et al. Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury. PLoS One. 2008;3(10):e3596.

    PubMed  PubMed Central  Google Scholar 

  79. Chawla LS, et al. Elevated plasma concentrations of IL-6 and elevated APACHE II score predict acute kidney injury in patients with severe sepsis. Clin J Am Soc Nephrol CJASN. 2007;2(1):22–30.

    CAS  PubMed  Google Scholar 

  80. Thurman JM. Triggers of inflammation after renal ischemia/reperfusion. Clin Immunol. 2007;123(1):7–13.

    CAS  PubMed  Google Scholar 

  81. Molitoris BA, Sandoval RM. Kidney endothelial dysfunction: ischemia, localized infections and sepsis. Contrib Nephrol. 2011;174:108–18.

    PubMed  Google Scholar 

  82. Gomez H, et al. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock. 2014;41(1):3–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zuk A, et al. Polarity, integrin, and extracellular matrix dynamics in the postischemic rat kidney. Am J Physiol. 1998;275(3 Pt 1):C711–31.

    CAS  PubMed  Google Scholar 

  84. Agarwal A, et al. Cellular and molecular mechanisms of AKI. J Am Soc Nephrol. 2016;27(5):1288–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Blantz RC. Pathophysiology of pre-renal azotemia. Kidney Int. 1998;53(2):512–23.

    CAS  PubMed  Google Scholar 

  86. Kanagasundaram NS, Arunachalam C. Assessment and initial management of acute kidney injury. Medicine. 2015;43(8):440–5.

    Google Scholar 

  87. Jeloka TK. Pathophysiology of acute interstitial nephritis. Clin Queries Nephrol. 2012;1(1):27–8.

    Google Scholar 

  88. Perazella MA. Renal vulnerability to drug toxicity. Clin J Am Soc Nephrol CJASN. 2009;4(7):1275–83.

    CAS  PubMed  Google Scholar 

  89. Chen S. Retooling the creatinine clearance equation to estimate kinetic GFR when the plasma creatinine is changing acutely. J Am Soc Nephrol. 2013;24(6):877–88.

    PubMed  Google Scholar 

  90. Schiffl H, Lang SM. Update on biomarkers of acute kidney injury: moving closer to clinical impact? Mol Diagn Ther. 2012;16(4):199–207.

    CAS  PubMed  Google Scholar 

  91. American Society of Nephrology. American Society of Nephrology renal research report. J Am Soc Nephrol. 2005;16(7):1886–903.

    Google Scholar 

  92. Khan Z, Pandey M. Role of kidney biomarkers of chronic kidney disease: an update. Saudi J Biol Sci. 2014;21(4):294–9.

    PubMed  PubMed Central  Google Scholar 

  93. Breit M, Weinberger KM. Metabolic biomarkers for chronic kidney disease. Arch Biochem Biophys. 2016;589:62–80.

    CAS  PubMed  Google Scholar 

  94. Herget-Rosenthal S, et al. Early detection of acute renal failure by serum cystatin C. Kidney Int. 2004;66(3):1115–22.

    CAS  PubMed  Google Scholar 

  95. Fassett RG, et al. Biomarkers in chronic kidney disease: a review. Kidney Int. 2011;80(8):806–21.

    CAS  PubMed  Google Scholar 

  96. Ishani A, et al. Acute kidney injury increases risk of ESRD among elderly. J Am Soc Nephrol. 2009;20(1):223–8.

    PubMed  PubMed Central  Google Scholar 

  97. Lo LJ, et al. Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease. Kidney Int. 2009;76(8):893–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Uchino S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–8.

    CAS  PubMed  Google Scholar 

  99. Mehta RL, et al. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 2004;66(4):1613–21.

    PubMed  Google Scholar 

  100. Vaara ST, et al. Timing of RRT based on the presence of conventional indications. Clin J Am Soc Nephrol. 2014;9(9):1577–85.

    PubMed  PubMed Central  Google Scholar 

  101. Chawla LS, et al. Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit Care. 2013;17(5):R207.

    PubMed  PubMed Central  Google Scholar 

  102. Weir MR, et al. Patiromer in patients with kidney disease and hyperkalemia receiving RAAS inhibitors. N Engl J Med. 2015;372(3):211–21.

    PubMed  Google Scholar 

  103. Packham DK, et al. Sodium zirconium cyclosilicate in hyperkalemia. N Engl J Med. 2015;372(3):222–31.

    PubMed  Google Scholar 

  104. Pun PH, et al. Modifiable risk factors associated with sudden cardiac arrest within hemodialysis clinics. Kidney Int. 2011;79(2):218–27.

    CAS  PubMed  Google Scholar 

  105. Karnik JA, et al. Cardiac arrest and sudden death in dialysis units. Kidney Int. 2001;60(1):350–7.

    CAS  PubMed  Google Scholar 

  106. Duranton F, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012;23(7):1258–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Schep LJ, et al. Diethylene glycol poisoning. Clin Toxicol (Phila). 2009;47(6):525–35.

    CAS  Google Scholar 

  108. Barceloux DG, et al. American Academy of clinical toxicology practice guidelines on the treatment of ethylene glycol poisoning. Ad Hoc Committee. J Toxicol Clin Toxicol. 1999;37(5):537–60.

    CAS  PubMed  Google Scholar 

  109. Hovda KE, et al. Methanol and formate kinetics during treatment with fomepizole. Clin Toxicol (Phila). 2005;43(4):221–7.

    CAS  Google Scholar 

  110. Barceloux DG, et al. American Academy of Clinical Toxicology practice guidelines on the treatment of methanol poisoning. J Toxicol Clin Toxicol. 2002;40(4):415–46.

    CAS  PubMed  Google Scholar 

  111. Porter WH, et al. Ethylene glycol toxicity: the role of serum glycolic acid in hemodialysis. J Toxicol Clin Toxicol. 2001;39(6):607–15.

    CAS  PubMed  Google Scholar 

  112. Magness JL, Murray JB. Treatment of salicylate intoxication using extracorporeal hemodialysis. J Lancet. 1961;81:253–4.

    CAS  PubMed  Google Scholar 

  113. McGuigan MA. A two-year review of salicylate deaths in Ontario. Arch Intern Med. 1987;147(3):510–2.

    CAS  PubMed  Google Scholar 

  114. Murray PT, Brady HR, Hall JB. Clinical toxicology. In: Intensive care in nephrology. London; New York: Taylor and Francis; 2005.

    Google Scholar 

  115. Messer J, Mulcahy B, Fissell WH. Middle-molecule clearance in CRRT: in vitro convection, diffusion and dialyzer area. ASAIO J. 2009;55(3):224–6.

    PubMed  Google Scholar 

  116. Kim Z, Goldfarb DS. Continuous renal replacement therapy does not have a clear role in the treatment of poisoning. Nephron Clin Pract. 2010;115(1):c1–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elie, MC., Hwang, C., Segal, M. (2020). Renal Emergencies. In: Shiber, J., Weingart, S. (eds) Emergency Department Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-030-28794-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28794-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28792-4

  • Online ISBN: 978-3-030-28794-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics