Skip to main content

Precision Medicine-Enabled Cancer Immunotherapy

  • Chapter
  • First Online:
Precision Medicine in Cancer Therapy

Part of the book series: Cancer Treatment and Research ((CTAR,volume 178))

Abstract

Repairing defects in anti-tumor immunity has been a longstanding challenge in cancer therapy, and in recent years, immunotherapy has emerged as a promising approach for treating advanced disease. While the interactions between the immune system and cancer have been studied for more than a century, only in recent years has the field realized the tremendous potential in stimulating the immune system to eradicate cancer. From early investigations by William Coley in using bacteria to treat cancer patients to more recent work in adoptively transferred engineered T cells to identify and kill cancer cells has opened up an entire field dedicated to re-educating the immune system in a cancer patient. A multitude of immunotherapy strategies have been proposed and tested in clinical trials, from recombinant proteins, agonistic antibodies, and checkpoint inhibitors designed to re-invigorate anti-tumor immunity, to vaccine approaches and adoptive T-cell strategies, we are now on the cusp of an exciting revolution that will ultimately become an arsenal of therapies to treat any cancer type, at any stage, with the hope of robust and durable responses in cancer patients. In this chapter, we will examine the various immunotherapy strategies under active clinical investigation, with a particular focus on the latest advances in cellular immunotherapies and the future of precision medicine-enabled immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coley WB (1910) The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med 3(Surg Sect):1–48

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Old LJ, Clarke DA, Benacerraf B (1959) Effect of Bacillus Calmette-Guerin infection on transplanted tumours in the mouse. Nature 184(Suppl 5):291–292

    Article  PubMed  Google Scholar 

  3. Morales A, Eidinger D, Bruce AW (1976) Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol 116(2):180–183

    Article  CAS  PubMed  Google Scholar 

  4. Hanna MG Jr, Peters LC (1978) Specific immunotherapy of established visceral micrometastases by BCG-tumor cell vaccine alone or as an adjunct to surgery. Cancer 42(6):2613–2625

    Article  PubMed  Google Scholar 

  5. Dranoff G et al (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A 90(8):3539–3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Higano CS et al (2008) Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer 113(5):975–984

    Article  CAS  PubMed  Google Scholar 

  7. Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schwartzentruber DJ et al (2011) gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364(22):2119–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weller M et al (2017) Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 18(10):1373–1385

    Article  CAS  PubMed  Google Scholar 

  10. Butts C et al (2014) Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. Lancet Oncol 15(1):59–68

    Article  CAS  PubMed  Google Scholar 

  11. Walter S et al (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18(8):1254–1261

    Article  CAS  PubMed  Google Scholar 

  12. Rini BI et al (2016) IMA901, a multipeptide cancer vaccine, plus sunitinib versus sunitinib alone, as first-line therapy for advanced or metastatic renal cell carcinoma (IMPRINT): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol 17(11):1599–1611

    Article  CAS  PubMed  Google Scholar 

  13. Kantoff PW et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422

    Article  CAS  PubMed  Google Scholar 

  14. Gulley JL et al (2014) Immune impact induced by PROSTVAC (PSA-TRICOM), a therapeutic vaccine for prostate cancer. Cancer Immunol Res 2(2):133–141

    Article  CAS  PubMed  Google Scholar 

  15. Kantoff PW, Gulley JL, Pico-Navarro C (2017) Revised overall survival analysis of a phase II, randomized, double-blind, controlled study of PROSTVAC in men with metastatic castration-resistant prostate cancer. J Clin Oncol 35(1):124–125

    Article  PubMed  Google Scholar 

  16. Ohto U et al (2015) Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 520(7549):702–705

    Article  CAS  PubMed  Google Scholar 

  17. van Rooij N et al (2013) Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 31(32):e439–e442

    Article  PubMed  Google Scholar 

  18. Robbins PF et al (2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 19(6):747–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rizvi NA et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Medrano RFV et al (2017) Immunomodulatory and antitumor effects of type I interferons and their application in cancer therapy. Oncotarget 8(41):71249–71284

    Article  PubMed  PubMed Central  Google Scholar 

  21. Creagan ET et al (1986) Recombinant leukocyte A interferon (rIFN-alpha A) in the treatment of disseminated malignant melanoma. Analysis of complete and long-term responding patients. Cancer 58(12):2576–2578

    Article  CAS  PubMed  Google Scholar 

  22. Rosenberg SA et al (1984) Biological activity of recombinant human interleukin-2 produced in Escherichia coli. Science 223(4643):1412–1414

    Article  CAS  PubMed  Google Scholar 

  23. Fyfe GA et al (1996) Long-term response data for 255 patients with metastatic renal cell carcinoma treated with high-dose recombinant interleukin-2 therapy. J Clin Oncol 14(8):2410–2411

    Article  CAS  PubMed  Google Scholar 

  24. Atkins MB et al (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17(7):2105–2116

    Article  CAS  PubMed  Google Scholar 

  25. Marks-Konczalik J et al (2000) IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci U S A 97(21):11445–11450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Voest EE et al (1995) Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst 87(8):581–586

    Article  CAS  PubMed  Google Scholar 

  27. Ng S, Galipeau J (2015) Concise review: engineering the fusion of cytokines for the modulation of immune cellular responses in cancer and autoimmune disorders. Stem Cells Transl Med 4(1):66–73

    Article  CAS  PubMed  Google Scholar 

  28. Sabzevari H et al (1994) A recombinant antibody-interleukin 2 fusion protein suppresses growth of hepatic human neuroblastoma metastases in severe combined immunodeficiency mice. Proc Natl Acad Sci U S A 91(20):9626–9630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Williams JB et al (2017) The EGR2 targets LAG-3 and 4-1BB describe and regulate dysfunctional antigen-specific CD8+ T cells in the tumor microenvironment. J Exp Med 214(2):381–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Melero I et al (1997) Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med 3(6):682–685

    Article  CAS  PubMed  Google Scholar 

  31. Weinberg AD et al (2000) Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J Immunol 164(4):2160–2169

    Article  CAS  PubMed  Google Scholar 

  32. Sagiv-Barfi I et al (2018) Eradication of spontaneous malignancy by local immunotherapy. Sci Transl Med 10(426)

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shrimali RK et al (2017) Concurrent PD-1 blockade negates the effects of OX40 agonist antibody in combination immunotherapy through inducing T-cell apoptosis. Cancer Immunol Res 5(9):755–766

    Article  CAS  PubMed  Google Scholar 

  34. Chambers CA et al (2001) CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 19:565–594

    Article  CAS  PubMed  Google Scholar 

  35. Walunas TL et al (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity 1(5):405–413

    Article  CAS  PubMed  Google Scholar 

  36. Schadendorf D et al (2015) Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33(17):1889–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359(6382):1350–1355

    Article  CAS  PubMed  Google Scholar 

  38. Baumeister SH et al (2016) Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol 34:539–573

    Article  CAS  PubMed  Google Scholar 

  39. Robert C et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532

    Article  CAS  PubMed  Google Scholar 

  40. Le DT et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kaufman HL, Kohlhapp FJ, Zloza A (2015) Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 14(9):642–662

    Article  CAS  PubMed  Google Scholar 

  42. Rehman H et al (2016) Into the clinic: talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer 4:53

    Article  PubMed  PubMed Central  Google Scholar 

  43. Martin NT, Bell JC (2018) Oncolytic virus combination therapy: killing one bird with two stones. Mol Ther 26(6):1414–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Delorme EJ, Alexander P (1964) Treatment of primary fibrosarcoma in the rat with immune lymphocytes. Lancet 2(7351):117–120

    Article  CAS  PubMed  Google Scholar 

  45. Morgan DA, Ruscetti FW, Gallo R (1976) Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193(4257):1007–1008

    Article  CAS  PubMed  Google Scholar 

  46. Donohue JH et al (1984) The systemic administration of purified interleukin 2 enhances the ability of sensitized murine lymphocytes to cure a disseminated syngeneic lymphoma. J Immunol 132(4):2123–2128

    CAS  PubMed  Google Scholar 

  47. Eberlein TJ, Rosenstein M, Rosenberg SA (1982) Regression of a disseminated syngeneic solid tumor by systemic transfer of lymphoid cells expanded in interleukin 2. J Exp Med 156(2):385–397

    Article  CAS  PubMed  Google Scholar 

  48. Rosenberg SA et al (1985) Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 313(23):1485–1492

    Article  CAS  PubMed  Google Scholar 

  49. Tran E et al (2015) Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350(6266):1387–1390

    Article  CAS  PubMed  Google Scholar 

  50. Tran E et al (2016) T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med 375(23):2255–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zacharakis N et al (2018) Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med 24(6):724–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348(6230):62–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Morgan RA et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796):126–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Robbins PF et al (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29(7):917–924

    Article  PubMed  PubMed Central  Google Scholar 

  55. Stevanovic S et al (2015) Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J Clin Oncol 33(14):1543–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Parkhurst MR et al (2011) T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 19(3):620–626

    Article  CAS  PubMed  Google Scholar 

  57. Morgan RA et al (2013) Cancer regression and neurologic toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 36(2):133–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Drake CG, Jaffee E, Pardoll DM (2006) Mechanisms of immune evasion by tumors. Adv Immunol 90:51–81

    Article  CAS  PubMed  Google Scholar 

  59. Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A 86(24):10024–10028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Priceman SJ, Forman SJ, Brown CE (2015) Smart CARs engineered for cancer immunotherapy. Curr Opin Oncol 27(6):466–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sadelain M, Brentjens R, Riviere I (2013) The basic principles of chimeric antigen receptor design. Cancer Discov 3(4):388–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hartmann J et al (2017) Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med 9(9):1183–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Neelapu SS et al (2018) Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nat Rev Clin Oncol 15(1):47–62

    Article  CAS  PubMed  Google Scholar 

  64. Morgan RA et al (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18(4):843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ott PA et al (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547(7662):217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Goodman AM et al (2017) Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16(11):2598–2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hugo W et al (2015) Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell 162(6):1271–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Auslander N et al (2018) Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat Med

    Google Scholar 

  69. Zaretsky JM et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shin DS et al (2017) Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov 7(2):188–201

    Article  CAS  PubMed  Google Scholar 

  71. Page DB et al (2016) Deep sequencing of T-cell receptor DNA as a biomarker of clonally expanded TILs in breast cancer after immunotherapy. Cancer Immunol Res 4(10):835–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hopkins AC et al (2018) T cell receptor repertoire features associated with survival in immunotherapy-treated pancreatic ductal adenocarcinoma. JCI Insight 3(13)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saul J. Priceman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, J.K., Priceman, S.J. (2019). Precision Medicine-Enabled Cancer Immunotherapy. In: Von Hoff, D., Han, H. (eds) Precision Medicine in Cancer Therapy . Cancer Treatment and Research, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-030-16391-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16391-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16390-7

  • Online ISBN: 978-3-030-16391-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics